J. Austral. Math. Soc. 72 (2002), 349-362

COMPACT SEMILATTICES WITH OPEN PRINCIPAL FILTERS

OLEG V. GUTIK, M. RAJAGOPALAN and K. SUNDARESAN

(Received 24 May 2000; revised 24 April 2001)

Communicated by S. A. Gadde

Abstract

A locally compact semilattice with open principal filters is a zero-dimensional scattered space. Cardinal invariants of locally compact and compact semilattices with open principal filters are investigated. Structure of topological semilattices on the one-point Alexandroff compactification of an uncountable discrete space and linearly ordered compact semilattices with open principal filters are researched.

2000 Mathematics subject classification: primary 22A26, 20M18, 22A15, 54A25, 54G12.

Keywords and phrases: topological semilattice, compact semilattice, scattered space, Franklin-Rajagopalan space, one-point Alexandroff compactification of a discrete space, topological inverse semigroup.

0. Introduction

This paper is a continuation of the work of the first author (see [8, 6]).

A *topological inverse semigroup* is an inverse semigroup defined on a Hausdorff topological space such that the multiplication is jointly continuous and the inversion is continuous.

We follow the terminology of [1, 3, 4, 9, 10]. Let S be a topological inverse semigroup and E the band of S. We define the maps $\varphi: S \to E$ and $\psi: S \to E$ by the formulae $\varphi(x) = xx^{-1}$ and $\psi(x) = x^{-1}x$.

By Ω we denote the class of all ordinal numbers. Put $\Omega(\alpha) = \{\beta \in \Omega \mid \beta \leq \alpha\}$ for all $\alpha \in \Omega$. The set $\Omega(\alpha)$ is well-ordered by the natural order \leq , that is, $\gamma \leq \beta$ if $\Omega(\gamma) \subseteq \Omega(\beta)$ for each $\gamma, \beta \in \Omega(\alpha)$. By ω we denote the first infinite ordinal and by ω_1 we denote the first uncountable ordinal. Further, we identify all cardinals with their corresponding initial ordinals. The successor cardinal of λ is denoted by λ^+ .

^{© 2002} Australian Mathematical Society 1446-7887/2000 \$A2.00 + 0.00

By |X|, w(x), d(X), $\chi(X)$, c(X), t(X), $\pi\chi(X)$ we denote cardinality, weight, density, character, cellularity, tightness, and π -character of a topological space X, respectively.

A band is an idempotent semigroup and a semilattice is a commutative band. Let E be a semilattice. For $e, f \in E$, we write $e \leq f$ if ef = f e = e. This defines a partial order on E which we call the natural order on E. An idempotent $e \in E$ is called maximal (minimal) if $ef \neq e$ ($ef \neq f$) for all $f \in E \setminus \{e\}$. Further, by Max E we denote the set of all maximal idempotents of E. We mean the natural partial order in E when we use an order relation in E like \leq , < unless otherwise stated. If $e \in E$, we write $\downarrow e = \{f \in E \mid ef = f e = f\}, \uparrow e = \{f \in E \mid ef = f e = e\}$ and $NO_E(e) = E \setminus (\downarrow e \cup \uparrow e)$. If $A \subseteq E$, we put $\uparrow A = \bigcup \{\uparrow e \mid e \in A\}, \downarrow A = \bigcup \{\downarrow e \mid e \in A\}$.

DEFINITION. A topological semilattice E is called a *semilattice with open principal* filters if the set $\uparrow e$ is open in S for each $e \in E$.

1. Properties of compact semilattices with open principal filters

An element e of a topological semilattice E is called a local minimum if there exists an open neighbourhood U(e) of e such that $\downarrow e \cap U(e) \subseteq \uparrow e$ [9]. If E is a topological semilattice with open principal filters, then the set of all local minima of E coincides with E. The set of all local minima of E will be denoted by K(E). An element e in E is called the maximum or identity of E if ef = f e = f for all f in E. We call the element e the minimum or zero of E if ef = f e = e for all f in E.

PROPOSITION 1.1. Let E be a topological semilattice and U be an open subset of E. Then $\uparrow U$ is open subset in E.

THEOREM 1.2. Topological semilattice E is a semilattice with open principal filters if and only if K(E) = E.

This follows easily from the definition of K(E).

REMARK. If E is a topological semilattice with open principal filters, then $\uparrow e$ is an open and closed subsemilattice of E for all $e \in E$. If E is a topological semilattice and $e \in E$, then $\downarrow e$ and $\uparrow e$ are closed in E.

LEMMA 1.3. Let E be a locally compact semilattice with open principal filters. Then E is zero-dimensional.

PROOF. Let V be a nonempty connected subset of E. Let $e \in V$. Since $\uparrow e$ is open and closed and $e \in V$, we have that $\uparrow e \supseteq V$. Hence f e = ef = e for all

 $f \in V$. So it follows that if $e, f \in V$, then ef = f e = f also. Hence e = f. Thus we have that E is totally disconnected. Since E is locally compact we see that E is zero-dimensional.

DEFINITION ([11]). A topological semilattice which has a basis of subsemilattices is called a *Lawson semilattice*.

PROPOSITION 1.4. A locally compact semilattice with open principal filters is a Lawson semilattice.

Proposition 1.4 follows easily from [11, Theorem 2.1].

[3]

REMARK. Let E be a locally compact semilattice with open principal filters. Then the collection of all open subsemilattices of E form a basis for the topology of E.

DEFINITION ([13]). A topological space X is called *scattered* if every nonempty subset A of X contains a point p which is isolated in A.

