FINITE 3-GEODESIC TRANSITIVE BUT NOT 3-ARC TRANSITIVE GRAPHS

WEI JIN

(Received 14 July 2014; accepted 7 August 2014; first published online 23 September 2014)

Abstract

In this paper, we first prove that for $g \in \{3, 4\}$, there are infinitely many 3-geodesic transitive but not 3-arc transitive graphs of girth g with arbitrarily large diameter and valency. Then we classify the family of 3-geodesic transitive but not 3-arc transitive graphs of valency 3 and those of valency 4 and girth 4.

2010 *Mathematics subject classification*: primary 05E18; secondary 20B25. *Keywords and phrases*: 3-geodesic transitive graph, 3-arc transitive graph, automorphism group.

1. Introduction

In this paper, all graphs are finite, simple and undirected. A *geodesic* from a vertex u to a vertex v in a graph Γ is one of the shortest paths from u to v in Γ , and this geodesic is called an *s*-geodesic if the distance between u and v is s. Then Γ is said to be *s*-geodesic transitive if, for each $1 \le i \le s$, the automorphism group Aut(Γ) is transitive on the set of *i*-geodesics of Γ . For a positive integer s, an *s*-arc of Γ is a sequence of vertices (v_0, v_1, \ldots, v_s) in Γ such that v_i, v_{i+1} are adjacent and $v_{j-1} \ne v_{j+1}$ where $0 \le i \le s - 1$ and $1 \le j \le s - 1$. In particular, 1-arcs are called *arcs*. Then Γ is said to be *s*-arc transitive if, for each $i \le s$, the group Aut(Γ) is transitive on the set of *i*-geodesic transitive if s, the group Aut(Γ) is transitive on the set of *i*-geodesic transitive if s, the group Aut(Γ) is transitive on the set of *i*-arcs of Γ . Thus if a graph is *s*-geodesic transitive (*s*-arc transitive), then it is *t*-geodesic transitive (*t*-arc transitive) for each $t \le s$.

Clearly, every 3-geodesic is a 3-arc, but some 3-arcs may not be 3-geodesics. If Γ has girth 4 (the girth of Γ , denoted by girth(Γ), is the length of the shortest cycle in Γ), then the 3-arcs contained in 4-cycles are not 3-geodesics. The graph in Figure 1 is the Hamming graph H(3, 2), which is 3-geodesic transitive but not 3-arc transitive with valency 3 and girth 4. Thus the family of 3-arc transitive graphs is properly contained in the family of 3-geodesic transitive graphs.

The first remarkable result about 2-arc transitive graphs comes from Tutte [10, 11], and this family of graphs has been studied extensively; see [1, 7, 8, 12]. The local

The author is supported by the NNSF of China (11301230), Jiangxi EDF (GJJ14351) and PDS (20142BAB211008).

^{© 2014} Australian Mathematical Publishing Association Inc. 0004-9727/2014 \$16.00

structure of the family of 2-geodesic transitive graphs was determined in [3]. In [4], the authors classified 2-geodesic transitive graphs of valency 4. Later, in [5], a reduction theorem for the family of normal 2-geodesic transitive Cayley graphs was produced and those which are complete multipartite graphs were also classified. In this paper, we study the family of 3-geodesic transitive graphs, and the first theorem shows that there exist geodesic transitive but not 3-arc transitive graphs with unbounded large diameter and valency. (The *diameter* diam(Γ) of a connected graph Γ is the maximum distance of u, v over all $u, v \in V(\Gamma)$. If Γ is *s*-geodesic transitive with $s = \text{diam}(\Gamma)$, then Γ is called *geodesic transitive*.)

THEOREM 1.1. For $g \in \{3, 4\}$, there exist infinitely many geodesic transitive but not 3-arc transitive graphs of girth g with arbitrarily large diameter and valency. In particular, these graphs are 3-geodesic transitive but not 3-arc transitive.

REMARK 1.2. Let Γ be a 3-geodesic transitive but not 3-arc transitive graph. Then girth(Γ) ≤ 5 . If girth(Γ) = 3, then Γ is not 2-arc transitive, and such graphs have been investigated; see [3–5]. We suppose that Γ is 2-arc transitive, so girth(Γ) = 4 or 5. If girth(Γ) = 5, then Γ is nonbipartite, and there is a characterisation of such graphs in [9].

