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Abstract. LetD denote the fundamental discriminant of a real quadratic field, and leth(D) denote
its associated class number. Ifp is prime, then the ‘Cohen and Lenstra Heuristics’ give a probability
thatp - h(D). If p > 3 is prime, then subject to a mild condition, we show that

#{0< D < X|p - h(D)} �p
√
X

logX
.

This condition holds for each 3< p < 5000.
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1. Introduction and Statement of Results

Although the literature on class numbers of quadratic fields is quite extensive, very
little is known. In this paper we consider class numbers of real quadratic fields, and
as an immediate consequence we obtain an estimate for the number of vanishing
Iwasawaλ invariants.

ThroughoutD will denote the fundamental discriminant of the quadratic num-
ber fieldQ(

√
D), h(D) its class number, andχD := (D· ) the usual Kronecker char-

acter. We shall letχ0 denote the trivial character, and| · |p the usual multiplicative
p-adic valuation normalized so that|p|p := 1/p.

Although the ‘Cohen–Lenstra Heuristics’ [C-L] have gone a long way towards
an explanation of experimental observations of such class numbers, very little has
been proved. For example, it is not known that there are infinitely manyD > 0 for
whichh(D) = 1. The presence of nontrivial units inQ(

√
D) have posed the main

difficulty. Basically, if ε(D) is the fundamental unit ofQ(
√
D), then the regulator

R(D) := log(ε(D)) complicates Dirichlet’s class number formula

L(1, χD) = 2h(D)R(D)√
D

,
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2 KEN ONO

one of the main vehicles for studyingh(D).
In view of these and other difficulties, it is natural to ask how oftenp - h(D),

given a primep. For the complementary question, M. R. Murty [M] has recently
obtained lower bounds, although far from the Cohen and Lenstra expectation, for
the number ofD, both negative and positive, for whichp|h(D). His results extend
work of Ankeny and Chowla, Humbert, and Nagell where explicit elements of
orderp were constructed for infinitely many discriminants.

ForD > 0, Cohen and Lenstra predict that the ‘probability’p - h(D) is(
p

p − 1

) ∞∏
i=1

(1− p−i ) = 1− 1

p2
− 1

p3
− 1

p4
+ · · · ,

and forD < 0 they conjecture that the ‘probability’ is
∞∏
i=1

(1− p−i) = 1− 1

p
− 1

p2
+ 1

p5
+ · · · .

Although extensive numerical evidence lends credence to these heuristics, apart
from the works of Davenport and Heilbronn [D-H] whenp = 3, little has been
proved.

Imaginary quadratic fields have been the focus of numerous investigations in
this direction. For instance, one may see the works of Hartung [Ha], Horie and
Onishi [Ho, Ho1, Ho-On], Jochnowitz [J], and Ono and Skinner [O-Sk]. These
papers guarantee, under various conditions, that there are indeed infinitely many
D < 0 for whichp - h(D). In a recent paper, the author and Kohnen [Koh-O] have
gone a step further by obtaining a lower bound for the number of−X < D < 0
for whichp - h(D). In particular ifp is prime andε > 0, then for all sufficiently
largeX > 0

#{−X < D < 0 |h(D) 6≡ 0(modp)} >
(

2(p − 2)√
3(p − 1)

− ε
) √

X

log X
.

Even less is known about the indivisibility of class numbers of real quadratic
fields. There is work in this direction by Jochnowitz [J]. Subject to a mild condition
regarding the existence of a suitable generalized Bernoulli numberB((p−1)/2, χ),
we go a step further by obtaining a lower bound for the number of 0< D < X

for whichp - h(D). As in [J], we also obtain information aboutRp(D), thep-adic
regulator ofQ(

√
D).

THEOREM 1. Let p > 3 be prime. If there is a fundamental discriminantD0

coprime top for which

(i) (−1)(p−1)/2D0 > 0,

(ii)

∣∣∣∣B (p − 1

2
, χD0

)∣∣∣∣
p

= 1,
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then

#

{
0< D < X |h(D) 6≡ 0(modp), p|D,and

∣∣∣∣Rp(D)√
D

∣∣∣∣
p

= 1

}
�p

√
X

log X
.