We recall that it is shown in [13] that a topological space is scattered if and only if every closed subset has an isolated point with respect to that subset.

DEFINITION. Let X be a semilattice. Let $A \subseteq E$. A minimal element of A is an element e in A so that if $f \in A$ and ef = fe = e, then e = f. An element e in A is called the *least* in A (also called a zero or a minimum of A) if ef = fe = e for all f in A. Similarly we define a maximal element of A and a largest element of A (also called a maximum of A). A well ordered sequence in the semilattice X is a function from a well ordered set J into X. It is denoted as (x_{α}) or $(x_{\alpha})_{\alpha \in J}$. If the order in J is denoted as \leq , then the well ordered sequence (x_{α}) is said to be well ordered increasing (decreasing) under the natural order if whenever α , $\beta \in J$ and $\alpha \leq \beta$ we have $x_{\alpha}x_{\beta} = x_{\alpha}$ $(x_{\alpha}x_{\beta} = x_{\beta})$. A well ordered increasing sequence in A means a well ordered in A which is increasing under the natural order.

LEMMA 1.5. Let E be a topological semilattice and $A \subseteq E$ compact. Then A contains a minimal element in A and a maximal element in A. Furthermore, if A is a subsemilattice, then there is a minimum of A.

PROOF. We prove the existence of a maximal element of A. The proof of the existence of a minimal element in A is similar. Consider the collection of all well ordered increasing sequences in A. It is easily seen that there is such a well ordered sequence F which is maximal under extension. For $e \in F$, put $K(e) = A \cap (\uparrow e)$. Then the collection $\{K(e) \mid e \in F\}$ is a collection of nonempty compact sets which is a chain under containment relation. So $\bigcap \{K(e) \mid e \in F\}$ is not empty. Let

 $f \in \bigcap \{K(e) \mid e \in F\}$. Then f should belong to the range of F, since otherwise we could get a larger well ordered increasing sequence in A, by adding f to F, contradicting the maximality of F. It is clear that f is a maximal element of A. If $g \in F$ and gf = f and $f \neq g$, then we get a larger well ordered sequence in A by adding g to F which would contradict the maximality of F. Now suppose that A is a subsemilattice as well. Let e be a minimal element of A. If $f \in A$, then $ef \in A$ and $ef \leq e$. So ef = e. So e is the minimum of A. \Box

THEOREM 1.6. Let E be a locally compact semilattice with open principal filters. Then E is scattered.

PROOF. Let A be a closed nonempty subset of E. By Lemma 1.3 there is a subset F of A which is open and closed in A. By Lemma 1.5 there is a maximal element f of F. Since $\{f\} = (\uparrow f) \cup F$ we see that f is isolated in F and hence in A. So E is scattered by [13].

If E is a topological space we denote the set of all its isolated points by Is(E).

THEOREM 1.7. Let E be a locally compact semilattice with open principal filters. Then the following hold:

- (i) Is(E) is dense in E.
- (ii) w(E) = |E|.
- (iii) c(E) = d(E) = |Is(E)|.
- (iv) If in addition E compact, then $\chi(E) = |E|$.

PROOF. Suppose E is scattered. So (i), (ii) and (iii) follows from [13]. Now (iv) follows from [2, Theorem I.25]. \Box

REMARK. If E is taken to be only locally compact in Theorem 1.7, then it does not follows that $|E| = \chi(E)$. As an example take a discrete uncountable semilattice.

The following example shows that for every cardinal λ there is a compact semilattice with open principal filters and whose cardinality is λ .

EXAMPLE 1. Let α be an ordinal. Put

 $\mathscr{B} = \{(x, y] = \{z \in \Omega(\alpha) \mid y < z \le x\} \mid x, y \in \Omega(\alpha) \& y < x\} \cup \{0\},\$

where 0 is the order type of the empty set. Let τ_{Ω} be the topology with base \mathscr{B} on $\Omega(\alpha)$. Define a multiplication '*' on $\Omega(\alpha)$ by: $\beta * \gamma = \max\{\beta, \gamma\}$ for all $\beta, \gamma \in \Omega(\alpha)$. Then $(\Omega(\alpha), *, \tau_{\Omega})$ is a topological semilattice with open principal filters of cardinality $|\alpha|$.

353

DEFINITION. A topological semilattice E is called an α^{-} -semilattice if E is topologically isomorphic to $(\Omega(\beta), *, \tau_{\Omega})$ for some ordinal β .

EXAMPLE 2. Let $\mathscr{A}(\tau)$ be the one-point Alexandroff compactification of a discrete space of cardinality τ with ∞ as its point at infinity. Put $xy = \infty$ if $x \neq y$ and xx = x for all $x, y \in \mathscr{A}(\tau)$. Then $\mathscr{A}(\tau)$ is a compact topological semilattice with open principal filters and cardinality τ .

Example 1 and Example 2 show that there are compact semilattices E_1 and E_2 with open principal filters such that $t(E_1) = |E_1|$ and $t(E_2) < |E_2|$.

The following three questions arise naturaly:

(1) Does every compact scattered space E admit a structure of a topological semilatice with open principal filters?

(2) For every compact space X, the inequality $\pi \chi(X) \le t(X)$ [19] holds. Is there a compact semilatice E with open principal filters so that $\pi \chi(E) < t(E)$?

(3) Is there a compact semilatice E with open principal filters so that $d(E) < \chi(E)$?

