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Abstract

A locally compact semilattice with open principal filters is a zero-dimensional scattered space. Cardinal
invariants of locally compact and compact semilattices with open principal filters are investigated. Struc-
ture of topological semilattices on the one-point Alexandroff compactification of an uncountable discrete
space and linearly ordered compact semilattices with open principal filters are researched.
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0. Introduction

This paper is a continuation of the work of the first author (see [8, 6]).

A topological inverse semigroup is an inverse semigroup defined on a Hausdorff

topological space such that the multiplication is jointly continuous and the inversion

is continuous.

We follow the terminology of [1, 3, 4, 9, 10]. Let S be a topological inverse

semigroup and E the band of 5. We define the maps <p: S -*• E and ir: S -*• E by

the formulae <p(x) = xx~l and \fr(x) = x~lx.

By Q. we denote the class of all ordinal numbers. Put £l(a) = {ft € SI \ ft < a]

for all a € £2. The set Q(a) is well-ordered by the natural order <, that is, y < fi if

fi(y) c ft(/5) for each y, P € £2(a). By a> we denote the first infinite ordinal and

by a), we denote the first uncountable ordinal. Further, we identify all cardinals with

their corresponding initial ordinals. The successor cardinal of k is denoted by A.+.
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By \X\, w(x), d(X), x(X), c(X), t(X), nx(X) we denote cardinality, weight,
density, character, cellularity, tightness, and 7r-character of a topological space X,
respectively.

A band is an idempotent semigroup and a semilattice is a commutative band. Let E
be a semilattice. For e, f e E, we write e < f if ef = f e — e. This defines a partial
order on E which we call the natural order on E. An idempotent e e E is called
maximal (minimal) if ef ^ e (ef ^ / ) for all / € E \[e}. Further, by Max E we
denote the set of all maximal idempotents of E. We mean the natural partial order in
E when we use an order relation in E like <, < unless otherwise stated. If e e E, we
write ie = {f € E \ ef =fe = f},\e = [f € E \ ef =fe = e) and N OE(e) =
E\(lel)te). If A c E, we put fA = \Jtfe \ e € A], ±A = [j{{e \ e e A}.

DEFINITION. A topological semilattice E is called a semilattice with open principal
filters if the set \e is open in S for each e e E.

1. Properties of compact semilattices with open principal filters

An element e of a topological semilattice E is called a local minimum if there exists
an open neighbourhood U(e) of e such that ie n U(e) c \e [9]. If £ is a topological
semilattice with open principal filters, then the set of all local minima of E coincides
with E. The set of all local minima of E will be denoted by K(E). An element e in
E is called the maximum or identity of E if ef = f e = f for all / in E. We call the
element e the minimum or zero of E if ef = / e = e for all f in E.

PROPOSITION 1.1. Lef Ebea topological semilattice and U be an open subset ofE.
Then t U is open subset in E.

THEOREM 1.2. Topological semilattice E is a semilattice with open principal filters
ifandonlyifK(E) = E.

This follows easily from the definition of K(E).

REMARK. If £ is a topological semilattice with open principal filters, then \e is an
open and closed subsemilattice of E for all e € E. If E is a topological semilattice
and e € E, then \e and \e are closed in E.

LEMMA 1.3. Let E be a locally compact semilattice with open principal filters.
Then E is zero-dimensional.

PROOF. Let V be a nonempty connected subset of E. Let e e V. Since \e is
open and closed and e € V, we have that fe^V. Hence f e = ef = e for all
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/ € V. So it follows that if e, f e V, then ef = fe=f also. Hence e = f. Thus
we have that E is totally disconnected. Since E is locally compact we see that E is
zero-dimensional. •

DEFINITION ([11]). A topological semilattice which has a basis of subsemilattices
is called a Lawson semilattice.

PROPOSITION 1.4. A locally compact semilattice with open principal filters is a
Lawson semilattice.

Proposition 1.4 follows easily from [11, Theorem 2.1].

REMARK. Let £ be a locally compact semilattice with open principal filters. Then
the collection of all open subsemilattices of E form a basis for the topology of E.

DEFINITION ([13]). A topological space X is called scattered if every nonempty
subset A of X contains a point p which is isolated in A.

We recall that it is shown in [13] that a topological space is scattered if and only if
every closed subset has an isolated point with respect to that subset.

