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Abstract 

We studied the relationships between functional alpha and beta diversities of fleas and their 

small mammalian hosts in four biogeographic realms (the Afrotropics, the Nearctic, the 

Neotropics, and the Palearctic), considering three components of alpha diversity (functional 

richness, divergence, and regularity). We asked whether (a) flea alpha and beta diversities are 

driven by host alpha and beta diversities; (b) the variation in the off-host environment affects 

variation in flea alpha and beta diversities; and (c) the pattern of the relationship between flea 

and host alpha or beta diversities differs between geographic realms. We analysed alpha 

diversity using modified phylogenetic generalised least squares and beta diversity using 

modified phylogenetic generalised dissimilarity modelling. In all realms, flea functional 

richness and regularity increased with an increase in host functional richness and regularity, 

respectively, whereas flea functional divergence correlated positively with host functional 

divergence in the Nearctic only. Environmental effects on the components of flea alpha 

diversity were found only in the Holarctic realms. Host functional beta diversity was 

invariantly the best predictor of flea functional beta diversity in all realms, whereas the effects 

of environmental variables on flea functional beta diversity were much weaker and differed 

between realms. We conclude that flea functional diversity is mostly driven by host functional 

diversity, whereas the environmental effects on flea functional diversity vary (a) geographically 

and (b) between components of functional alpha diversity. 

Keywords: biogeographic realms, fleas, functional alpha diversity, functional beta diversity, 

functional alpha diversity components, mammals 
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Introduction 

Studying parasite diversity is crucial not only because many parasites are important to medicine 

and veterinary, but also because parasites, being independently evolved in multiple 

phylogenetic lineages, present the opportunity for testing various biogeographic and/or 

evolutionary hypotheses (Poulin and Morand, 2000). Given that parasites ultimately depend on 

their hosts, it is not surprising that parasite physiology, behaviour, population and community 

structure, including diversity, are often tightly related to those of their hosts (Krasnov et al., 

2002; Tschirren et al., 2007; Maher and Timm, 2014; Slowinski et al., 2018). In other words, 

parasite traits, phylogeny and ecology are thought to be, to some extent, a product of host traits, 

phylogeny and ecology, albeit constrained by the evolutionary history of parasites themselves 

(Poulin, 2021), whereas the effect of environment on, for example, diversity of parasite traits 

is not always clear. Consequently, geographic variation of the patterns of parasite diversity and 

relative roles of host diversity and environmental factors on these patterns are far from being 

completely understood. 

Biological diversity is represented not only by species richness and composition  

(compositional diversity), but also by the richness and composition of phylogenetic lineages 

(phylogenetic diversity) and functional traits (functional diversity) (Tilman et al., 1997; Webb 

et al., 2002; Cavender-Bares et al., 2009; De Bello et al., 2010; Le Bagousse-Pinguet et al., 

2019). There is much evidence of the positive relationships between host and parasite 

diversities, in terms of species richness, for a variety of host and parasite taxa, geographic 

regions, and environments (Hechinger and Lafferty, 2005; Krasnov et al., 2004; Kamyia et al., 

2014). In other words, compositional parasite alpha diversity (i.e., diversity within a 

site/region; sensu Whittaker, 1960, 1972) was thought to depend strongly on compositional 

host alpha diversity. However, a positive relationship between compositional parasite-host 

alpha diversities appeared to be geographically variable and were found in some, but not other, 
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biogeographic realms (Krasnov et al., 2007, but see Krasnov et al., 2012 for the results 

produced by a different type of analysis). In contrast, when compositional parasite diversity 

was measured as species turnover (i.e., diversity between sites/regions=beta diversity; sensu 

Whittaker 1960, 1972), the positive relationship between parasite and host compositional beta 

diversities seemed to be geographically invariant (e.g., Maestri et al., 2017; Eriksson et al., 

2020; Krasnov et al., 2020a, b).  

Studies that have dealt with the relationship between phylogenetic diversities of 

parasites and their hosts also demonstrated that geographic patterns of this relationship differed 

depending on the measure of diversity considered. Indeed, flea phylogenetic alpha diversity 

depended on the phylogenetic alpha diversity of their small mammalian hosts in the Palearctic 

only but not in the Nearctic, Neotropics, or Afrotropics (Krasnov et al., 2019a; see also Krasnov 

et al., 2012), whereas a positive relationship between parasite and host phylogenetic beta 

diversity (Clark et al., 2018) has been observed in six biogeographic realms (Krasnov et al., 

2023a).  