Question (1) can be answered in the negative under the set theoretic assumption that $\beta \mathbb{N} \setminus \mathbb{N}$ has *p*-points. Let us recall that a point *p* of a topological space *E* is called a *p*-point if any countable intersection of neighbourhoods of *p* is a neighbourhood of *p*. There are set theoretic models in which $\beta \mathbb{N} \setminus \mathbb{N}$ has no *p*-points. Continuum Hypothesis (CH) and Martin's Axiom (MA) imply the existence of a *p*-point in $\beta \mathbb{N} \setminus \mathbb{N}$.

DEFINITION ([5, 14, 12]). A Franklin-Rajagopalan space is a compact scattered space X with a countable dense set D of isolated points so that the subspace $X \setminus D$ is homeomorphic to the ordinal space $[1, \omega_1]$ with its usual topology $(\Omega(\omega_1), *, \tau_{\Omega})$ of Example 1.

REMARK. The methods of [5] show that in every model of set theory where $\beta \mathbb{N} \setminus \mathbb{N}$ has *p*-point there are Franklin-Rajagopalan spaces with the additional property that no sequence of isolated points converges to ω_1 . We denote by $\gamma \mathbb{N}$ one such space.

EXAMPLE 3. The Franklin-Rajagopalan space $\gamma \mathbb{N}$ (see [5]) is a compact scattered space which does not admit the structure of a topological semilattice with open principal filters.

PROOF. Suppose that $\gamma \mathbb{N}$ admits a structure of topological semilattice with open principal filters. Then $\uparrow \omega_1$ is a compact open semilattice. Put $Y = \uparrow \omega_1$. Let Dbe the set of all isolated points of Y. Let $M = Y \setminus (D \cup \{\omega_1\})$. Now there is an element γ in $[1, \omega_1]$ so that $[\gamma, \omega_1] \subseteq Y$. We claim that there is an element c in M so that $c > \gamma$ and if x, y are in M and x > c and y > c in the usual order of ω_1 then $xy \neq \omega_1$. For suppose that there is no such element c. Then there are x_1

and y_1 in M so that $y_1 > x_1 > \gamma$ and $x_1y_1 = \omega_1$. Then there are x_2 and y_2 in M so that $\gamma < x_1 < y_1 < x_2 < y_2$ and $x_2y_2 = \omega_1$. By induction we have a sequence $x_1 < y_1 < x_2 < y_2 < \cdots < x_n < y_n < \cdots$ in M so that $x_n y_n = \omega_1$ for all $n = 1, 2, \ldots$ Then there is an element α in M so that $\lim x_n = \lim y_n = \alpha$. Then by continuity of multiplication we get $\alpha = \omega_1$ which is a contradiction. So there is an element c in M with $c > \gamma$ so that if x, y are in M and x, y > c, then $xy \neq \omega_1$. It is also easy to see, by using continuity of multiplication, that if x, y are in Y and both x, y are $\neq \omega_1$, then there can be at most a countable number of elements a in Y with ax = y. So there is an element $p \in M$ such that p > c and if $q \in M$ and q > p then ax does not belong to D for every x in D. Now put $S = Y \cap [1, p + 1]$. Then S is a compact subset of Y and does not contain ω_1 . So there is a compact open set W in Y such that $\omega_1 \in W$ and if $x \in W \cap M$, then x > p in the natural order of $[1, \omega_1]$. Let $q \in W \cap M$. Let $B = \{k \mid k \in D \text{ and } kq = \omega_1\}$. Then ω_1 cannot belong to the closure of B. For suppose that ω_1 is in the closure of B in Y. Since no sequence of isolated points in the space $\gamma \mathbb{N}$ converges to ω_1 , it follows that the closure of B in Y is uncountable. So there is a point r in the closure of B such that $r \in M$ and r > pin the order of $[1, \omega_1]$. Then r is a limit of a sequence $s_1, s_2, s_3, \ldots, s_n, \ldots$ from B. By continuity of multiplication we have $qr = \omega_1$. But q > p > c and r > p > c and q, r are in M. So $qr \neq \omega_1$. This contradiction shows that ω_1 does not belong to the closure of B. Let $C = D \setminus B$. Then if y in C, then $qy \neq \omega_1$ and since qy is not in D we see that $qy \in M$, and hence the set $qC = \{qv \mid v \in C\}$ is a countable subset of M. So ω_1 is not in the closure of qC. But ω_1 is in the closure of D and not in the closure of B. So ω_1 is in the closure of C and hence in the closure of q C by continuity of multiplication. This contradiction shows that $\gamma \mathbb{N}$ is a compact scattered space that does not admit the structure of topological semilattice with open principal filters.

EXAMPLE 4. Let X be the quotient space of the space $[1, \omega_1]$ with topology as in Example 1, where we identify the points ω and ω_1 . We define multiplication as follows in X. We put $xy = yx = \max\{x, y\}$ for all $x, y \in X$ if either both $x, y > \omega$ or both x, y are $< \omega$. If one of x, $y < \omega$ and the other $> \omega$ then put $xy = yx = \omega_1$. We also put $\omega_1 x = x\omega_1 = \omega_1$ and xx = x for all $x \in X$. Then X is a compact semilattice with open principal filters. Clearly, $\pi \chi(X) = \omega$ and $t(X) = \omega_1$. So we have a compact scattered space which is also a semilattice with open principal filters and $\pi \chi(X) < t(X)$. This solves Question (2) above.

2. Some classes of compact semilattices with open principal filters

A semilattice E is called *linearly ordered* (well-ordered) if the multiplication induces on E a linear order (a well-order).

Let *E* be a linearly ordered semilattice, and \leq be a natural order on *E*. By \leq^d we denote *a dual order on E*, that is, $e \leq^d f$ if and only if ef = f, for all $e, f \in E$. Obviously, if *E* is a linearly ordered semilattice, then \leq^d is a linear order on *E*.