Our second theorem is a classification of the family of 3-geodesic transitive graphs which are not 3-arc transitive of valency at most 4. Note that a 3-geodesic transitive graph of valency 2 is a cycle and so is 3-arc transitive.

THEOREM 1.3. Let Γ be a 3-geodesic transitive but not 3-arc transitive graph of valency *k*. Suppose that girth(Γ) \geq 4.

- (1) If k = 3, then Γ is either H(3, 2) or the dodecahedron, and both are geodesic transitive.
- (2) If k = 4 and girth(Γ) = 4, then Γ is either H(4, 2) or the complement of the 2 × 5 grid, and both are geodesic transitive.

We do not have examples of 3-geodesic transitive but not 3-arc transitive graphs of valency 4 with girth 5 at the time of writing, and we conjecture that there is no such graph.

2. Proof of Theorem 1.1

To facilitate the following discussion, we recall the definition of the Hamming graph. The Hamming graph $\Gamma = H(d, n)$ has vertex set $\Delta^d = \{(x_1, \ldots, x_d) \mid x_i \in \Delta\}$, the cartesian product of *d* copies of Δ , where $\Delta = \{1, a, \ldots, a^{n-1}\}, d \ge 2$ and $n \ge 2$. Then two vertices *v* and *v'* are adjacent if and only if they are different in exactly one coordinate. Thus, if we suppose that |v - v'| is the number of different coordinates of *v* and *v'*, then *v* and *v'* are adjacent if and only if |v - v'| = 1. Moreover, $v' \in \Gamma_i(v)$ if and only if |v - v'| = i, where $1 \le i \le \text{diam}(\Gamma)$ and $\Gamma_i(v)$ is the set of vertices of Γ which have distance *i* from *v*. The graph Γ has valency d(n - 1).

When n = 2 and $d \ge 2$, the Hamming graph H(d, 2) is often called a *d-cube* graph, see [2, pages 261–262]. If n = 2, then girth(H(d, n)) = 4; if $n \ge 3$, then girth(H(d, n)) = 3. In the following discussion, we always suppose that Hamming graph H(d, n) and Δ are as defined above.

A graph Γ is said to be *G*-geodesic transitive if, for each $i \leq \text{diam}(\Gamma)$, the group $G \leq \text{Aut}(\Gamma)$ is transitive on the set of *i*-geodesics of Γ .

LEMMA 2.1. Let $\Gamma = H(d, n)$ with vertex set Δ^d where $d \ge 2$ and $n \ge 2$. Let $G = X \wr S_d \le$ Aut (Γ) where $X \le S_n$. If X acts 2-transitively on Δ , then Γ is G-geodesic transitive. In particular, Γ is geodesic transitive.

PROOF. Suppose that X acts 2-transitively on Δ . Then X acts primitively but not regularly on Δ . It follows from [6, Lemma 2.7A] that G acts primitively and hence transitively on $V(\Gamma)$.

First, we prove that Γ is (G, 1)-geodesic transitive. Suppose that (v_0, v_1) is a 1-geodesic of Γ . Since *G* acts transitively on $V(\Gamma)$, we can assume that $v_0 = (1, 1, ..., 1)$. Since, for any two vertices u, u' of Γ , $u' \in \Gamma_i(u)$ if and only if |u - u'| = i, that is, *u* and *u'* have exactly *i* different entries, it follows that $v_1 = (1, ..., b, ..., 1)$ for some $b \in \Delta \setminus \{1\}$. Now since *X* acts 2-transitively on Δ , it follows that the stabiliser X_1 acts transitively on $\Delta \setminus \{1\}$, hence there exists $\sigma \in X_1$ such that $b^{\sigma} = a$. It follows that there exists $\alpha \in G_{v_0} \cong X_1 \wr S_d$ such that $v_1^{\alpha} = (1, ..., b, ..., 1)^{\alpha} = (a, 1, ..., 1)$. Thus Γ is (G, 1)-geodesic transitive.