Summarizing the results of the studies cited above, it can be suggested that geographic 

variation in the relationship between host and parasite diversities differs between the alpha and 

beta diversities of either compositional or phylogenetic diversity. In a nutshell, positive 

relationships between parasite and host compositional and phylogenetic alpha diversities seem 

to vary geographically, whereas the relationships between parasite and host compositional and 

phylogenetic beta diversities seem to be geographically invariant. 

In contrast to the relationships between parasite and host compositional and 

phylogenetic diversities, the relationships between their functional diversities are much less 

known. To the best of our knowledge, the only study that investigated the effect of host 

functional diversity on the functional diversity of parasites dealt with parasite diversity at the 

scale of infracommunities (parasite communities harboured by individual hosts) (Krasnov et 
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al., 2019b), whereas we are not aware of any study that considered this question at the scale of 

compound parasite communities (parasite communities harboured by host communities). To 

fill this gap, here we studied the relationships between functional parasite and host alpha and 

beta diversities in four biogeographic realms (the Afrotropics, the Nearctic, the Neotropics, and 

the Palearctic) in the model of fleas and their small mammalian hosts. We predicted 

predominantly positive relationships between flea and host functional diversities because (a) 

the association between the traits of consumer species and consumed species is well established 

for free-living organisms (e.g., Rezende et al., 2007); (b) the importance of trait 

complementarity between parasites and their hosts has been recognized (McQuaid and Britton, 

2013); and (c) the association between flea and small mammalian host traits has been proven, 

at least for the Palearctic (i.e., fleas possessing certain traits exploit hosts possessing certain 

traits, while hosts with certain traits harbour parasites with certain traits; Krasnov et al., 2016). 

In addition, many hypotheses explaining latitudinal gradients in functional parasite traits state 

that parasite traits track host traits (Poulin, 2021). Finally, the functional diversity of parasites 

has been shown to depend on host traits (e.g., Euclydes et al., 2021). Consequently, we asked 

whether (a) functional flea alpha and beta diversities in different regions within a realm are 

indeed driven by functional host alpha and beta diversities, respectively, (b) the variation in the 

off-host environment affects variation in flea functional diversity; and (c) the pattern of the 

relationship between flea and host functional alpha or beta diversities differs between 

geographic realms.  

It is now commonly recognized that functional alpha diversity is a multifaceted concept 

that can be characterized by a number of components, namely functional richness, functional 

divergence, and functional regularity (Mason et al., 2005; Villéger et al., 2008; Tucker et al., 

2017; Mammola et al., 2021; Schmera et al., 2023). Schmera et al. (2023) proposed a concept 

of so called functional diversity units (FDUs) which are discrete entities that represent 
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community members (e.g., species) from a functional perspective. The components of 

functional alpha diversity are separated by the associated questions. In particular, functional 

richness answers the question about how many FDUs can be distinguished within a community  

(i.e., how large is a community in relation to functional traits of its members), whereas 

functional divergence and functional regularity answer the question about how different and 

how variable, respectively, these FDUs are. The components of functional alpha diversity can 

be calculated based on the unrooted functional tree constructed from the matrix of trait 

(dis)similarity between species in a community (Cardoso et al., 2022), where functional 

richness, functional divergence, and functional regularity are represented by the sum, the mean, 

and the variance of the branch lengths, respectively (Cardoso et al., 2022; Schmera et al., 

2023). In the framework of this study, we considered these components of functional diversity 

separately. This is because different components of functional alpha diversity of parasites can 

respond differently to either host alpha diversity or environmental factors or both and their 

patterns may vary between biogeographic realms (Schumm et al., 2019).  

 

Materials and methods 

Data on regional distribution of fleas and hosts 

Data on the regional distribution of fleas and small mammalian hosts (Didelphimorphia, 

Macroscelidea, Eulipotyphla, Rodentia, and the ochotonid Lagomorpha) were taken from 

published regional surveys for 15 regions in the Afrotropics, 23 regions in the Nearctic, 17 

regions in the Neotropics, and 36 regions in the Palearctic (see lists of region, maps, and sources 

of information in Krasnov et al., 2022), including in the analyses mammal species on which at 

least one flea species was recorded. Fleas Xenopsylla cheopis, Xenopsylla brasiliensis, 

Nosopsyllus fasciatus, and Nosopsyllus londiniensis characteristic for synanthropic ubiquitous 

rodents as well as these rodent species (Rattus norvegicus, Rattus rattus, and Mus musculus) 
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were not included in the analyses. 