LEMMA 2.1. Let E be a linearly ordered compact commutative band with open principal filters. Then \leq^d is a well-order.

PROOF. Let A be any non-empty subset of E. We shall prove that $\inf_{\leq d} A \in A$.

If there exists a compact subset K in E such that $A \subseteq K$, then the family $\{\uparrow a \cap K \mid a \in A\}$ is centered and $\inf_{\leq^d} A \in \bigcap\{\uparrow a \cap K \mid a \in A\} \subseteq K$.

Put $a = \inf_{\leq^d} A$. If $a \in A$, then the proof is complete. In the other case, $\uparrow a \cap A = \emptyset$ and the set $\uparrow a$ is clopen in E. Thus the set $E \setminus \uparrow a$ is compact and $A \subseteq E \setminus \uparrow a$. Then $\inf_{\leq^d} A \in E \setminus \uparrow a$, but $a \notin E \setminus \uparrow a$, a contradiction. Therefore, $\uparrow a \cap A \neq \emptyset$ and $a \in A$.

PROPOSITION 2.2. Every well-ordered semilattice E is algebraicly isomorphic to a subsemilattice of $(\Omega(\alpha), \min)$ for some $\alpha \in \Omega$.

PROOF. Since the cardinality of E is bounded, by [1, Theorem 3.11'] the wellordered set E is similar to some interval of $\Omega(\alpha)$ (where $\alpha \ge |E|^+$). We denote this similar map by f. Obviously, f is an algebraic isomorphism of E into $(\Omega(\alpha), \min)$.

THEOREM 2.3. Every linearly ordered compact semilattice E with open principal filters is an α^- -semilattice.

PROOF. By Lemma 2.1, \leq^d is a well-order on E and by Proposition 2.2 there exists an algebraic isomorphism $f: E \to \Omega(\delta)$ (for some $\delta \leq |E|^+$). Obviously, E has a zero 0 and we put $f(0) = \beta \in \Omega(\delta)$. It is easy to see that $(f(E), \max)$ is an α^- -semilattice and the isomorphism $f: E \to \Omega(\delta)$ is continuous.

 $\mathscr{A}(\tau)$ is the one-point Alexandroff compactification of the discrete space X of cardinality τ , and $\{a\} = \mathscr{A}(\tau) \setminus X$ [4].

PROPOSITION 2.4. Let $\mathscr{A}(\tau)$ have the structure of a topological semilattice, and let a be a maximal idempotent of $\mathscr{A}(\tau)$. Then $\tau \leq \omega$.

PROOF. Case 1. Suppose a is an identity of the semilattice $\mathscr{A}(\tau)$ and $\tau > \omega$. For any $a \in \mathscr{A}(\tau) \setminus \{a\}$, the set $\uparrow e$ is open in $\mathscr{A}(\tau)$ and hence, the set $\mathscr{A}(\tau) \setminus \uparrow e$ is finite. Thus the set $\mathscr{A}(\tau) \setminus \{a\}$ contains a countable chain $e_1 < e_2 < \cdots < e_n < \cdots$. Since for every $i \in \mathbb{N}$ the set $\mathscr{A}(\tau) \setminus \uparrow e_i$ is finite, then $|\bigcup_{i \in \mathbb{N}} (\mathscr{A}(\tau) \setminus \uparrow e_i)| \leq \omega$. Therefore, there exists an idempotent $e^* \in \mathscr{A}(\tau) \setminus \{a\}$ such that $e_i < e^*$ for any $i \in \mathbb{N}$, a contradiction with the inequality $|\uparrow e^*| < \omega$. If $\tau > \omega$, then a is not an identity of $\mathscr{A}(\tau)$.

Case 2. Suppose a is a maximal idempotent of $\mathscr{A}(\tau)$.

First, we shall prove that if $\tau > \omega$, then the set $Max(\mathscr{A}(\tau))$ is infinite. Assume the contrary. Then *a* is an identity of the semilattice $\mathscr{A}(\tau) \setminus \bigcup(Max(\mathscr{A}(\tau) \setminus \{a\}))$. Since the space $\bigcup(Max(\mathscr{A}(\tau) \setminus \{a\}))$ is compact the space $\mathscr{A}(\tau) \setminus \bigcup(Max(\mathscr{A}(\tau) \setminus \{a\}))$ is homeomorphic to the one-point Alexandroff compactification of uncountable discrete space. A contradiction with Case 1.

Further, we shall prove that if $\tau > \omega$ then $\mathscr{A}(\tau) \setminus \{a\} = \downarrow (\operatorname{Max}(\mathscr{A}(\tau) \setminus \{a\}))$. The inclusion $\downarrow (\operatorname{Max}(\mathscr{A}(\tau) \setminus \{a\})) \subseteq \mathscr{A}(\tau) \setminus \{a\}$ is trivial. Suppose that $\mathscr{A}(\tau) \setminus \{a\} \not\subseteq \downarrow (\operatorname{Max}(\mathscr{A}(\tau) \setminus \{a\}))$. Then there exists $e \in \downarrow a \setminus \{a\}$ such that $e \notin \downarrow (\operatorname{Max}(\mathscr{A}(\tau) \setminus \{a\}))$. Since $a \in \uparrow e$ and $\uparrow e$ is an open subset in $\mathscr{A}(\tau)$, then $|\mathscr{A}(\tau) \setminus \uparrow e| < \omega$. A contradiction with $|\operatorname{Max}(\mathscr{A}(\tau))| \ge \omega$. Thus the equality $\mathscr{A}(\tau) \setminus \{a\} = \downarrow (\operatorname{Max}(\mathscr{A}(\tau) \setminus \{a\}))$ holds.

