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Abstract. Let D denote the fundamental discriminant of a real quadratic field, arid 2t denote
its associated class numberplis prime, then the ‘Cohen and Lenstra Heuristics’ give a probability
thatp 1 h(D). If p > 3'is prime, then subject to a mild condition, we show that

VX

#0< D < X|pth(D —
{0< D < X|pth(D)} >»p log X
This condition holds for each @ p < 5000.
Mathematics Subject Classifications1991): Primary: 11R29; Secondary: 11E41.
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1. Introduction and Statement of Results

Although the literature on class numbers of quadratic fields is quite extensive, very
little is known. In this paper we consider class numbers of real quadratic fields, and
as an immediate consequence we obtain an estimate for the number of vanishing
Iwasawah invariants.

ThroughoutD will denote the fundamental discriminant of the quadratic num-
ber fieldQ(+/D), k(D) its class number, angy := (2) the usual Kronecker char-
acter. We shall leo denote the trivial character, and|, the usual multiplicative
p-adic valuation normalized so thit|, := 1/p.

Although the ‘Cohen—-Lenstra Heuristics’ [C-L] have gone a long way towards
an explanation of experimental observations of such class numbers, very little has
been proved. For example, it is not known that there are infinitely niany0 for
which#(D) = 1. The presence of nontrivial units @(~/D) have posed the main
difficulty. Basically, if (D) is the fundamental unit d®(+/D), then the regulator
R(D) := log(e(D)) complicates Dirichlet’s class number formula

2h(D)R(D)
vD
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one of the main vehicles for studyirg D).

In view of these and other difficulties, it is natural to ask how ofteh (D),
given a primep. For the complementary question, M. R. Murty [M] has recently
obtained lower bounds, although far from the Cohen and Lenstra expectation, for
the number ofD, both negative and positive, for whighi (D). His results extend
work of Ankeny and Chowla, Humbert, and Nagell where explicit elements of
order p were constructed for infinitely many discriminants.

For D > 0, Cohen and Lenstra predict that the ‘probabilipyt #(D) is

> . 1 1 1

p—1) 7 pe P> P
and forD < 0 they conjecture that the ‘probability’ is

= . 1 1 1

[[a-pH=1-2-S+S+ -

1 p p*p
Although extensive numerical evidence lends credence to these heuristics, apart
from the works of Davenport and Heilbronn [D-H] when= 3, little has been
proved.

Imaginary quadratic fields have been the focus of numerous investigations in
this direction. For instance, one may see the works of Hartung [Ha], Horie and
Onishi [Ho, Hol, Ho-On], Jochnowitz [J], and Ono and Skinner [O-SK]. These
papers guarantee, under various conditions, that there are indeed infinitely many
D < 0forwhichp t k(D). In a recent paper, the author and Kohnen [Koh-O] have
gone a step further by obtaining a lower bound for the numberXf< D < 0
for which p t k(D). In particular if p is prime ande > 0, then for all sufficiently
largeX > 0

#—X < D < 0| h(D) £ 0(modp)} > ( 2p=2 e> VX

J3p-1 Jlogx’

Even less is known about the indivisibility of class numbers of real quadratic
fields. There is work in this direction by Jochnowitz [J]. Subject to a mild condition
regarding the existence of a suitable generalized Bernoulli nudier—1)/2, x),

we go a step further by obtaining a lower bound for the number ef ® < X
for which p { k(D). As in [J], we also obtain information aboRt, (D), the p-adic

regulator ofQ(v/D).

THEOREM 1. Let p > 3 be prime. If there is a fundamental discriminabt
coprime top for which

i (1" P2p, >0,

-1
(i) ‘B <pT’ XD0>

=1,
P
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then

R,(D)

VD

A lengthy MAPLE computation yields the following immediate corollary.

#{0 < D < X |h(D) # 0(modp), p|D, and

NG
=1¢>,
P

log X~

COROLLARY 1. If 3 < p < 5000is prime, then

R,(D)| VX
b, 1} 77 iog X

This gives some evidence for a conjecture of Greenberg on lwasawa invariants
[G]. Let K = Ko be a number field, and lgt be an odd prime. IfQ, denotes
the unique subfield of degrge in the fieldQ(¢,.+1), the field of thep"*th roots
of unity, then letK, := KQ,. These define th&, cyclotomic extension ok
K = Ko C K1 C K;....If Cl, denotes the-part of the class group df,,, then
Cly < Cly < Clp < ---where each map is a norm. lwasawa [Thm. 13.13, W]
proved that ifn is sufficiently large, then @1, = p*K-Pr" (K pntv(K.p) where
w(K, p), AM(K, p), andv(K, p) are fixed integers, the ‘lwasawa invariants’.