DEFINITION. Let X be a semilattice. Let A c E. A minimal element of A is an
element e in A so that if / e A and ef = f e = e, then e = f. An element e in
A is called the least in A (also called a zero or a minimum of A) if ef = f e = e
for all / in A. Similarly we define a maximal element of A and a largest element of
A (also called a maximum of A). A well ordered sequence in the semilattice X is a
function from a well ordered set J into X. It is denoted as (xa) or (xa)aeJ. If the order
in J is denoted as <, then the well ordered sequence (*a) is said to be well ordered
increasing (decreasing) under the natural order if whenever a, f$ € J and a < fi we
have xaxp = xa (xaxp = xp). A well ordered increasing sequence in A means a well
ordered sequence in A which is increasing under the natural order.

LEMMA 1.5. Let E be a topological semilattice and A c E compact. Then A
contains a minimal element in A and a maximal element in A. Furthermore, if A is a
subsemilattice, then there is a minimum of A.

PROOF. We prove the existence of a maximal element of A. The proof of the
existence of a minimal element in A is similar. Consider the collection of all well
ordered increasing sequences in A. It is easily seen that there is such a well ordered
sequence F which is maximal under extension. For e € F, put K(e) = A (~\ (-fe).
Then the collection [K(e) \ e e F] is a collection of nonempty compact sets which
is a chain under containment relation. So p\{K(e) | e G F) is not empty. Let
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/ 6 (~}{K(e) | e 6 F}. Then / should belong to the range of F, since otherwise
we could get a larger well ordered increasing sequence in A, by adding / to F,
contradicting the maximality of F. It is clear that / is a maximal element of A. If
g € F and gf = f and / ^ g, then we get a larger well ordered sequence in A by
adding g to F which would contradict the maximality of F. Now suppose that A is a
subsemilattice as well. Let e be a minimal element of A. If/ € A, then ef e A and
e/ < e. So ef = e. So e is the minimum of A. •

THEOREM 1.6. Let E be a locally compact semilattice with open principal filters.
Then E is scattered.

PROOF. Let A be a closed nonempty subset of E. By Lemma 1.3 there is a subset
F of A which is open and closed in A. By Lemma 1.5 there is a maximal element /
of F. Since [f} = ( t / ) U F we see that/ is isolated in F and hence in A. So £ is
scattered by [13]. •

If £ is a topological space we denote the set of all its isolated points by Is(E).

THEOREM 1.7. Let E be a locally compact semilattice with open principal filters.
Then the following hold:

(i) Is(E) is dense in E.
(ii) w(E) = \E\.

(Hi) c(E) = d(E) = \Is(E)\.
(iv) If in addition E compact, then x(E) = \E\.

PROOF. Suppose E is scattered. So (i), (ii) and (iii) follows from [13]. Now (iv)
follows from [2, Theorem 1.25]. •

REMARK. If E is taken to be only locally compact in Theorem 1.7, then it does not
follows that \E\ = x(E)- As an example take a discrete uncountable semilattice.

The following example shows that for every cardinal X there is a compact semilattice
with open principal filters and whose cardinality is X.

EXAMPLE 1. Let a be an ordinal. Put

9 = {(*. y] = {z e « (a) | y < z < x] | x, y € fi(a) & y < x) U {0},

where 0 is the order type of the empty set. Let rn be the topology with base 98 on £2 (a).
Define a multiplication V on £2 (a) by: fl * y = max{/3, y} for all ft, y € £2 (a). Then

), *, TQ) is a topological semilattice with open principal filters of cardinality \a\.
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DEFINITION. A topological semilattice E is called an a~-semilattice if E is topo-
logically isomorphic to (£2(/8), *, rn) for some ordinal p.

EXAMPLE 2. Let £?{T) be the one-point Alexandroff compactification of a discrete
space of cardinality r with oo as its point at infinity. Put xy = oo if x ^ y and
xx = x for all x, y e srf(r). Then &f(x) is a compact topological semilattice with
open principal filters and cardinality r.