We shall prove that $|\downarrow a| < \omega$. Suppose not. Then for any infinite chain $e_1 < e_2 < \cdots < e_n < \cdots < a$ there exists $e \in \downarrow a$ such that $e_i < e$ for any $i \in \mathbb{N}$. Hence $\{e_i \mid i \in \mathbb{N}\} \subseteq \downarrow e$, but $|\downarrow e| < \omega$. A contradiction. Thus $|\downarrow a| \le \omega$.

Obviously, there exists a countable chain $e_1 < e_2 < \cdots < e_n < \cdots$ such that $e_i < a$ for any $i \in \mathbb{N}$. Since $|\mathscr{A}(\tau) \setminus \uparrow e_i| < \omega$ for every $i \in \mathbb{N}$ and $\mathscr{A}(\tau) \setminus \{a\} = \downarrow(\operatorname{Max}(\mathscr{A}(\tau) \setminus \{a\}))$, then $|\operatorname{Max}(\mathscr{A}(\tau))| \leq \omega$. For any $e \in \operatorname{Max}(\mathscr{A}(\tau) \setminus \{a\})$ the set $\downarrow e$ is finite, hence $|\operatorname{Max}(\mathscr{A}(\tau))| = |\mathscr{A}(\tau)| = |\mathscr{A}(\tau) \setminus \{a\}| = \tau$. So, if a is a maximal idempotent of semilattice $\mathscr{A}(\tau)$, then $\tau = \omega$.

PROPOSITION 2.5. Suppose that on $\mathscr{A}(\tau)$ ($\tau \geq \omega$) there exists a structure of a topological semilattice. Then the following conclusions hold:

(i) $|N O_{af(\tau)}(a)| \leq \omega$.

(ii) If $x \in N O_{ad(\tau)}(a)$, then the set $\downarrow x$ is finite.

(iii) If $x \in Max(\mathscr{A}(\tau))$ and a < x, then a maximal chain $a < \cdots < x$ in $\mathscr{A}(\tau)$ is countable.

PROOF. (i) We define $A = (\mathscr{A}(\tau) \setminus \uparrow a) \bigcup \{a\}$. Then the topological subspace $A \subseteq \mathscr{A}(\tau)$ is homeomorphic to the one-point Alexandroff compactification of the discrete space of cardinality $\tau' \leq \tau$, and A is a compact topological semilattice such that a is a maximal idempotent of the semilattice A. By Proposition 2.4 we get $\tau' \leq \omega$ and, hence, $|N O_{\mathscr{A}(\tau)}(a)| \leq \omega$.

The proof of statement (ii) is trivial.

(iii) Suppose to the contrary, that there exists an uncountable chain $a < \cdots < x$. Since for any $g \in \uparrow a \setminus \{a\}$ the set $\uparrow g$ is finite, then there exists x_1 such that $a < x_1 < x$. Further, by induction for every integer $i \ge 2$ choose an indempotent x_i such that $a < x_i < x_{i-1} < x$. Put $\mathcal{M}(a) = \bigcup_{i \in \mathbb{N}} \uparrow x_i$. Since the chain $a < \cdots < x$ is uncountable, then there exists $y \in \uparrow a \cap \downarrow x$ such that $y \notin \mathcal{M}(a)$ and $a < y < x_i$ for any $i \in \mathbb{N}$. But the set $\uparrow y$ is finite, a contradiction.

There exists no structure of a topological inverse semigroup with open left (right) principal ideals on the one-point Alexandroff compactification of an uncountable discrete space [6, Proposition 4.10].

The following example shows that there exists a topological semilattice on $\mathscr{A}(\tau)$ which satisfies statements of Proposition 2.4 and Proposition 2.5.

EXAMPLE 5. Let X be a discrete space of cardinality $\tau \ge \omega$, \mathscr{N} the discrete space of natural numbers, and $\{0, 1\}$ a two-point discrete space. Further, we suppose that $\mathscr{A}(\tau) \setminus \{a\} = (X \times \mathscr{N}) \bigcup (\{0, 1\} \times \mathscr{N})$. On $\mathscr{A}(\tau)$ we define the semilattice operation '*' as follows:

(a) $x \star x = x$ for any $x \in \mathscr{A}(\tau)$.

[9]

(b) If $x, y \in X \times \mathcal{N}$ and $x = (x^o, m), y = (y^o, n)$, then

$$x \star y = y \star x = \begin{cases} (x^o, \max\{m, n\}) & \text{if } x^o = y^o; \\ a & \text{if } x^o \neq y^o. \end{cases}$$

(c) If $x \in X \times \mathcal{N}$, then $x \star a = a \star x = a$.

(d) If $x, y \in \{0, 1\} \times \mathcal{N}$ and x = (x', m), y = (y', n), then

$$x \star y = y \star x = \begin{cases} x & \text{if } x = y; \\ (0, \min\{m, n\}) & \text{if } x \neq y. \end{cases}$$

(e) If $x \in \{0, 1\} \times \mathcal{N}$ and $x = (x^1, n)$, then $x \star a = a \star x = (0, n) \in \{0, 1\} \times \mathcal{N}$. (f) If $x = (x^1, n) \in \{0, 1\} \times \mathcal{N}$ and $y = (y^1, m) \in X \times \mathcal{N}$, then $x \star y = y \star x = (0, n) \in \{0, 1\} \times \mathcal{N}$.