 

Flea and host traits 

Data on flea and host traits were taken from our recent study (Krasnov et al., 2023b). Flea traits 

included two morphological and four ecological traits. Morphological traits were (a) the 

number of sclerotized ctenidia (no ctenidia, only a pronotal ctenidium, both pronotal and genal 

ctenidia) and (b) body length (ranked as small, medium, or large), whereas ecological traits 

were (a, b) the number and phylogenetic diversity of host species exploited across a flea’s 

geographic range; (c) the latitudinal span of geographic range; and (d) microhabitat preference 

(preference to spend the most time in a host’s hair, its burrow/nest, or no clear preference).  

 Small mammals were characterized by traits presumably affecting the patterns of flea 

parasitism (e.g., Krasnov et al., 2016). These were two morphological (average body mass and 

relative brain mass), one geographic (geographic range size), and eight ecological traits , 

namely (a) nest location (on, above, or below ground); (b) life style (ground-dwelling, fossorial, 

arboreal, or a combination); (c) diel activity (diurnal, nocturnal, or around the clock); (d) 

feeding habits (omnivorous, folivorous, granivorous, insectivorous, or a combination); (e) 

occurrence of hibernation or torpor; (f) population density; (g) home range size; (h) dispersal 

range (the distance between the birth location and the breeding location); (i) social group size; 

and (j) habitat breadth (according to level 1 IUCN habitats). For example, pre-imaginal 

development of fleas takes place mainly in a nest of a host, so the location of a nest is associated 

with temperature and humidity regime which, in turn, affects the survival of pre-imaginal fleas 

(Krasnov et al., 2001). Investment to “expensive” tissue such as brain may compromise 

immune ability of a host and, thus, facilitate infection by parasites (Bordes et al., 2011). The 

rationale behind the selection of the remaining traits, information sources on traits, and details 

of the calculations of some traits can be found elsewhere (Krasnov et al., 2016, 2019b, 2023b). 
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Prior to the analyses, data on geographic range size (for mammals) were ln-transformed, and 

then, continuous trait variables for both fleas and mammals were scaled to unit variance and 

zero mean, whereas nominal trait variables were converted to dummy variables using the 

function “dummy” in the package “BAT” (Cardoso et al., 2023), implemented in the R 

Statistical Environment (R Core Team, 2023). 

 

Environmental variables 

Data on the latitudes and longitudes of the regions’ centres and on the region-specific values 

of environmental variables were taken from Krasnov et al. (2023a). In brief, regional 

environment was described using (a) the seasonal amount of green vegetation calculated as 

Normalized Difference Vegetation Indices (NVDI), (b) the mean, maximum, and minimum air 

temperatures, and (c) the seasonal precipitation. These data were averaged across 30 arc-second 

grids separately for each region. Sources of data on the latitudes and longitudes of the regions’ 

centres, as well on environmental variables, can be found elsewhere (Krasnov et al., 2023a). 

Then, each category of environmental variables for each realm was subjected to principal 

component analyses, and the original values were subsequently substituted with the scores of 

the first principal components. The resulting three composite environmental variables were a 

vegetation variable (reflecting the amount of green vegetation), an air temperature variable, 

and a precipitation variable. These composite variables reflected an increase in the respective 

original variables (amount of green vegetation, air temperature and precipitation) and explained 

from 72% to 97% of the variation in the environmental factors (see details in Krasnov et al., 

2023a).  

 

Data analyses: functional alpha diversities 

The functional richness, functional divergence, and functional regularity of both fleas and hosts 
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were calculated using the R package “BAT”. First, for each realm and separately for fleas and 

hosts, we constructed two matrices, namely a matrix of species distribution (D-matrix; regions 

× species) and a matrix of species traits (T-matrix; species × traits). Then, we constructed a 

neighbour-joining tree for each regional flea or host T-matrix as recommended by Cardoso et 

al. (2022) using the function “tree.build” of the R package “BAT” and Gower’s distance. The 

latter allows constructing a dissimilarity matrix from data composed of continuous, categorical, 

dichotomous, and nominal variables (Gower, 1971). The resulting functional trees and D-

matrices were then used to calculate functional richness, functional divergence, and functional 

regularity for fleas and hosts in each realm using the functions “alpha”, “dispersion” and 

“evenness”, respectively, of the “BAT” package. 