A lengthy MAPLE computation yields the following immediate corollary.

COROLLARY 1. If 3< p < 5000is prime, then

#

{
0< D < X |h(D) 6≡ 0(modp), p|D,and

∣∣∣∣Rp(D)√
D

∣∣∣∣
p

= 1

}
�p

√
X

log X
.

This gives some evidence for a conjecture of Greenberg on Iwasawa invariants
[G]. Let K = K0 be a number field, and letp be an odd prime. IfQn denotes
the unique subfield of degreepn in the fieldQ(ζpn+1), the field of thepn+1th roots
of unity, then letKn := KQn. These define theZp cyclotomic extension ofK
K = K0 ⊂ K1 ⊂ K2 . . . . If Cln denotes thep-part of the class group ofKn, then
Cl0 ← Cl1 ← Cl2 ← · · · where each map is a norm. Iwasawa [Thm. 13.13, W]
proved that ifn is sufficiently large, then #Cln = pµ(K,p)pn+λ(K,p)n+ν(K,p), where
µ(K,p), λ(K, p), andν(K, p) are fixed integers, the ‘Iwasawa invariants’.

If K = Q(
√
D) is a real quadratic field, then Greenberg’s Conjectures [G]

imply that λ(Q(
√
D), p) = µ(Q(

√
D), p) = 0. By a theorem of Ferrero and

Washington, it is indeed known thatµ(Q(
√
D), p) = 0, but the complementary

question regarding the vanishing ofλ(D,p) := λ(Q(√D), p) remains open.
For p = 3, Horie and Nakagawa [Ho-N] used a theorem of Davenport and

Heilbronn [D-H] and a criterion of Iwasawa to show thatλ(D,3) = 0 for a positive
‘proportion’ of D. Moreover, recent calculations forD < 10000 by Kraft and
Schoof [K-S], Fukuda and Taya [F-T], and Ichimura and Sumida [Ic-Su] verify
indeed thatλ(D,3) = 0 for allD < 104. Less is known whenp > 3. Corollary 1
implies the following immediate result.

COROLLARY 2. If 3< p < 5000is prime, then

#{0< D < X | λ(D,p) = 0} �p

√
X

log X
.

In Section 2 we shall present the essential preliminaries, and in Section 3 we shall
prove these results.
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2. Preliminaries

H. Cohen [C] explicitly constructed half-integral weight Eisenstein series whose
Fourier coefficients are given by generalized Bernoulli numbers for quadratic char-
acters. These modular forms play a crucial role in this paper. Consult [Ko] for
definitions and the standard facts about modular forms.

Fix an integerr > 2. If N 6≡ 0,1(mod 4), then letH(r,N) := 0. If N = 0, then
letH(r,0) := ζ(1−2r) = −B2r/2r. If N is a positive integer andDn2 = (−1)rN
whereD is the fundamental discriminant of a quadratic number field, then define
H(r,N) by

H(r,N) := L(1− r, χD)
∑
d |n
µ(d)χD(d)d

r−1σ2r−1(n/d). (1)

As usualσν(n) := ∑d |n d
ν . In particular, ifD = (−1)rN is the discriminant of a

quadratic number field, then

H(r,N) = L(1− r, χD) = −B(r, χD)
r

, (2)

where B(n, χ) is the nth generalized Bernoulli number with characterχ . If
(−1)rN = n2, then

H(r,N) = ζ(1− r)
∑
d |n
µ(d)dr−1σ2r−1(n/d). (3)

PROPOSITION 1 [Thm. 3.1, C].If r > 2 andFr(z) := ∑∞n=0H(r,N)q
N (q :=

e2πiz), thenFr(z) ∈ Mr+1/2(00(4), χ0).
If D > 0, then letLp(s, χD) denote the Kubota–Leopoldtp-adic DirichletL-

function with characterχD, and letRp(D) denote thep-adic regulator ofQ(
√
D)

[Ch. 5, W].