Obviously, $(\mathscr{A}(\tau), \star)$ is a topological semilattice.

Proposition 2.4 and Proposition 2.5 imply

THEOREM 2.6. There exists no structure with a topological lattice on the one-point Alexandroff compactification of an uncountable discrete space.

Item (i) of Proposition 2.5 implies

COROLLARY 2.7. Let there exist on $\mathscr{A}(\tau)$ ($\tau \geq \omega$) the structure of topological semilattice with open principal filters, then the set $NO_{\mathscr{A}(\tau)}(a)$ is finite.

Example 6 shows that there exists a topological semilattice structure with open principal filters on $\mathscr{A}(\tau)$ which satisfies statements of Propositions 2.4–2.5 and Corollary 2.7.

EXAMPLE 6. Let X, \mathscr{N} and $\{0, 1\}$ be as in Example 5, and $L = \{1, 2, ..., n\}$ be a discrete space. Further, we suppose that $\mathscr{A}(\tau) \setminus \{a\} = (X \times \mathscr{N}) \bigcup (\{0, 1\} \times L)$. On $\mathscr{A}(\tau)$ we define the semilattice operation 'o' as follows:

(a) $x \circ x = x$ for any $x \in \mathscr{A}(\tau)$.

(b) If $x, y \in X \times \mathcal{N}$ and $x = (x^o, m), y = (y^o, n)$, then

$$x \circ y = y \circ x = \begin{cases} (x^o, \max\{m, n\}) & \text{if } x^o = y^o; \\ a & \text{if } x^o \neq y^o. \end{cases}$$

- (c) If $x \in X \times \mathcal{N}$, then $x \circ a = a \circ x = a$.
- (d) If $x, y \in \{0, 1\} \times L$ and x = (x', i), y = (y', j), then

$$x \circ y = y \circ x = \begin{cases} x & \text{if } x = y; \\ (0, \min\{i, j\}) & \text{if } x \neq y. \end{cases}$$

(e) If $x \in \{0, 1\} \times L$ and x = (x', i), then $x \circ a = a \circ x = (0, i) \in \{0, 1\} \times L$.

(f) If $x = (x^1, n) \in \{0, 1\} \times L$ and $y = (y^1, m) \in X \times N$, then $x \circ y = y \circ x = (0, n) \in \{0, 1\} \times L$.

Obviously, $(\mathscr{A}(\tau), \circ)$ is a topological semilattice with open principal filters.

REMARK. Questions about the structure of topological semigroups on one-point compactifications were considered in [15, 18] and in other papers.

3. Topological inverse bopf-semigroups

Let S be an algebraic semigroup. For any $a \in S$ we denote

$$\mathcal{L}_d(a) = \{x \in S \mid \text{ there exists } y \in S^1 \text{ such that } xy = a\};$$

$$\mathcal{R}_d(a) = \{x \in S \mid \text{ there exists } y \in S^1 \text{ such that } yx = a\};$$

$$\mathcal{J}_d(a) = \{x \in S \mid \text{ there exist } y, z \in S^1 \text{ such that } yxz = a\}.$$

LEMMA 3.1. Let a be a regular element of the semigroup S, then

- (i) $\mathscr{L}_d(a) = \{x \in S \mid \text{ there exists } y \in S \text{ such that } xy = a\},\$
- (ii) $\mathscr{R}_d(a) = \{x \in S \mid \text{ there exists } y \in S \text{ such that } yx = a\}.$

PROOF. Suppose a is a regular element in S. Then there exists $z \in S$ such that a = aza. We put $a_1 = az$ and $a_2 = za$. Hence, $a = a_1a$ and $a = aa_2$.

LEMMA 3.2. An element a of the semigroup S is regular if and only if $\mathcal{L}_d(a) = \mathcal{L}_d(e) \left[\mathcal{R}_d(a) = \mathcal{R}_d(e) \right]$ for some idempotent $e \in S$.

PROOF. If a is a regular element of S, then a = axa for some $x \in S$. Hence, e = axand f = xa are idempotents of S such that ea = a = af. If $z \in \mathcal{L}_d(a)$ $[z \in \mathcal{R}_d(a)]$, then, by Lemma 3.1, a = zy [a = yz] for some $y \in S$. Hence, e = ax = zax[f = xa = xyz] and $z \in \mathcal{L}_d(e)$ $[z \in \mathcal{R}_d(f)]$. If $w \in \mathcal{L}_d(e)$ $[w \in \mathcal{R}_d(f)]$, then e = wk [f = kw] for some $k \in S$. Thus, a = ea = wka [a = af = akw], and, therefore, $w \in \mathcal{L}_d(a)$ $[w \in \mathcal{R}_d(a)]$.

Suppose $\mathcal{L}_d(a) = \mathcal{L}_d(e)$ $[\mathcal{R}_d(a) = \mathcal{R}_d(e)]$. Then there exist $x, y \in S^1$ such that a = ex and e = ay [a = xe and e = ya]. Hence, ea = eex = ex = a [ae = xee = xe = a] and a = ea = aya [a = ae = aya]. If y is an identity of S then a = e and a = ae = aea = aaa [a = ea = eea = aaa]. Thus $a \in aSa$. \Box

LEMMA 3.3. A semigroup S is inverse if and only if the following conditions hold:

- (i) For any $a \in S$ there exists an unique idempotent $e \in S$ such that $\mathcal{L}_d(a) = \mathcal{L}_d(e)$.
- (ii) For any $a \in S$ there exists an unique idempotent $e \in S$ such that $\mathscr{R}_d(a) = \mathscr{R}_d(e)$.