 Treating the values of functional diversity components, in different regions within a 

realm, as independent observations could have introduced a bias in the analysis because 

multiple flea and host species occurred in more than one region. To control for the effects of 

the same flea and host species in several regions, we analysed the relationships between each 

component of flea functional diversity and the respective component of host functional 

diversity, as well as environmental variables, using a modified version of phylogenetic 

generalised least squares (PGLS; Martins and Hansen, 1997; Pagel, 1997, 1999; Rohlf, 2001). 

Classical PGLS is applied in comparative analyses to account for interspecific autocorrelation 

due to phylogeny and, thus, controls for non-independence of data points (i.e., species related 

to each other via phylogeny). Here, we controlled for non-independence of regional data within 

a realm by substituting a phylogenetic tree with a realm-specific dendrogram of regions based 

on similarity in species composition of both fleas and hosts. For this, we (a) combined flea and 

host D-matrices for each realm; (b) constructed, from this matrix, a matrix of dissimilarity on 

flea and host species composition using the function “vegdist” of the R package “vegan” 

(Oksanen et al., 2022) with the option method=“bray”; (c) built a cluster dendrogram using the 
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function “hclust” of the R package “stats” (R Core Team, 2023) with the option 

method=“complete”; and (d) transformed the resulting dendrogram into a pseudo-phylogenetic 

tree using the function “as.phylo” of the R package “ape” (Paradis and Schliep, 2019).  

 Then, we applied these modified PGLSs to test the relationships between each 

component of flea functional diversity (response variables) and the respective component of 

host functional diversity and the three composite environmental variables (explanatory 

variables) separately for each realm. We ran each model and applied forward stepwise model 

selection using the function “phylostep”, implemented in the R package “phylolm” (Ho and 

Ane, 2014). For each model, we tested for residual spatial autocorrelation (Kühn and Dormann, 

2012) using Moran’s I metric with the R package “ape”. No residual spatial autocorrelation 

was detected in any model (Moran’s I, P > 0.07 for all). 

 

Data analyses: functional beta diversities 

Functional beta diversity essentially represented functional dissimilarity between regions and, 

thus, was analogous to traditional dissimilarity metrics in which species are replaced by 

functional units. To investigate the relationships between the functional beta diversities of fleas 

and hosts, as well as to test for the effects of environment and geographic distance between 

regions, we applied a modified version of phylogenetic generalised dissimilarity modelling 

(phyloGDM) which, in turn, is an extension of generalised dissimilarity modelling (GDM) 

(Ferrier et al., 2007; Mokany et al., 2022). In general, GDM tests the relationships between the 

species turnover of one taxon with that of another taxon and/or species turnover and 

environmental dissimilarity. An advantage of GDM is that it controls for two main problems 

associated with the linear analyses of species turnover or between-site dissimilarity, namely (a) 

variation of any dissimilarity metric from 0 to 1 only, and (b) a non-constant rate of species 

turnover along a gradient. In particular, the GDM transforms each predictor using an iterative 
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maximum-likelihood estimation and I-splines, thus accounting for the curvilinear fashion of 

the turnover rate variation along a gradient (Ferrier et al., 2007; Fitzpatrick et al., 2013). The 

maximum height of each I-spline corresponds to the total amount of turnover associated with 

a given gradient, holding all other predictors constant. In other words, each I-spline is a partial 

regression fit that reflects the importance of each predictor’s effect on species turnover, whereas 

the slope of an I-spline demonstrates not only the rate of the turnover, but also the variation of 

this rate along a gradient. Moreover, the GDM can incorporate various biotic and abiotic 

predictors into a single model. In phyloGDM, species are replaced with phylogenetic lineages 

and, thus, spatial patterns of phylogenetic turnover (Ferrier et al., 2007; Nipperes et al., 2010; 

Rosauer et al., 2013; Pavoine et al., 2016). We modified the phyloGDM by using a functional 

rather than a phylogenetic tree, thus replacing the species of the original GDM with functional 

units. 

We used flea and host D-matrices and functional flea and host trees for each realm. 