PROPOSITION 2.If p > 3 is prime andD is a fundamental discriminant coprime
to p for which(−1)(p−1)/2D > 0, thenH((p − 1)/2,D) is p-integral and

H

(
p − 1

2
,D

)
≡ 2h(Dp)Rp(Dp)√

Dp

(modp),

whereDp := (−1)(p−1)/2Dp.
Proof. By (2) we find thatH((p − 1)/2,D) = L(1 − (p − 1)/2, χD) =

−2B((p − 1)/2, χD)/(p − 1), and it is well known to bep-integral by a theorem
of Carlitz [Ca].

NowDp is a positive fundamental discriminant, and by the construction of the
Kubota–Leopoldtp-adicL-functionLp(s, χD) [Thm. 5.11, W]

Lp

(
1− p − 1

2
, χDp

)
= −2B(p−1

2 , χDp · ω−(p−1)/2)

p − 1
,
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whereω is the usual Teichmüller character. It is easy to see thatχDp · ω−(p−1)/2 =
χD, and so

Lp

(
1− p − 1

2
, χDp

)
= −2B(p−1

2 , χD)

p − 1
= H

(
p − 1

2
,D

)
.

By the Kummer congruences [Cor. 5.13, W], we find thatLp(1, χDp ) ≡
Lp(1− (p − 1)/2, χDp ) (modp), and so the claim now follows from thep-adic
class number formula [Thm. 5.24, W]

Lp(1, χDp ) =
2h(Dp)Rp(Dp)√

Dp

. 2
Remark1. Although one might suspect that the Eisenstein seriesFp−1(z)would

be better to work with, the obvious generalization of the proof of Theorem 1 does
not work.

In view of Proposition 2, our main objective is to study its coefficients
H((p−1)/2,D) (modp). Unfortunately there is a minor technical difficulty which
arises. The coefficientsH((p−1)/2,0) andH((p−1)/2, pn2) are notp-integral.
However this does not pose too much trouble as the next two propositions indicate.

PROPOSITION 3.If p > 3 is prime, then there exists an integerα(p) coprime to
p for which

(i) α(p)pF(p−1)/2(z) ∈ Z[[q]],
(ii) α(p)pF(p−1)/2(z) ≡ 2(pz)(modp),

where2(z) :=∑∞n=−∞ qn2 = 1+ 2q + 2q4 + 2q9 + · · · ∈ M1/2(00(4), χ0).
Proof. By (1), (2), and a theorem of Carlitz [Ca], it turns out that the only

coefficients ofF(p−1)/2(z)which are not necessarilyp-integral areH((p−1)/2,0)
andH((p−1)/2, pn2). Therefore ifn 6= p�, thenpH((p−1)/2, n) ≡ 0 (modp).

Since

H

(
p − 1

2
,0

)
= ζ(1− (p − 1)) = − Bp−1

p − 1
,

H

(
p − 1

2
, p

)
= L

(
1− p − 1

2
,9p

)
= −2B(p−1

2 ,9p)

p − 1
,

where9p is the Kronecker Dirichlet character forQ(
√
(−1)(p−1)/2p), the proof

now follows from (1) and the Claussen and Von Staudt theorem [Thm. 5.10, W]
once one checks that

H

(
p − 1

2
, p

)
H

(
p − 1

2
,0

) ≡ 2 (modp),

https://doi.org/10.1023/A:1001533613223 Published online by Cambridge University Press

https://doi.org/10.1023/A:1001533613223


6 KEN ONO

and ∑
d |n
µ(d)9p(d)d

(p−3)/2σp−2(n/d) ≡ 1 (modp).

The second congruence follows easily, and the first congruence follows easily from
the definitions of Bernoulli numbers and generalized Bernoulli numbers. 2

3. Proof of Results

Theorem 1 follows easily from the following result.