PROOF. Suppose that for some idempotents $e, f \in S$ the equality $\mathscr{R}_d(e) = \mathscr{R}_d(f)$ holds. Then there exist $x, y \in S$ such that e = f x and f = ey. Since,

 $e = ee = ee^{-1} = f x (f x)^{-1} = f x x^{-1} f = f f x x^{-1} = f x x^{-1}$

and

[11]

$$f = ff = ff^{-1} = ey(ey)^{-1} = eyy^{-1}e = eeyy^{-1} = eyy^{-1}$$

we have $e \leq f$ and $f \leq e$. Hence e = f.

Suppose the statements (i) and (ii) hold. By Lemma 3.2, the semigroup S is regular. Let $a \in S$, and suppose there exist distinct $b, c \in S$ such that

$$aba = a$$
, $bab = b$, $aca = a$, $cac = c$.

Since $\mathscr{L}_d(a) = \mathscr{L}_d(ab) = \mathscr{L}_d(ac)$ and $\mathscr{R}_d(a) = \mathscr{R}_d(ba) = \mathscr{R}_d(ca)$ we have that ba = ca and ab = ac. Hence, b = bab = cab = cac = c, and S is inverse semigroup.

DEFINITION. A topological inverse semigroup S is called a *bopf*-semigroup if the band of S is a semilattice with open principal filters.

THEOREM 3.4. Let S be a topological inverse semigroup. Then the following conditions are equivalent:

- (i) S is a bopf -semigroup.
- (ii) For every $a \in S$, the set $\mathcal{L}_d(a)$ is open in S.
- (iii) For every $a \in S$, the set $\mathscr{R}_d(a)$ is open in S.

PROOF. Implications (ii) implies (i) and (iii) implies (i) are trivial.

(i) implies (ii). We shall prove that for every $x \in S$ the equality $\varphi^{-1}(\uparrow(xx^{-1})) =$ $\mathscr{L}_d(x)$ holds. Let $y \in \varphi^{-1}(\uparrow(xx^{-1}))$, then $yy^{-1} \in \uparrow(xx^{-1})$. Thus, $yy^{-1}xx^{-1} = xx^{-1}$ and $yy^{-1}xx^{-1}x = yy^{-1}x = x$. Hence, $y \in \mathscr{L}_d(x)$. Therefore, we get $\varphi^{-1}(\uparrow(xx^{-1})) \subset$ $\mathcal{L}_d(x).$

Let $y \in \mathscr{L}_d(x)$ then there exists $b \in S$ such that x = yb. Hence, $xx^{-1}ybb^{-1}y^{-1}$ and $xx^{-1} = xx^{-1}xx^{-1} = ybb^{-1}y^{-1}xx^{-1}$. Thus $ybb^{-1}y^{-1} \in \uparrow(xx^{-1})$. Since $yy^{-1} \in$ $\uparrow(ybb^{-1}y^{-1})$, then $yy^{-1} \in \uparrow(xx^{-1})$ and hence $yy^{-1} \in \varphi^{-1}(\uparrow(xx^{-1}))$. Therefore, $\mathscr{L}_d(x) \subseteq \varphi^{-1}(\uparrow (xx^{-1})).$

The implication (i) implies (iii) follows from $\psi^{-1}(\uparrow(xx^{-1})) = \mathscr{R}_d(x)$.

THEOREM 3.5. Let S be a topological inverse Clifford semigroup. Then S is a bopf -semigroup if and only if the set $\mathcal{J}_d(a)$ is open in S for every $a \in S$.

PROOF. If for every $a \in S$, the set $\mathcal{J}_d(a)$ is open in S, then the band of S is a semilattice with open principal filters.

Suppose S is a *bopf* -semigroup and E is a band of S. Since S is a Clifford inverse semigroup, the maps $\varphi \colon S \to E$ and $\psi \colon S \to E$ coincide. We shall prove that $\mathcal{J}_d(a) = \varphi^{-1}(\uparrow(aa^{-1}))$ for every $a \in S$. If $x \in \mathcal{J}_d(a)$, then there exist $y, z \in S$ such that yxz = a. By [16, Theorem II.26], we have

$$aa^{-1} = yxz(yxz)^{-1} = yxzz^{-1}x^{-1}y^{-1} = zz^{-1}yxx^{-1}y^{-1} = zz^{-1}yy^{-1}xx^{-1}$$

Hence, $xx^{-1} \in \uparrow(aa^{-1})$. Therefore, $\mathscr{J}_d(a) \subseteq \varphi^{-1}(\uparrow(aa^{-1}))$. If $x \in \varphi^{-1}(\uparrow(aa^{-1}))$, then $xx^{-1} \in \uparrow(aa^{-1})$ and there exists $e \in E$ such that $exx^{-1} = aa^{-1}$, that is, $exx^{-1}a = a$; hence, $x \in \mathcal{J}_d(a)$. Therefore, $\varphi^{-1}(\uparrow(aa^{-1})) \subseteq \varphi^{-1}(\uparrow(aa^{-1}))$ $\mathcal{J}_d(a).$ Π

The following example shows that there exists a topological inverse semigroup Ssuch that the set $\mathcal{J}_d(s)$ is open in S for every $s \in S$ and S is not a *bopf*-semigroup.