If K = Q(v/D) is a real quadratic field, then Greenberg’s Conjectures [G]
imply that A (Q(+/D), p) = w(Q(/D), p) = 0. By a theorem of Ferrero and
Washington, it is indeed known that(Q(+/D), p) = 0, but the complementary
question regarding the vanishing (D, p) := A(Q(+/D), p) remains open.

For p = 3, Horie and Nakagawa [Ho-N] used a theorem of Davenport and
Heilbronn [D-H] and a criterion of Iwasawa to show thaD, 3) = 0 for a positive
‘proportion’ of D. Moreover, recent calculations fd» < 10000 by Kraft and
Schoof [K-S], Fukuda and Taya [F-T], and Ichimura and Sumida [lc-Su] verify
indeed that.(D, 3) = 0 for all D < 10*. Less is known whep > 3. Corollary 1
implies the following immediate result.

#[0 < D < X |h(D) # 0(modp), p|D, and

p

COROLLARY 2. If 3 < p < 5000is prime, then

VX

In Section 2 we shall present the essential preliminaries, and in Section 3 we shall
prove these results.
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2. Preliminaries

H. Cohen [C] explicitly constructed half-integral weight Eisenstein series whose
Fourier coefficients are given by generalized Bernoulli numbers for quadratic char-
acters. These modular forms play a crucial role in this paper. Consult [Ko] for
definitions and the standard facts about modular forms.

Fix aninteger > 2. If N #£ 0, 1(mod 4, then letH (r, N) := 0. If N = 0, then
let H(r, 0) := ¢(1—2r) = — By, /2r. If N is a positive integer anfn? = (—1)" N
whereD is the fundamental discriminant of a quadratic number field, then define
H(r, N) by

H(r.N) = LA~ 1. xp) Y w(d) xp(d)d™ oz 1(n/d). ()
d|n

As usualo,(n) = Zd‘n d”. In particular, if D = (—1)" N is the discriminant of a
quadratic number field, then
B(r, xp)
H(rN) = L(L=r. xp) = =~ 2)
where B(n, x) is the nth generalized Bernoulli number with character If
(—1)"N = n?, then

H(r, N)=¢(1—r) ) pd)d o _1(n/d). €)
dln

PRQPOSITION 1[Thm. 3.1, Clif r > 2and F,(z) := Z:ioH(”v N)gV (g =
&%), thenF,(z) € M,41/2(To(4), xo)-

If D > 0, then letL (s, xp) denote the Kubota—Leopolgt-adic Dirichlet L-
function with charactey ,, and letR,,(D) denote thep-adic regulator ofQ(+/D)
[Ch. 5, W].

PROPOSITION 2If p > 3is prime andD is a fundamental discriminant coprime
to p for which(=1)?~Y/2D > 0, thenH ((p — 1)/2, D) is p-integral and

H (p — l’ D) _ 2h(D,)R,(D))

2 NGH

(modp),

whereD,, := (-1)?~V/2pp.

Proof. By (2) we find thatH((p — 1)/2,D) = L1 — (p — /2, xp) =
—2B((p —1)/2, xp)/(p — 1), and it is well known to bg-integral by a theorem
of Carlitz [Ca].

Now D, is a positive fundamental discriminant, and by the construction of the
Kubota—Leopoldtp-adic L-function L , (s, xp) [Thm. 5.11, W]

L (Pt _2B(%F xp, 0P
)4 2 ’XDP - p—l

El
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wherew is the usual Teichmdiller character. It is easy to seethat w7~/ =
XD, and so

-1 2B(5, -1
Lp(l—p—,xDp):—M:H(p—,D).
p—1 2

By the Kummer congruences [Cor. 5.13, W], we find thas(1, xp,) =
L,(1—(p—1)/2 xp, (modp), and so the claim now follows from the-adic
class number formula [Thm. 5.24, W]

2h(D,)R,(D,)
\% DP

Remarkl. Although one might suspect that the Eisenstein sétjes(z) would
be better to work with, the obvious generalization of the proof of Theorem 1 does
not work.