Example 1 and Example 2 show that there are compact semilattices Ei and E2 with
open principal filters such that t(Ei) = |Ei| and t(E2) < \E2\-

The following three questions arise naturaly:

(1) Does every compact scattered space E admit a structure of a topological semi-
latice with open principal filters?
(2) For every compact space X, the inequality nx(X) < t(X) [19] holds. Is there

a compact semilatice E with open principal filters so that nx(E) < t(E)1
(3) Is there a compact semilatice E with open principal filters so that d(E) < x (£)?

Question (1) can be answered in the negative under the set theoretic assumption
that p N \ N has p -points. Let us recall that a point p of a topological space E is called
a p-point if any countable intersection of neighbourhoods of p is a neighbourhood
of p. There are set theoretic models in which ^N \ N has no p-points. Continuum
Hypothesis (CH) and Martin's Axiom (MA) imply the existence of a p -point in /J N \ N.

DEFINITION ([5, 14, 12]). A Franklin-Rajagopalan space is a compact scattered
space X with a countable dense set D of isolated points so that the subspace X \ D is
homeomorphic to the ordinal space [1, o>i] with its usual topology (fi(<wi), *, rn) of
Example 1.

REMARK. The methods of [5] show that in every model of set theory where 0N \ N
has p -point there are Franklin-Rajagopalan spaces with the additional property that
no sequence of isolated points converges to u>x. We denote by yN one such space.

EXAMPLE 3. The Franklin-Rajagopalan space yN (see [5]) is a compact scattered
space which does not admit the structure of a topological semilattice with open
principal filters.

PROOF. Suppose that y N admits a structure of topological semilattice with open
principal filters. Then \co\ is a compact open semilattice. Put Y = fa>i. Let D
be the set of all isolated points of Y. Let M = Y \ (D U {coi}). Now there is an
element y in [1, coi] so that [y, coi] c Y. We claim that there is an element c in
M so that c > y and if x, y are in M and x > c and y > c in the usual order of
o>\ then xy ^ a>\. For suppose that there is no such element c. Then there are JCI
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and y\ in M so that yx > x{ > y and xxyx = cox. Then there are x2 and y2 in M
so that y < Xi < yi < x2 < y2 and x2y2 = coi. By induction we have a sequence
X\ < y\ < x2 < y2 < • • • < xn < yn < • • • in M so that xnyn = cox for all
n = 1,2 Then there is an element a in M so that ltjcn = Ityn = a. Then by
continuity of multiplication we get a = cox which is a contradiction. So there is an
element c in M with c > y so that if x, y are in M and x,y > c, then xv ^ cox. It is
also easy to see, by using continuity of multiplication, that if x, y are in Y and both
x, y are ^ cox, then there can be at most a countable number of elements a in Y with
ax = y. So there is an element p e M such that p > c and if q e M and q > p then
quc does not belong to D for every or in D. Now put 5 = J T l [ l , p + l ] . Then 5 is
a compact subset of Y and does not contain coi. So there is a compact open set W in
Y such that cox e W and if x € WHM, then x > p in the natural order of [1, a^].
Let q e W f l M . Let fi = {)fc | ^ e D and ifc<7 = cox}. Then a?! cannot belong to the
closure of B. For suppose that o)\ is in the closure of B in Y. Since no sequence of
isolated points in the space yN converges to a>u it follows that the closure of B in Y
is uncountable. So there is a point r in the closure of B such that r e M and r > p
in the order of [1, a>i\. Then r is a limit of a sequence $i, s2. *3i • • • . •*„,.. • from B.
By continuity of multiplication we have qr = co\. But q > p > c and r > p > c and
#, r are in M. So gr ?t o)\. This contradiction shows that co\ does not belong to the
closure of B. Let C = D \ B. Then if y in C, then <?;y ^ o>i and since qy is not in
D we see that qy e M, and hence the set qC = [qv | v € C} is a countable subset
of M. So <ui is not in the closure of qC. But coi is in the closure of D and not in the
closure of B. So cox is in the closure of C and hence in the closure of q C by continuity
of multiplication. This contradiction shows that yN is a compact scattered space that
does not admit the structure of topological semilattice with open principal filters. •

EXAMPLE 4. Let X be the quotient space of the space [l,a>i] with topology as
in Example 1, where we identify the points co and cox. We define multiplication as
follows in X. We put xy = yx = max{x, y] for all x, y e X if either both x, y > co
or both x, y are < co. If one of x, y < co and the other > co then put xy = yx = cox.
We also put coxx = xcot = co\ and xx = x for all x € X. Then X is a compact
semilattice with open principal filters. Clearly, nx(X) = co and t(X) = u>x. So we
have a compact scattered space which is also a semilattice with open principal filters
and nx(X) < t(X). This solves Question (2) above.

