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The temperature outsidea heated plume

A.M. Watts

A calculation is made of the temperature distribution outside

the laminar part of the plume produced by a small source of heat

in an infinite fluid. It is shown in particular that the

temperature variation is not exponentially small outside the

plume, as might be expected in such a problem of boundary layer

type.

1. Introduction

The structure of the plume above a small source of heat has been

considered by Yih [4], Mahony [2]., Batchelor [/] and many others. For

moderate distances above the source, that is for distances large compared

vith the source size and the diffusion length but less than the critical

distance at which turbulence develops, the velocity and temperature

distributions are given by a similarity solution. Yih has found explicit

expressions for the similarity solution for two particular values of the

Prandtl number.

Further interest in the problem comes from the algebraic decay of

temperature and vorticity at the outer edge of the plume. It is shown here

that the temperature has an algebraic approach to the ambient value in all

directions, even outside the plume, as the distance from the source

increases. This is in contrast to the behaviour in the plane flow produced

by a line source of heat and in almost any boundary layer problem that has

been worked out.
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2. Plume solution

We use the Boussinesq equations. In dimensionless form with axial

symmetry and no swirl they are

(1) »%.„%

<3) .£••£-*.
where cylindrical polar coordinates and components are used, a is the

Prandtl number and

V2 = i J L L

V " r [r

In the plume far above the source, the approximate equations are

(It) u ^ - + v — = - — \v ^-1 + T
^' U 9* V 9r r 8 r [ r 9rJ J '

351

(6) P = const ,

and the heat flux condition is

r
'0

(7) 2TT uTrdr = 1 ,
'0

where the temperature T is measured relative to the temperature at

infinity.

The solution of the plume equations is of the form

(8) T = x~Xg -r

( 9 ) <J> = xf v

where ty i s the Stokes stream function. The upward volume flux in the

plume is 2TL4X , where A = / ( " ) , so that there i s an entrainment by the
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plume of uniform strength 2TL4 per unit length.

For a equal to 1 and 2 , the solutions derived by Yih are given

explicitly by

(10) gM- C

(11) /(n) =

where for 0 = 1 :

A = 3 , C = 96B ,

and for 0 = 2 :

A = h , C = 256B2 .

In both cases

B̂ _ _ Vn4
C A+l '

From (10) we have for large n

(13) gM^~,

n
and it can "be shown that g has this asymptotic form for all Prandtl

numbers, where the constant A is defined to be /(°°) as above.

3. Outer region

The outer flow is, to a first approximation, irrotational and at a

constant temperature. It is determined by the entrainment into the plume

and is given by the stream function

(111) ip = |- A[x + /xz+r2} ,

as derived by Spunde [3], The stream lines are parabolas with axes

coincident with the axis of symmetry, so that the flow into the plume is

normal to it.

To determine the eventual form of decay of the temperature, solutions

of (3) are found with u and V derived from the stream function in (1*0.
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We use orthogonal coordinates a, 8 given by

(15)

and (3) becomes

The solution is of the form

(17)

where

= j

£ = a2 , n = B2 .

This solution is required to match the plume solution, given in part

by (8), (13). For large x ,

a 'v- 2x , C ̂  (2x)2 ,

and the principal contribution to the integral in (IT) comes from small

values of k . With

(18) KA(2kr\) "» (.2kr\)~A for kr\ •+ 0 ,

the asymptotic form of T is

(19) T -x. n JJ 0
which agrees wi th ( 1 3 ) . Because of ( 8 ) , we a l s o r e q u i r e

(20) f (2k)-AF(k)JAkOdk
J 0

which implies
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(21) (2k)~AF(k) ^ const k log k , for k -* 0 .

We then have for large r̂ and n

r
Jo

F{k)KA(2kr\)dk

(22) -v if" I CkA+1 log kK.{2kr))dk
Jo

cn~2 log

so that T does not decay exponentially at any stage.

To continue the asymptotic expansion of the plume solution to more

terms, boundary conditions would have to be supplied from the outer

solution given by (IT). As well as allowing for the difference between

n and rrr , which is of order x" n , that is 2£ n , we would
(2x) 1 / 2

need to extend the asymptotic from (l8) by

(18a) KA(2kr\) ̂  (2kr\)~A[l + a(2kn)2 + ...) .

2 —2

The extra factor k in this extra term would give an extra factor B,

in the next term in the asymptotic expansion for T , so that we would now

have
const(f

which is consistent with an expansion of the plume solution in inverse

powers of x .
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