Next, we prove that, for each j = 2, 3, ..., d, whenever Γ is (G, j - 1)-geodesic transitive, then Γ is (G, j)-geodesic transitive.

Let $(v_0, v_1, \ldots, v_{j-1}, v_j)$ be a *j*-geodesic of Γ where $2 \le j \le d$. Suppose that Γ is (G, j - 1)-geodesic transitive. Then we can fix a (j - 1)-geodesic $(v_0, v_1, \ldots, v_{j-1})$ such that $v_0 = (1, 1, \ldots, 1)$, and for each $i = 1, 2, \ldots, j - 1$, $v_i = (a, a, \ldots, a, 1, \ldots, 1)$ where the first *i* entries are equal to *a* and the last d - i entries are equal to 1. Now since $v_j \in \Gamma_j(v_0) \cap \Gamma_{j-1}(v_1) \cap \cdots \cap \Gamma_1(v_{j-1})$ and since $v_j \in \Gamma_k(v)$ if and only if $|v - v_j| = k$, it follows that $v_j = (a, \ldots, a, 1, \ldots, x, \ldots, 1)$ for some $x \in \Delta \setminus \{1\}$, where the first j - 1 entries are equal to *a*. Moreover, since *X* acts 2-transitively on $\{1, a, \ldots, a^{n-1}\}$, X_1 acts transitively on $\Delta \setminus \{1\}$. Since $X_1 \wr S_{d-(j-1)} \le G_{v_0, \ldots, v_{j-1}}$, it follows that there exists $\gamma \in G_{v_0, \ldots, v_{j-1}}$ such that $v_j^{\gamma} = (a, \ldots, a, 1, \ldots, x, \ldots, 1)^{\gamma} = (a, \ldots, a, a, 1, \ldots, 1)$ where the first *j* entries are equal to *a*, and the last d - j entries are equal to 1. Therefore, Γ is

(G, j)-geodesic transitive. Finally, since diam $(\Gamma) = d$, it follows that Γ is *G*-geodesic transitive, and so is also geodesic transitive.

PROOF OF THEOREM 1.1. Let $\Gamma = H(d, n)$ be the Hamming graph with $d \ge 2, n \ge 3$. Then Γ has girth 3, diameter *d* and valency d(n - 1). Thus Γ is not 3-arc transitive. Further, by Lemma 2.1, Γ is geodesic transitive.

Let $\Gamma = J(n, k)$ be the Johnson graph with $1 \le k < \lfloor n/2 \rfloor$ where $\lfloor n/2 \rfloor$ is the integer part of n/2. Then Γ has girth 3, diameter k and valency k(n - k). Thus Γ is not 2arc transitive, and so is not 3-arc transitive. Further, by Devillers *et al.* ('On the transitivities of graphs', Proposition 2.1, submitted for publication), Γ is geodesic transitive.

Let $\Gamma = H(d, 2)$ with $d \ge 3$. Then, girth(Γ) = 4 and Γ has both diameter and valency d. Hence Γ is not 3-arc transitive. It follows from Lemma 2.1 that Γ is geodesic transitive.

3. Proof of Theorem 1.3

3.1. Valency 3

A graph Γ is said to be *distance transitive* if Aut(Γ) is transitive on the ordered pairs of vertices at any given distance. Suppose that Γ is a distance transitive graph of valency *k* and diameter *d*. Then the cells of the distance partition with respect to *u* are orbits of A_u where $A := \text{Aut}(\Gamma)$, and every vertex in $\Gamma_i(u)$ is adjacent to the same number of other vertices in $\Gamma_{i-1}(u)$, say c_i . Similarly, every vertex in $\Gamma_i(u)$ is adjacent to the same number of other vertices in $\Gamma_{i+1}(u)$, say b_i . We denote by $(k, b_1, \ldots, b_{d-1}; 1, c_2, \ldots, c_d)$ the *intersection array* of Γ .

The distance from vertex u to vertex v is denoted by $d_{\Gamma}(u, v)$. We give a useful lemma.