2. Some classes of compact semilattices with open principal filters

A semilattice E is called linearly ordered {well-ordered) if the multiplication
induces on E a linear order (a well-order).
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Let £ be a linearly ordered semilattice, and < be a natural order on E. By <d we
denote a dual order on E, that is, e <d f if and only if ef — f, for all e, f e E.
Obviously, if E is a linearly ordered semilattice, then <d is a linear order on E.

LEMMA 2.1. Let E be a linearly ordered compact commutative band with open
principal filters. Then <d is a well-order.

PROOF. Let A be any non-empty subset of E. We shall prove that inf<j A e A.
If there exists a compact subset K inE such that A C K, then the family {f a n K \

a 6 A} is centered and inf<</ A e (~){f a D K \ a e A] C K.
Puta = inf<^ A. If a € A, then the proof is complete. In the other case, faf)A = 0

and the set fa is clopen in E. Thus the set E \ fa is compact and A C. E\fa. Then
inf<d A e E \ fa, but a £ E \ fa, a contradiction. Therefore, fa D A ^ 0 and
a e A. •

PROPOSITION 2.2. Every well-ordered semilattice E is algebraicly isomorphic to a
subsemilattice o/(S2(a), min) for some a e £2.

PROOF. Since the cardinality of £ is bounded, by [1, Theorem 3.11'] the well-
ordered set E is similar to some interval of £2(a) (where a > \E\+). We denote this
similar map by / . Obviously, / is an algebraic isomorphism of E into (Q(a), min).

•
THEOREM 2.3. Every linearly ordered compact semilattice E with open principal

filters is an a~-semilattice.

PROOF. By Lemma 2.1, <d is a well-order on E and by Proposition 2.2 there exists
an algebraic isomorphism f : E -*• Q(8) (for some S < \E\+). Obviously, E has
a zero 0 and we put / (0 ) = /J € Q(S). It is easy to see that ( / (£) , max) is an
a "-semilattice and the isomorphism/ : E —*• ft(<5) is continuous. •

is the one-point Alexandroff compactification of the discrete space X of
cardinality x, and {a} = £/(t) \X [4].

PROPOSITION 2.4. Let £/(T) have the structure of a topological semilattice, and let
a be a maximal idempotent of srf(x). Then x < co.

PROOF. Case 1. Suppose a is an identity of the semilattice sf(x) and x > co. For
any a € &/(x) \ [a], the set fe is open in J^(r) and hence, the set jrf(x) \ fe is
finite. Thus the set &f(x) \ [a] contains a countable chain et < e2 < • • • < en < • • •.
Since for every / e N the set srf(x) \ fe, is finite, then | L U N ^ W \ tg/)l 5- u>-
Therefore, there exists an idempotent e* € sf(x) \ {a} such that e, < e* for any i € N,
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a contradiction with the inequality \fe*\ < co. If x > co, then a is not an identity of

Case 2. Suppose a is a maximal idempotent of &/(x).
First, we shall prove that if x > co, then the set Max(^(r)) is infinite. Assume the

contrary. Then a is an identity of the semilattice s/{x) \ 4,(Max(/z^(r) \ {a})). Since
the space 4,(Max(^(r) \ {a})) is compact the space s/{x) \ 4-(Max(.<z (̂r) \ [a])) is
homeomorphic to the one-point Alexandroff compactification of uncountable discrete
space. A contradiction with Case 1.

Further, we shall prove that if x > co then &/(x) \ [a] = 4-(Max(^(r) \ {a})). The
inclusion 4,(Max(^(r) \ {a})) c &/(z) \ {a} is trivial. Suppose that &/(x) \ [a] g
l(Max(j2/(x)\{a})). Then there exists e e 4-a\{a} such that e £ l(Max(j2/(x)\{a})).
Sincea € feandfeis an open subset in .e^(r), then | ^ ( r ) \ f e | < co. A contradiction
with | Max(j^(r))| > co. Thus the equality stf{x) \ {a} = | (Max(^(r) \ [a])) holds.