From these matrices and trees, we constructed flea and host functional dissimilarity matrices 

using the function “evodiss_family” of the R package “adiv” (Pavoine, 2020), using coefficient 

S12 of Gower and Legendre (1986) based on Ochiae (1957) (because this coefficient is 

calculated for incidence rather than abundance data). Functional GDMs were carried out for 

each realm using the R package “gdm” (Fitzpatrick et al., 2022) to test for the relationships 

between (a) flea functional dissimilarity (=beta diversity=turnover of functional units) and (b) 

host functional dissimilarity, environmental dissimilarity, and geographic distances. Model and 

predictor significance testing were estimated using matrix permutation with the function 

“gdm.varImp” of the package “gdm”. 
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Results 

Functional alpha diversity 

The results of the PGLS of the relationships between components of flea functional diversity 

and the respective components of host functional diversity and environmental variables are 

presented in Table 1. In all realms, flea functional richness increased with an increase in host 

functional richness (Fig. 1). The same was the case for functional regularity (Fig. 2). On the 

contrary, flea functional divergence correlated (positively) with that of hosts in the Nearctic 

only (Fig. 3). Regarding the effects of environment, flea functional richness was not affected 

by any environmental factor, whereas their functional divergence correlated positively with air 

temperature in the Nearctic and precipitation in the Palearctic (Fig. S1, Appendix 1, 

Supplementary Material). No effect of environment on this component of flea functional 

diversity was found in the remaining realms. An environmental effect on flea functional 

regularity was detected in the Nearctic only (increase with a decrease in the amount of green 

vegetation) (Fig. S1, Appendix 1, Supplementary Material).  

 

Functional beta diversity 

The GDM models for the effects of host functional turnover, environmental gradients, and 

geographic distance on flea functional turnover explained about 75–80% of deviance in all 

realms (Table 2). Host functional turnover was invariantly the best predictor of flea functional 

turnover (Tables 2–3) with the rate of the latter being higher at the higher values of the former 

(Figs. 4–5). On the contrary, the effects of environmental variables on flea functional turnover 

were much weaker, with the roles of different environmental factors being different in different 

realms. In particular, the air temperature gradient appeared to be a strong predictor of flea 

functional turnover in the Neotropics, whereas the effect of this factor was much weaker in the 

Palearctic and mostly lacking in in the Afrotropics and the Nearctic (Tables 2–3). In all realms, 
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the functional dissimilarity of regional flea assemblages did not vary, or barely varied, along 

the precipitation gradient (Tables 2–3, Figs. 4–5), whereas some effect of the vegetation 

gradient was found in the realms of the Southern but not the Northern Hemisphere. Between-

region geographic distance was the second-best (after host functional turnover) predictor of 

flea functional turnover in the Afrotropics, the Nearctic, and the Palearctic (Tables 2–3). 

However, this effect in the Nearctic was rather weak, whereas in the Neotropics, it was much 

less important than the effects of the air temperature and vegetation gradients (Tables 2–3).  

 

Discussion 

Our results demonstrated that host functional alpha diversity, in terms of functional richness 

and regularity, and functional beta diversity are the main drivers of the respective aspects of 

flea functional diversity. These patterns appeared to be invariant across biogeographic realms, 

i.e., they did not depend on the identities of either host or fleas. This, however, was not the case 

for functional divergence. In contrast to the effects of host functional diversity (except 

divergence), the effects of environmental factors on flea functional alpha and beta diversity 

differed substantially between realms, suggesting that this between-realm difference can be 

associated with between-realm variation in flea species composition, with different species 

responding differently to environmental variation, in terms of their traits. 

 

Flea and host functional diversities 

It is obvious that parasites ultimately depend on their hosts, so they must be able to extract 

resources from the hosts and to overcome their defence efforts. Consequently, parasites should 

evolve traits allowing them to successfully obtain resources from hosts, with these traits being 

determined by the respective host traits. For example, the positive relationships between (a) the 

head-groove width of chewing lice and the hair-shaft diameter of their gopher host, on the one 
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hand, and (b) body size and head-groove width in lice, on the other hand, have lead Morand et 

al. (2000) to conclude that evolutionary changes in the body size of chewing lice are driven by 

a relationship between the parasite's head-groove dimension and the diameter of its host’s hairs. 