In view of Proposition 2, our main objective is to study its coefficients
H((p—1)/2, D) (modp). Unfortunately there is a minor technical difficulty which
arises. The coefficientd ((p — 1)/2, 0) and H ((p — 1)/2, pn?) are notp-integral.
However this does not pose too much trouble as the next two propositions indicate.

Lp(la XDp) = O

PROPOSITION 3.If p > 3is prime, then there exists an intege¢p) coprime to
p for which

() a(p)pF-1,2(2) € Zllq]l,
(i) a(p)pFp-12(z) = O(pz)(Modp),

where® (2) := 30 ¢" =1+29 +2*+2¢° + --- € M1/5(To(4), X0)-

Proof. By (1), (2), and a theorem of Carlitz [Ca], it turns out that the only
coefficients ofF(,_1,2(z) which are not necessarily-integral areH ((p —1)/2, 0)
andH ((p—1)/2, pn?). Therefore ifn # pO, thenpH((p—1)/2, n) = 0 (modp).

Since
p_l Bp—l
H|l—,0)=¢t1—-(p—-1) =-— ,
( > ) ¢d—=(p-=1) b1
-1 -1 2B(ZL v
H(P=t ) o (1-P2t ) =22 )
2 2 p—1

where W, is the Kronecker Dirichlet character f@(,/(—1)»=b/2p), the proof
now follows from (1) and the Claussen and Von Staudt theorem [Thm. 5.10, W]
once one checks that

p—1
H|——
(")
p—1
H|{——.,0
(*z0)

=2 (modp),
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and

> w@) ¥, d)d" %0, 5(n/d) =1 (modp).
d|n

The second congruence follows easily, and the first congruence follows easily from
the definitions of Bernoulli numbers and generalized Bernoulli numbers. O

3. Proof of Results

Theorem 1 follows easily from the following result.

THEOREM 2. Let p > 3 be prime, and suppose there is a fundamental discrim-
inant Dy coprime top for which

(i) (=P D2py >0,

-1
(i) ‘B <pT’ XD0>

Then there is an arithmetic progressiop (modt,) with (r,, ¢,) = 1, and a con-
stantk (p) such that for each primé = r, (modt,) there is an integefl < d; <
Kk (p)€ for which

=1
p

(i) D, :=dLp isafundamental discriminant

(i) h(D¢) #0 (modp),
Rp(DZ)
VD¢

Proof of Theoren2. Fix at the outset an integex p) satisfying the conditions
of Proposition 3. Defing ,(z) € M, ,2(T'o(4p?), xo) by

=1

p

(iii ) ‘

5@ = a(p)Fp-1,2(2) — a(p) (VplUp| Fp-1)/2) (2)

Let 0 # p be any prime for whichDy/Q) = —1, and defineb,(z) € M,
(To(4p®0?), xo) by

. -1
6,() =5, ® (5) =a(p) Y. (%)H(”z ,n> q".

(n,p)=1
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Finally defineG ,(z) € M, ;2 (To(4p?Q%), x0) by

®,(2)® (E) —&,(2)
2

—ap) Y H<p;1,n>q". 4)

(n,p)=1,(n/Q)=-1

G,(z) =

Itis easy to see that& G ,(z) (modp) since the coefficient of ?° in G ,(z) is
nonzero by hypothesis. Moreover the coefficients

H((p—-1/2,0, H(p-1/2,n*) and H((p—1)/2 pn),

among others, have been annihilated. In particular, by (1), Proposition 2, and Pro-
position 3 every remaining nonzero coefficienipigntegral and contains inform-
ation about the class number apeadic regulator of some real quadratic field in
which p ramifies.

If ¢is prime, then defin€U,|G ,)(z) and(V;|G,)(z) € Mp/z(F0(4p2Q4£), )
in the usual way (see [Sh]), i.e.

UG R) = D upi(n)g"
n=1
= a(p) Z H (p_—l En) q" (5a)
2 9 9

(%)=2(%)=
VelGp)(@) = Y vpun)q"
n=1

—ap) Y H (pT_l n> P (5b)
()=-2(2)-
If g =) 2 a(n)q" has integer coefficients, then define gigh by
ord,(g) := min{nja(n) # 0 (modp)}.