We shall prove that |4-a| < co. Suppose not. Then for any infinite chain ex < e2 <
••• < en < ••• < a there exists e e la such that <?, < e for any i e N. Hence
{et | i € N} c le, but \ie\ < co. A contradiction. Thus \\,a\ < co.

Obviously, there exists a countable chain ex < e2 < • • • < en < • • • such that
et < a for any i € N. Since \&/{x) \ fet\ < co for every i e N and &f(x) \ [a] =
4(Max(^(r) \ {a})), then | Max(^(r)) | < co. For any e € Max(^(T) \ {a}) the set
| e is finite, hence |Max(^(r)) | = | J ^ (T ) | = |JZ/(T) \ {a}| = r. So, if a is a maximal
idempotent of semilattice srf(x), then x = co. •

PROPOSITION 2.5. Suppose that on sf(x) (r > co) there exists a structure of a
topological semilattice. Then the following conclusions hold:

0) \N O^T)(a)\ < co.
(ii) Ifx 6 N O^( r )(a), then the set \,x is finite.

(iii) Ifx e Max(&/(x)) and a < x, then a maximal chain a < ••• < x in &f(x) is
countable.

PROOF, (i) We define A = (si/(x) \ fa) \J{a}. Then the topological subspace
A c s/{x) is homeomorphic to the one-point Alexandroff compactification of the
discrete space of cardinality x' < x, and A is a compact topological semilattice such
that a is a maximal idempotent of the semilattice A. By Proposition 2.4 we get r' < co
and, hence, \N O^(Z)(a)\ < co.

The proof of statement (ii) is trivial.
(iii) Suppose to the contrary, that there exists an uncountable chain a < ••• < x.

Since foranyg € fa\{a] the set fg is finite, then there exists x\ such that a <x\ <x.
Further, by induction for every integer i > 2 choose an indempotent x, such that
a < x, < *,_i < x. Put ^t(a) = U/eN t*i- Since the chain a < ••• < x is
uncountable, then there exists v € fa n ix such that y i Jl{a) and a < y < *, for
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any i e N. But the set fy is finite, a contradiction. •

There exists no structure of a topological inverse semigroup with open left (right)
principal ideals on the one-point Alexandroff compactification of an uncountable
discrete space [6, Proposition 4.10].

The following example shows that there exists a topological semilattice on s/(r)
which satisfies statements of Proposition 2.4 and Proposition 2.5.

EXAMPLE 5. Let X be a discrete space of cardinality r > co, Jf the discrete space
of natural numbers, and {0, 1} a two-point discrete space. Further, we suppose that
si(x) \ {a} -{X-KJV) (J({0, 1} x JV). On &/(x) we define the semilattice operation
'•' as follows:

(a) * • x — x for any x e
(b) If x, y € X x JY and x = (*°, m), y = (y°, n), then

, max{m, n)) if x° =

(c) If x e X x <sY, then x * a — a*x = a.
(d) If x, y e {0, 1} x ^ and* = (x1, m), y = ( / , n), then

I x if* =y;

(0, min{/n, n}) if* ^ y.
(e) If* € {0, 1} x ^ a n d * = (*', n), then* *a = a*x = (0, n) € {0, 1} x Jf.
(f) If* = (*',n) € {0, 1} x i/Kandy = ( / , m ) e X x c/K, then**? =y*x =

(0,n)6 {0,1} x,yK.
Obviously, ( ^ ( T ) , •) is a topological semilattice.

Proposition 2.4 and Proposition 2.5 imply

THEOREM 2.6. 77iere «wls no structure with a topological lattice on the one-point
Alexandroff compactification of an uncountable discrete space.

Item (i) of Proposition 2.5 implies

COROLLARY 2.7. Let there exist on srf(r) (r > co) the structure of topological
semilattice with open principal filters, then the set N O^(t)(a) is finite.

Example 6 shows that there exists a topological semilattice structure with open
principal filters on .e/(r) which satisfies statements of Propositions 2.4-2.5 and Corol-
lary 2.7.
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EXAMPLE 6. Let X, JZ and {0,1} be as in Example 5, and L = {1, 2 , . . . , n\ be a

discrete space. Further, we suppose that srf{x) \ {a} = (X x Jf) (J({0,1} x L). On
£?(r) we define the semilattice operation V as follows:

(a) x ox = x for any x € .e^(r).
(b) lfx,yeXx^V and JC = (x°, m), y = (y°, n), then

I (x°, max{m, n}) if x° = y°;

a ifx°^;yo.