THEOREM 2. Letp > 3 be prime, and suppose there is a fundamental discrim-
inantD0 coprime top for which

(i) (−1)(p−1)/2D0 > 0,

(ii)

∣∣∣∣B (p − 1

2
, χD0

)∣∣∣∣
p

= 1.

Then there is an arithmetic progressionrp (modtp) with (rp, tp) = 1, and a con-
stantκ(p) such that for each primè ≡ rp (modtp) there is an integer1 6 d` 6
κ(p)` for which

(i) D` := d``p is a fundamental discriminant,

(ii) h(D`) 6≡ 0 (modp),

(iii )

∣∣∣∣Rp(D`)√
D`

∣∣∣∣
p

= 1.

Proof of Theorem2. Fix at the outset an integerα(p) satisfying the conditions
of Proposition 3. DefineFp(z) ∈ Mp/2(00(4p2), χ0) by

Fp(z) := α(p)F(p−1)/2(z)− α(p)
(
Vp|Up|F(p−1)/2

)
(z)

= α(p)
∑

(n,p)=1

H

(
p − 1

2
, n

)
qn.

Let Q 6= p be any prime for which(D0/Q) = −1, and defineGp(z) ∈ Mp/2

(00(4p2Q2), χ0) by

Gp(z) := Fp(z)⊗
( ·
Q

)
= α(p)

∑
(n,p)=1

(
n

Q

)
H

(
p − 1

2
, n

)
qn.
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Finally defineGp(z) ∈ Mp/2 (00(4p2Q4), χ0) by

Gp(z) :=
Gp(z)⊗

( ·
Q

)
−Gp(z)

2

= α(p)
∑

(n,p)=1,(n/Q)=−1

H

(
p − 1

2
, n

)
qn. (4)

It is easy to see that 06≡ Gp(z) (modp) since the coefficient ofqD0 inGp(z) is
nonzero by hypothesis. Moreover the coefficients

H((p − 1)/2,0), H((p − 1)/2, n2) and H((p − 1)/2, pn),

among others, have been annihilated. In particular, by (1), Proposition 2, and Pro-
position 3 every remaining nonzero coefficient isp-integral and contains inform-
ation about the class number andp-adic regulator of some real quadratic field in
whichp ramifies.

If ` is prime, then define(U`|Gp)(z) and(V`|Gp)(z) ∈ Mp/2(00(4p2Q4`), (4`
· )

in the usual way (see [Sh]), i.e.

(U`|Gp)(z) :=
∞∑
n=1

up,`(n)q
n

= α(p)
∑

(
`n
Q

)
=−1,

(
`n
p

)
=1

H

(
p − 1

2
, `n

)
qn, (5a)

(V`|Gp)(z) :=
∞∑
n=1

vp,`(n)q
n

= α(p)
∑

(
n
Q

)
=−1,

(
n
p

)
=1

H

(
p − 1

2
, n

)
q`n. (5b)

If g =∑∞n=0 a(n)q
n has integer coefficients, then define ordp(g) by

ordp(g) := min{n|a(n) 6≡ 0 (modp)}.

By a theorem of Sturm [St], ifg ∈ Mk(00(N), χ) has integer coefficients and

ordp(g) >
k

12
[00(1):00(N)],
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theng ≡ 0(modp). He proved this for integralk and trivialχ , but the general case
obviously follows by taking an appropriate power ofg. Defineκ(p) by

κ(p) := p2Q3(p + 1)(Q+ 1)/4.

Since[00(1):00(4p2Q4`)] = 6pQ3(p+1)(Q+1)(`+1), if ` is sufficiently large
andg ∈ Mp/2(00(4p2Q4`), (4`

· )) has integer coefficients and has the property that

ordp(g) > κ(p)`, (6)

then by Sturm’s theoremg ≡ 0(modp).
Suppose that̀ 6= p is a prime for which( `

Q
) = 1. If ( n

Q
) 6= −1 or (n, p) 6= 1,

then by (5a) and (5b)

up,`(n`) = vp,`(n`) = 0. (7)

For thosen with ( n
Q
) = −1 and(n, p) = 1

up,`(n`) = α(p)H
(
p − 1

2
, n`2

)
, (8a)

vp,`(n`) = α(p)H
(
p − 1

2
, n

)
. (8b)

If ` is sufficiently large for which( `
Q
) = 1, then by (1), (4), (7) and (8a) we find

for everyn 6 κ(p) that

up,`(n`) = α(p)(1− χDn(`)`(p−3)/2+ `p−2)H

(
p − 1

2
, n

)
. (9)

HereDn denotes the fundamental discriminant of the fieldQ(
√
(−1)(p−1)/2n).