Fleas with both a genal comb and a pronotal comb have been shown to exploit mainly small-

bodied hosts characterized by high metabolic rates (Krasnov et al., 2016). The likely reason for 

this is that combs allow fleas to anchor themselves to the host hair and thus resist dislodgement 

by host grooming (e.g., Traub, 1985). Consequently, fleas could develop both combs to be able 

to parasitise (a) smaller hosts that groom harder to decrease the number parasites per unit body 

surface (Mooring et al., 2000) and (b) hosts investing in a higher metabolic rate as a 

compensation for costly behavioural defences (Giorgi et al., 2001). Fleas with greater jumping 

abilities (estimated via morphological features such as pleural height) and larger geographic 

ranges were found to exploit bird hosts with smaller social groups, thus increasing the 

probability of between-host transmission (Tripet et al., 2002). Trait-matching can thus explain 

the generally positive relationships between the functional diversities of parasites and hosts 

found in this study. However, parasite-host trait-matching does not always occur due to the 

existence of so-called exploitation barriers (e.g., Santamarıá and Rodríuez-Gironé, 2007), 

through, for example, the development of stronger anti-parasitic defences (Fellowes et al., 

1999; Nuismer and Thomson, 2006). In antagonistic interactions, barriers are naturally evolved 

mechanisms for blocking exploitation such as development of traits that prevent exploitation 

(Goodman and Ewald, 2021). For instance, coevolutionary alternation describes cyclic 

evolutionary fluctuations in predator/parasite preferences driven by evolutionary shifts in 

prey/host defences and vice versa (Nuismer and Thomson, 2006). Trait-matching (=trait 

complementarity) can be translated into structural patterns of interaction networks (McQuaid 

and Britton, 2013). Theoretically, trait-matching can arise not only due to parasite adaptations 

to host traits, but also from the effects of parasite on host trait composition (Frainer et al., 

https://doi.org/10.1017/S0031182024000283 Published online by Cambridge University Press

https://doi.org/10.1017/S0031182024000283


15 
 

 

2018), altering, for example, host mobility, habitat preferences, or body size (e.g., Muira et al., 

2006). However, this is highly unlikely for fleas because they are not known to be able to 

manipulate the physiology, morphology, or behaviour of their host at the scale of the host 

species (although they cause these changes in individual hosts; e.g., Khokhlova et al., 2002).  

 Another, not necessarily alternative, reason for the positive relationships between flea 

and host functional diversities may result from the tight relationship between flea and host 

phylogenetic diversities (Krasnov et al., 2023a; but see Yaxley et al., 2023) since many traits 

of both fleas and hosts are phylogenetically conserved. In fleas, phylogenetically conserved 

traits include, for example, body size (Surkova et al., 2018), latitudinal position and size of 

geographic range (Krasnov et al., 2018a, b), and characteristic abundance (Krasnov et al., 

2011), whereas in hosts, such traits include, among others, body size (Capellini et al., 2010), 

relative brain mass (Antoł and Kozłowski, 2020), and dispersal distance (Whetmee and Orme, 

2012). However, the relationships between functional and phylogenetic diversities can be 

scale-dependent. For example, in birds, they show substantial variation across latitudes (Yaxley 

et al., 2023).  

 As mentioned above, geographically invariant positive relationships between flea and 

host functional diversities were found for functional richness, functional regularity, and 

functional beta diversity but not for functional divergence. In other words, the community-wise 

amount of flea functions (functional richness) and the degree of variability of these functions 

(functional regularity) correlated with those of hosts independently of species composition and 

evolutionary history of flea and host communities as well as their geographic patterns of 

dispersal. Geographic invariance of the relationships between flea and host functional beta 

diversities suggested that functional turnover (=dissimilarity) of fleas followed functional 

turnover (=dissimilarity) of hosts whatever species compositions of fleas and hosts are. For the 

functional divergence, positive relationships were detected in the Nearctic only. Functional 

https://doi.org/10.1017/S0031182024000283 Published online by Cambridge University Press

https://doi.org/10.1017/S0031182024000283


16 
 

 

divergence represents the answer to the question: how different are species in their functional 

traits? One of the reasons for this may be the history of the Nearctic flea fauna as compared 

with those in other realms. The Nearctic fleas are heavily represented by the members of the 

youngest family Ceratophyllidae (Medvedev, 2005). Furthermore, flea historical dispersal 

between the Palearctic and Nearctic at the pre-glaciation time via the Bering Land Bridge is 

thought to have occurred primarily eastward, resulting in the recent flea clades being 

represented mainly in North America (Medvedev, 2005; Krasnov et al., 2015a). These lines of 

evidence suggest a shorter history of flea-host associations in the Nearctic. The longer histories 

of flea-host associations in the remaining realms could lead to some kind of homogenization 

of flea traits in relation to host traits, whereas this probably was not the case for the Nearctic 

due to the shorter time of adaptation to hosts. 