(c) If JC € X x <sY, then xofl = a o x = a.
(d) If x, y € (0, 1} x L andx = (x1, i), y = (y'J), then

I y;

(0,min{i,;}) if JC ^ y.
(e) If x e {0, 1} x L and x = (*', i), then x o a = a o x = (0, i) € {0, 1} x L.
(f) If JC = (x1, n) € {0, 1} x L andy = (y \ m) e X x jV, then JC o y = y o

(0,n)€{0, 1 } X L .
Obviously, ( ^ / ( T ) , O) is a topological semilattice with open principal filters.

REMARK. Questions about the structure of topological semigroups on one-point
compactifications were considered in [15, 18] and in other papers.

3. Topological inverse fc?/?/-semigroups

Let 5 be an algebraic semigroup. For any a € S we denote

££d(a) = {x € 5 | there exists y € Sl such thatxy = a};

3Zd(a) = {x € 5 | there exists y € S1 such that yx = a};

</d(a) — {x € 5 | there exist y, z € S1 such that yxz = a}.

LEMMA 3.1. Let a be a regular element of the semigroup S, then

(i) -%(a) = {x e S | there exists y e S such that xy = a],

(ii) 8td(a) = {x € 5 | there exists y e S such that yx = a}.

PROOF. Suppose a is a regular element in 5. Then there exists z £ S such that
a = aza. We put ax = az and a2 = za. Hence, a = ata and a = aa2. •

LEMMA 3.2. An element a of the semigroup S is regular if and only if Jfd(a) =
S£d{e) V%d(d) = @,d(e)] for some idempotent e e S.
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PROOF. If a is a regular element of 5, then a = ax a for some x e S. Hence, e = ax
and / = xa are idempotens of 5 such that ea = a = af. If z € S£d{a) [z € 8P,d(a)\,
then, by Lemma 3.1, a = zy [a = yz] for some y € S. Hence, e = ax = zax
[f =xa = xyz] and z € J%(e) [z e # , ( / " ) ] • If w e j%(«.) [„, € #„( / • ) ] , then
e = wk[f = kw] for some A: € 5. Thus, a = ea = wka [a = af = a&to], and,
therefore, u; € S£d{a) [w e &d(a)].

Suppose &d{a) = ££d(e) \0f,d{d) = &d(e)l Then there exist x,y € Sl such
that a = ex and e = ay [a = xe and e = ya\. Hence, ea = eex = ex = a
[ae = xee = xe = a] and a = ea = aya [a = ae = aya]. If y is an identity of 5
then a = e and a = ae = aea = aaa [a = ea = eea = aaa]. Thus a € aSa. •

LEMMA 3.3. A semigroup S is inverse if and only if the following conditions
hold:

(i) Foranya € 5 there exists an unique idempotent eeS such that S£d{a)=S£d{e).
(ii) For any a € 5 there exists an unique idempotent eeS such thatSf-d{a)=3P,d(e).

PROOF. Suppose that for some idempotents e, f e S the equality 3Zd(e) = Sf.d{f)
holds. Then there exist x, y e 5 such that e = fx a n d / = ey. Since,

e = ee = ee~x = fx(fx)~l = fxx~lf = ffxx'1 = /xx"1

and

we have e < / and f < e. Hence e — f.
Suppose the statements (i) and (ii) hold. By Lemma 3.2, the semigroup 5 is regular.

Let a € 5, and suppose there exist distinct b, c € S such that

aba = a, bab = b, aca = a, cac = c.

Since .%(a) = &d(aV) = 3fd(ac) and ^?d(a) = 3f,d{bd) = @d(ca) we have that
ba = ca and ab = ac. Hence, b =. bab = cab = cac = c, and 5 is inverse
semigroup. •

DEFINITION. A topological inverse semigroup 5 is called a bopf -semigroup if the
band of 5 is a semilattice with open principal filters.

THEOREM 3.4. Let S be a topological inverse semigroup. Then the following

conditions are equivalent:

(i) S is a bopf -semigroup.
(ii) For every a € S, the set Jfd(a) is open in S.