EXAMPLE 7. Let S be an inverse semigroup and $a, b \notin S$. A semigroup $\mathscr{C}(S)$ is generated by the set $S \cup \{a, b\}$ and is defined by the following equalities: ab = 1, as = a, sb = b and by equalities in S. If S has the identity, then the identity of $\mathscr{C}(S)$ is the identity of S. In the other case the identity of $\mathscr{C}(S)$ is an accessory identity of S (see [3, Section 1.1]). Any element of $\mathscr{C}(S)$ is uniquely represented by $b^i t a^j$, $t \in S \cup \{1\}, i, j \in \mathbb{N} \cup \{0\}.$

Let S be a topological inverse semigroup. If S has no identity, let $S^1 = S \cup \{1\}$ be a semigroup with an isolated accessory identity. Let \mathcal{B} be a base of the topology on S^1 . A topology τ on $\mathscr{C}(S)$ is determined by the base

$$\mathscr{B}_{\mathscr{C}} = \{ b^i U a^j \mid U \in \mathscr{B}, i, j \in \mathbb{N} \cup \{0\} \}.$$

[12]

[13]

By [7, Corollary 1] $(\mathscr{C}(S), \tau)$ is a simple topological inverse semigroup and S is topologically isomorphically embedded into $(\mathscr{C}(S), \tau)$. The semigroup $(\mathscr{C}(S), \tau)$ is called the *Bruck semigroup over* S [7].

Let S be a topological inverse semigroup which is not a *bopf*-semigroup. Let $\mathscr{C}(S)$ to be the Bruck semigroup over S. Obviously, $\mathscr{J}_d(s) = \mathscr{C}(S)$ for any $s \in \mathscr{C}(S)$ and, hence, the set $\mathscr{J}_d(s)$ is open in $\mathscr{C}(S)$ for all $s \in S$. However, the band of $\mathscr{C}(S)$ is not a semilattice with open principal filters.

THEOREM 3.6. Every first countable compact inverse bopf -semigroup is metrizable.

PROOF. Let S be as in the statement. The band E(S) is a first countable space. Let $e, f \in E(S)$. If $H(e, f) \neq \emptyset$, then H(e, f) is homeomorphic to the metrizable subgroup H(e) and, hence, H(e, f) is a metrizable compactum. Theorem 1.2 implies $|E(S)| = \chi(E(S)) \le \omega$, hence, S is a countable union of metrizable compacta and by the Arhangelskii Theorem (see [4, Theorem 3.2.20]) S is metrizable.

References

- [1] P. S. Alexandroff, Introduction to the set theory and general topology (Nauka, Moscow, 1979) (Russian).
- [2] M. M. Choban and N. K. Dodon, *Theory of P-scattered spaces* (Shtiintsa, Kishinew, 1979) (Russian).
- [3] A. H. Clifford and G. B. Preston, *The algebraic theory of semigroups, I, II* (Amer. Math. Soc., Providence, 1961 and 1967).
- [4] R. Engelking, General topology (PWN, Warsaw, 1977).
- [5] S. P. Franklin and M. Rajagopalan, 'Some examples in topology', Trans. Amer. Math. Soc. 155 (1971), 305-314.
- [6] O. Gutik, 'Compact topological inverse semigroups', Semigroup Forum 60 (2000), 243-252.
- [7] O. V. Gutik, 'Embedding of topological semigroups into simple semigroups', Mat. Stud. 4 (1994), 10-14 (Russian).
- [8] ——, 'On structure of the band of the compact inverse semigroup with open translations', *Mat. Stud.* 6 (1996), 33-38 (Russian).
- [9] K. H. Hofmann, M. Mislove and A. Stralka, The Pontryagin duality of compact 0-dimensional semilattices and its applications, Lecture Notes in Math. 394 (Springer, Berlin, 1974).
- [10] I. Juhasz, *Cardinal functions in topology—Ten years later*, Math. Centre Tracts 123 (Amsterdam, 1980).
- [11] J. D. Lawson, 'Topological semilattices with small semilattices', J. London Math. Soc. (2) 1 (1969), 719–724.
- [12] R. Levy, 'Pseudocompactness and extensions of functions in Franklin-Rajagopalan spaces', Topology Appl. 11 (1980), 297–303.
- [13] S. M. Mrowka, M. Rajagopalan and M. Soundararajan, 'A characterization of compact scattered spaces through chain limits (Chain Compact Spaces)', in: *Proc. Conference in Topology, Pittsburgh*, 1972, Lecture Notes in Math. 378 (1974) pp. 288–297.

- [14] P. J. Nykos and J. E. Vaughan, 'Sequentially compact Franklin-Rajagopalan spaces', Proc. Amer. Math. Soc. 101 (1987), 147–155.
- [15] T. O'Brein, M. Rajagopalan and M. Satyanarayana, 'Semigroups and their one-point compactifications', Semigroup Forum 33 (1986), 391-404.
- [16] M. Petrich, Inverse semigroups (John Wiley and Sons, New York, 1984).
- [17] M. Rajagopalan, 'A scattered but not strongly scattered space', Israel J. Math. 23 (1976), 117-125.
- [18] T. Schneider, 'Compactifications of some semigroups using the Wyburn construction', *Semigroup* Forum 13 (1976), 135–142.
- [19] B. Šapirovskii, 'On π-character and π-weight of compact Hausdorff spaces', Soviet Math. Dokl. 16 (1975), 999–1003.

Department of Algebra	Department of Mathematics
Institute for Applied Problems	Tennessee State University
in Mechanics and Mathematics	3500 John Merritt Boulevard
National Academy of Sciences of Ukraine	Nashville, TN 37209
3b, Naukova Str.	USA
Lviv 79053	e-mail: mrajagopalan@tnstate.edu
Ukraine	
e-mail: ogutik@iapmm.lviv.ua	

Department of Mathematics Cleveland State University Cleveland, OH 44115 USA e-mail: kondagunta@math.csuohio.edu