 

Flea functional diversity and environment 

Environmental factors had much weaker, albeit not negligible, effects on flea functional 

dissimilarity than host functional turnover, indicating variation in some flea traits along 

environmental gradients. This may be the result of environmental filtering of flea assemblages 

when the environment constrains a community composition only to species possessing certain 

adaptive traits that are necessary for persistence in that environment (Cavender-Bares et al., 

2004; Ingram and Shurin, 2009). In particular, environmental filtering has been shown to be a 

mechanism of compound regional flea community assembly in the Palearctic (Krasnov et al., 

2015b). In fact, fleas in the regions with lower air temperatures were characterized by larger 

body size and lower host specificity, whereas fleas from the regions with higher air temperature 

appeared to be smaller and their host specificity was relatively high (Krasnov et al., 2008, 

2015b, 2023c). Nevertheless, the environmental effects on flea functional alpha-diversity were 

found in both Holarctic realms but not in the realms of the Southern Hemisphere, whereas 
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environmental predictors of flea functional beta-diversity differed between realms. This could 

be because the variation in environmental factors differs between realms. For example, climatic 

conditions in the Holarctic range from hot deserts to cold tundra via the temperate zone, 

whereas climatic gradients in the Southern Hemisphere realms seem to be shorter, especially 

given that no flea samplings were carried out in the southernmost parts of South America.  

Another reason might be differences in trait distribution along environmental gradients in 

different flea species inhabiting different realms, likely due to between-realm differences in 

flea evolutionary history, as well as historical events such as glaciation. We recognize that these 

explanations are highly speculative and warrant further investigation. Interestingly, 

environmental factors affecting flea beta diversity within a realm differed between functional 

(this study) and phylogenetic (Krasnov et al., 2023a) beta diversities. This supports the recent 

ideas that (a) phylogenetic diversity might be an unreliable surrogate of functional diversity 

and (b) the relationship between phylogenetic diversity and functional diversity is context 

dependent (Yaxley et al., 2023).  

 Finally, geographic distance appeared to be the second-best predictor of flea functional 

beta diversity, especially in the realms of the Southern Hemisphere. This can be considered as 

a manifestation of the widely recognized ecological pattern of distance decay of similarity 

(Nekola and White, 1999). Distance decay of compositional and phylogenetic similarity has 

earlier been shown for fleas in some but not other biogeographic realms (Krasnov et al., 2012, 

2023a), suggesting that it may not be universal, not only in terms of compositional or 

phylogenetic similarity (Vinarski et al., 2007; Pérez-del-Olmo et al., 2009; Maestri et al., 

2017), but also in terms of functional similarity.  

In conclusion, flea functional alpha and beta diversities are mostly driven by host 

functional alpha and beta diversities, with these patterns being geographically invariant. In 

contrast, environmental effects on flea functional alpha and beta diversities vary 
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geographically. In addition, environmental effects on flea functional alpha diversity differ 

between its components. 

 

Supplementary material. The supplementary material for this article can be found at 

https://doi.org/. 

 

Data. Data on flea and host species composition in the Afrotropics, the Neotropics, the 

Nearctic, and the Palearctic are deposited in the Mendeley Data Repository: 

10.17632/dzyvrp7kfh.2 (Krasnov, 2023).  
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Table 1. Summary of stepwise phylogenetic generalised least squares (PGLS) of the 

relationships between components of flea functional alpha diversity (richness, divergence, and 

regularity) and the respective components of host functional alpha diversity and environmental 

variables (Veg, T, P) in four biogeographic realms. Only significant predictors are shown. *: P 

< 0.05, **: P < 0.01, ***: P < 0.001 

Realm Component of 

functional diversity 

Equation R2 

Afrotropics FFRi 1.75*+0.36HFRi* 0.31 

 FFD -  

 FFRe 0.99HFRe* 0.29 

Nearctic FFRi 0.80HFRi*** 0.79 

 FFD 0.58HFD*+0.01T* 0.56 

 FFRe 0.78HFRe***-0.004Veg** 0.70 

Neotropics FFRi 0.97*+0.47HFRi** 0.50 

 FFD -  

 FFRe 1.66HFRe** 0.49 

Palearctic FFRi 1.21***+0.64HFRi*** 0.65 

 FFD 0.02P* 0.15 

 FFRe 0.92HFRe*** 0.34 

FFRi and HFRi: functional richness of fleas and hosts, respectively; FFD and HFD: functional divergence of fleas 

and hosts, respectively; FFRe and HFRe: functional regularity of fleas and hosts, respectively; Veg, T, and P: 

composite environmental variables reflecting the amount of green vegetation, air temperature, and precipitation, 

respectively. 
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Table 2. Flea functional beta diversity as explained by host functional beta diversity (HFBD), 

environmental variables (Veg, T, P), and geographic distance (GD) between regions in four 

biogeographic realms.  