(iii) For every a e S, the set &d(a) is open in S.
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PROOF. Implications (ii) implies (i) and (iii) implies (i) are trivial.
(i) implies (ii). We shall prove that for every x e S the equality <p~l('\(xx~1)) =

JCAx) holds. Let y e ^ ' ( f O u r 1 ) ) , then yy~l e t(**~')- Thus, yy~lxx~l = xx~l

andyy~lxx'lx = yy~xx =x. Hence,y e -%(*)• Therefore, weget^'CtC**"1)) !=

Let y € J?Ax) then there exists b € 5 such that x = yb. Hence, xx~lybb~ly~x

and xx~x = xx~lxx~l = ybb~ly~lxx~l. Thus ybb~ly~l e f(xx~l). Since yy"1 e
•\(ybb~xy~l), then yy"1 € tC**"1) and hence yy~l e ^"'(tOt*"1)). Therefore,

The implication (i) implies (iii) follows from ^"'(tCxx"1)) = Sf,d{x). D

THEOREM 3.5. Let S be a topological inverse Clifford semigroup. Then S is a
bopf -semigroup if and only if the set ^difl) is open in Sfor every a e S.

PROOF. If for every a € S, the set ^d{a) is open in 5, then the band of 5 is a
semilattice with open principal filters.

Suppose 5 is a bopf -semigroup and £ is a band of 5. Since S is a Clifford inverse
semigroup, the maps <p: S -*• E and t/r: S -> E coincide. We shall prove that
Jfd(a) — <P~l(\{aa~1)) for every a € 5. If* G Jfj (a), then there exist y, z € Ssuch
that yxz = a. By [16, Theorem 11.26], we have

l = yxz(yxz)~x = yxzz~xx~ly~l = zz~lyxx~ly~x = zz~xyy~xxx~\

Hence, ATA:"1 € \{aa~l). Therefore, ^</(a) ^ (p~l(^(aa~1)).
If x 6 ^" ' ( f^a" 1 ) ) , then xx'1 € fiaa'1) and there exists e e E such that

exx~x = aa"1, that is, exx~xa = a; hence, x € ^d(a) . Therefore, ^)"1(t(aa~1)) c
. D

The following example shows that there exists a topological inverse semigroup 5
such that the set J?d(s) is open in 5 for every s € 5 and 5 is not a &op/ -semigroup.

EXAMPLE 7. Let S be an inverse semigroup and a,b $ S. A semigroup ^(S) is
generated by the set S U {a, b] and is defined by the following equalities: ab = 1,
as = a, sb = b and by equalities in S. If 5 has the identity, then the identity of ^(5)
is the identity of 5. In the other case the identity of ^(S) is an accessory identity
of 5 (see [3, Section 1.1]). Any element of ^(5) is uniquely represented by b'ta',
teS\J{\),i,j € NU{0}.

Let 5 be a topological inverse semigroup. If S has no identity, let S[ — S U {1}
be a semigroup with an isolated accessory identity. Let SB be a base of the topology
on Sl. A topology r on ^(S) is determined by the base

= [b'Ual | Uea,i,j e N U {0}}.
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By [7, Corollary 1] (^(5), r) is a simple topological inverse semigroup and S is
topologically isomorphically embedded into (^"(5), r). The semigroup (^(S), r) is
called the Bruck semigroup over S [7].

Let 5 be a topological inverse semigroup which is not a bopf -semigroup. Let ^(5)
to be the Bruck semigroup over 5. Obviously, ^ ( s ) = ^(5) for any s e 'tf(S) and,
hence, the set ^ ( s ) is open in *&(5) for all s e 5. However, the band of *€($) is not
a semilattice with open principal filters.

THEOREM 3.6. Every first countable compact inverse bopf -semigroup is metriz-
able.

PROOF. Let 5 be as in the statement. The band E(S) is a first countable space.
Let e,f 6 £(5). If H(e,f) ^ 0, then H(e,f) is homeomorphic to the metrizable
subgroup H(e) and, hence, H(e, f) is a metrizable compactum. Theorem 1.2 implies
|£(S)| = x(£(S)) < a), hence, 5 is a countable union of metrizable compacta and
by the Arhangelskii Theorem (see [4, Theorem 3.2.20]) 5 is metrizable. •
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