Let Sp denote the set of thoseDn with n 6 κ(p) for which ( n
Q
) = −1 and

(n, p) = 1. For all otherDn with n 6 κ(p) it is clear the the coefficients ofqDnm
2

inGp(z) are zero, and so they do not play a role in the ensuing analysis. There is a
progressionrp(modtp) with (rp, tp) = 1 andp|tp for which

(i) χDn(`) = 1 for every primè ≡ rp(modtp)andDn ∈ Sp,

(ii)

(
`

Q

)
= 1 for every primè ≡ rp(modtp),

(iii )

(
rp

p

)
= −1. (10)

By (8a), (8b) and (9), for every primè≡ rp (modtp) we find that

up,`(n`) ≡ α(p)(1− r(p−3)/2
p + rp−2

p )vp,`(n`)(modp),
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for all n 6 κ(p). Sincevp,`(n) = 0 if ` - n, by (6) if there are non 6 κ(p)`

coprime to` for which

up,`(n) = α(p)H
(
p − 1

2
, n`

)
6≡ 0 (modp),

thenU`|Gp ≡ α(p)(1− r(p−3)/2
p + rp−2)V`|Gp(modp).

By (1), the multiplicative property forH(r,N), and the definition ofup,`(N)
andvp,`(N), if ` ≡ rp (modtp), then

up,`(D0`
3) ≡ α(p)(1− r(p−3)/2

p − r(p−5)/2
p + rp−2

p + rp−3
p )×

×H
(
p − 1

2
,D0

)
(modp),

vp,`(D0`
3) ≡ α(p)(1− r(p−3)/2

p + rp−2
p )H

(
p − 1

2
,D0

)
(modp).

Sinceα(p)H(p − 1,D0) 6≡ 0 (modp), we find thatup,`(D0`
3) 6≡ vp,`(D0`

3)

(modp) if and only if

rp−3
p 6≡ r(p−5)/2

p (modp).

This is obviously satisfied in view of (10). Therefore

U`|Gp 6≡ V`|Gp (modp),

and so there must be an integer 16 n 6 κ(p)` coprime tò for which

up,`(n) = α(p)H
(
p − 1

2
, n`

)
6≡ 0 (modp).

By (1) and Proposition 2 there is a positive fundamental discriminantD` :=
d``p with d` 6 κ(p)` for which

2h(D`)Rp(D`)√
D`

6≡ 0 (modp).

The proof is now complete in view of a theorem of Coates [p. 78,W] that asserts
that ∣∣∣∣Rp(D`)√

D`

∣∣∣∣
p

6 1. 2
Proof of Theorem1. In the notation from Theorem 2, if̀ ≡ rp (modtp) is

prime, then there is an integer 16 d` 6 κ(p)` for which D` := d``p is a
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fundamental discriminant with the desired properties. Let`i denote these primes
in increasing order. Ifj < k < l andD`j = D`k = D`l , then`j`k`l|D`j . However
this can only occur for finitely manyj, k, andl sinceD`j 6 κ(p)`2

jp. Hence by
Dirichlet’s theorem on primes in arithmetic progressions we find that the number
of D < X obtained in this way is�p π(

√
X). 2

Proof of Corollary2. Iwasawa [I] proved that if there is only one prime lying
abovep in Q(

√
D) andp - h(D), thenp cannot divide the class number of any

field in the Iwasawa tower. Sincep|D for the relevant discriminants in Theorem 1,
it follows thatp is ramified and the condition above is satisfied. 2
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