Realm %Deviance 

explained 

Predictor I-spline 1 I-spline 2 I-spline 3 ΣI-splines 

Afrotropics 81.10 HFBD 0.00 0.00 1.09 1.09 

  Veg 0.00 0.04 0.20 0.24 

  T 0.03 0.00 0.00 0.03 

  P 0.00 0.00 0.00 0.00 

  GD 0.46 0.11 0.00 0.57 

Nearctic 85.76 HFBD 0.00 0.00 1.49 1.49 

  Veg 0.00 0.00 0.00 0.00 

  T 0.00 0.00 0.00 0.00 

  P 0.10 0.00 0.00 0.10 

  GD 0.00 0.32 0.00 0.32 

Neotropics 75.18 HFBD 0.00 0.00 1.23 1.23 

  Veg 0.03 0.42 0.00 0.45 

  T 0.61 0.00 0.00 0.61 

  P 0.00 0.00 0.10 0.10 

  GD 0.13 0.00 0.03 0.16 

Palearctic 76.38 HFBD 0.00 0.00 1.99 1.99 

  Veg 0.00 0.00 0.00 0.00 

  T 0.00 0.00 0.27 0.27 

  P 0.00 0.00 0.06 0.06 

  GD 0.28 0.14 0.31 0.73 
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Veg, T, and P: composite environmental variables reflecting the amount of green vegetation, air temperature, and 

precipitation, respectively; I-splines 1, 2, and 3: coefficients of the first, second, or third I-spline, respectively; ΣI-

splines: sum of three I-splines (demonstrates the amplitude of an I-spline). An I-spline is a partial regression fit that 

reflects the importance of each predictor’s effect on functional turnover, whereas the slope of an I-spline 

demonstrates the rate of functional turnover as well as the variation of this rate along a gradient. The maximum 

height of each I-spline corresponds to the total amount of turnover associated with a given gradient while holding 

all other predictors constant.  
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Table 3. Relative importance of host functional beta diversity (HFBD), environmental 

variables (Veg, T, P), and geographic distance (GD) for flea functional beta diversity calculated 

by generalised dissimilarity modelling. Importance of a predictor is estimated using matrix 

permutation and is measured as the percent decrease in deviance explained between the full 

model and the deviance explained by a model with the predictor permuted. 

Realm HFBD Veg T P GD 

Afrotropics 14.17 1.46 1.17 0.00 5.75 

Nearctic 38.65 0.00 0.00 0.50 2.10 

Neotropics 14.05 2.65 7.64 0.38 0.34 

Palearctic 56.67 0.10 0.84 0.11 3.89 

Veg, T, and P: composite environmental variables reflecting the amount of green vegetation, air temperature, and 

precipitation, respectively. 
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Figure 1. Relationships between flea functional richness and host functional richness across 

regions in four biogeographic realms. Coefficients of the regression lines are from phylogenetic 

generalised least squares. 
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Figure 2. Relationships between flea functional regularity and host functional regularity across 

regions in four biogeographic realms. Coefficients of the regression lines are from phylogenetic 

generalised least squares. 
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Figure 3. Relationships between flea functional divergence and host functional divergence 

across regions in in four biogeographic realms. Coefficients of the regression lines for the 

Nearctic are from phylogenetic generalised least squares. 
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Figure 4. Generalised dissimilarity model-fitted I-splines and 95% confidence intervals (partial 

regression fits) of host functional turnover, environmental variables, and geographic distance 

as predictors of flea functional turnover in the Afrotropics and the Nearctic. The steeper slope 

of an I-spline shows a greater rate of turnover at a given gradient part. 
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Figure 5. Generalised dissimilarity model-fitted I-splines (partial regression fits) and 95% 

confidence intervals of host functional turnover, environmental variables, and geographic 

distance as predictors of flea functional turnover in the Neotropics and the Palearctic. The 

steeper slope of an I-spline shows a greater rate of turnover at a given gradient part. 
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