By a theorem of Sturm [St], i# € M, (To(N), x) has integer coefficients and

k
ord,(g) > 1—2[Fo(l): Fo(N)],
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theng = 0(modp). He proved this for integrdl and trivial x, but the general case
obviously follows by taking an appropriate powergfDefinex (p) by

k(p) == p*Q3*(p +1(Q +1)/4

Since[To(1): To(4p2040)] = 6p Q3(p+1)(Q + 1) (£ + 1), if £ is sufficiently large
andg € M,,/Z(FO(4p2Q4£), (&) has integer coefficients and has the property that

ord,(g) > k(p)L, (6)

then by Sturm’s theorem = O(modp).
Suppose that # p is a prime for which(5) = 1. If (%) # —1or (n, p) # 1,
then by (5a) and (5b)

Uup(nl) = v, (nt) =0. (7)

For thosen with (%) =—land(@n, p) =1

up(nl) =a(p)H <p;l,n£2> , (8a)

Vpe(nl) = a(p)H (p;l’n) . (8b)

If ¢ is sufficiently large for Whiché) = 1, then by (1), (4), (7) and (8a) we find
for everyn < k(p) that

upe(n€) = a(p)(L— xp, ()P~ P~2H (” ; L n) : 9)

Here D,, denotes the fundamental discriminant of the figld/ (—1)»—1/2n).
Let S, denote the set of thosB, with n < «(p) for which (%) = —1and

(n, p) = 1. For all otherD,, with n < «(p) itis clear the the coefficients qu"’"z
in G,(z) are zero, and so they do not play a role in the ensuing analysis. There is a
progression,(modt,) with (r,, t,) = 1 andp|t, for which

(i) xp, () =1 for every prime¢l = r,(modz,) andD, € S,

(i) (é) =1 for every primg = r,(modt),),

(iii) <r—”) —_1 (10)
p
By (8a), (8b) and (9), for every prime= r, (modt,) we find that

upe(nt) = a(p)L—rP= 32 4 ri=2)v, (nt)(modp),
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9
for all n < k(p). Sincev, ,(n) = 0if £ { n, by (6) if there are n; < «(p)€
coprime to¢ for which

—1
upe(n) =a(p)H (p > ,n€> # 0 (modp),

thenlU,|G, = a(p)(1—r" ¥+ r,_5)Vi|G ,(modp).

By (1), the multiplicative property fof (r, N), and the definition ofi, ,(N)
andv, ((N), if £ = r, (modt),), then

up(Dol?) =

a(PY A= r I =PI R ) x

-1
x H (pT Do) (modp),

-1
vy (Dol®) = a(p)(L = ri"™ 2 + 122 H (pT Do) (modp).
Sincea(p)H(p — 1, Do) # 0 (modp), we find thatu,, (Dol # v, (Dol
(modp) if and only if

r;’_s #= rl(,”_5)/2(m0dp).
This is obviously satisfied in view of (10). Therefore

UG, # V|G, (modp),

and so there must be an integecIn < «(p)£ coprime to¢ for which

Uy o(n) = a(p)H (”

> ,nZ) # 0 (modp).
By (1) and Proposition 2 there is a positive fundamental discrimidant=
delp with d, < «(p)£ for which

2h(D¢)R,(Dy)
—\/ﬁe # 0 (modp).

The proof is now complete in view of a theorem of Coates [p. 78,W] that asserts
that

Rp(DZ)
VD¢

< 1 a
p

Proof of Theorend. In the notation from Theorem 2, #f = r, (modt,) is
prime, then there is an integer & d, < «(p)¢ for which D,

= delp is a
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fundamental discriminant with the desired properties. d.a@lenote these primes
inincreasing order. If < k <l andD,;, = Dy, = Dy, thent;{;¢;|D,. However

this can only occur for finitely many, k, and/ since D,; < K(p)ﬁ?p. Hence by
Dirichlet’'s theorem on primes in arithmetic progressions we find that the number
of D < X obtained in this way is>, 7(vX). m

Proof of Corollary2. lwasawa [I] proved that if there is only one prime lying
abovep in Q(+~/D) and p t h(D), thenp cannot divide the class number of any
field in the Iwasawa tower. Singg D for the relevant discriminants in Theorem 1,
it follows that p is ramified and the condition above is satisfied. O
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