LEMMA 3.1. Let Γ be an *i*-geodesic transitive graph where $1 \le i \le \operatorname{diam}(\Gamma) - 1$. Let u, v be two vertices of Γ such that $d_{\Gamma}(u, v) = i$. Suppose that $|\Gamma_{i+1}(u) \cap \Gamma(v)| = 1$. Then Γ is geodesic transitive and $b_i = 1$ for each $i \le j \le \operatorname{diam}(\Gamma) - 1$.

PROOF. Let $(u_0 = u, u_1, ..., u_i = v)$ be an *i*-geodesic of Γ . Since $|\Gamma_{i+1}(u_0) \cap \Gamma(u_i)| = 1$, it follows that $b_i = 1$ and Γ is (i + 1)-geodesic transitive. Let *j* be an integer such that $i \le j \le \text{diam}(\Gamma) - 2$. Suppose that $b_k = 1$ for every $i \le k \le j$. Then Γ is (j + 1)-geodesic transitive. Let $(u_0, ..., u_{j+2})$ be a (j + 2)-geodesic. Since Γ is (j + 1)-geodesic transitive, it follows that $b_j = |\Gamma_{j+1}(u_1) \cap \Gamma(u_{j+1})|$.

Suppose that $x \in \Gamma_{j+2}(u_0) \cap \Gamma(u_{j+1})$. Then $d_{\Gamma}(x, u_1) \leq j + 1$. If $d_{\Gamma}(x, u_1) < j + 1$, then $d_{\Gamma}(x, u_0) \leq d_{\Gamma}(x, u_1) + 1 < j + 2$, contradicting the assumption. Thus $d_{\Gamma}(x, u_1) = j + 1$, that is, $x \in \Gamma_{j+1}(u_1) \cap \Gamma(u_{j+1})$. Thus $\Gamma_{j+2}(u_0) \cap \Gamma(u_{j+1}) \subseteq \Gamma_{j+1}(u_1) \cap \Gamma(u_{j+1})$, and hence $b_{j+1} = |\Gamma_{j+2}(u_0) \cap \Gamma(u_{j+1})| \leq |\Gamma_{j+1}(u_1) \cap \Gamma(u_{j+1})| = b_j = 1$. Thus, Γ is (j + 1)-geodesic transitive. By induction, Γ is geodesic transitive.

LEMMA 3.2. Let Γ be a 3-geodesic transitive but not 3-arc transitive graph of valency 3. Suppose that girth(Γ) \geq 4. Then Γ is geodesic transitive, and Γ is H(3, 2) or the dodecahedron. **PROOF.** Since Γ is 3-geodesic transitive but not 3-arc transitive, it follows that girth(Γ) = 4 or 5.

Let (u, v, w) be a 2-geodesic of Γ . Suppose first that girth(Γ) = 4. Then there are six edges between $\Gamma(u)$ and $\Gamma_2(u)$, and $|\Gamma(u) \cap \Gamma(w)| = 2$ or 3. If $|\Gamma(u) \cap \Gamma(w)| = 3$, then Γ is isomorphic to the complete bipartite graph $K_{3,3}$ which is 3-arc transitive, a contradiction. Suppose that $|\Gamma(u) \cap \Gamma(w)| = 2$. Then $|\Gamma_3(u) \cap \Gamma(w)| = 1$, and by Lemma 3.1, Γ is geodesic transitive. Next assume that girth(Γ) = 5. Then $|\Gamma(u) \cap \Gamma(w)| = 1$ and $|\Gamma_3(u) \cap \Gamma(w)| = 0$ or 1. If $|\Gamma(u) \cap \Gamma(w)| = 0$, then Γ is geodesic transitive. If $|\Gamma(u) \cap \Gamma(w)| = 1$, then by Lemma 3.1, Γ is also geodesic transitive. Therefore, Γ is distance transitive, and so Γ is one of the graphs listed in [2, pages 221–222, Theorems 7.5.1 and 7.5.2].

Since Γ is 3-geodesic transitive, it follows that Γ has 3-geodesics and so the diameter of Γ is at least 3. By inspecting the candidates in [2, pages 221–222, Theorems 7.5.1 and 7.5.2], Γ is either H(3, 2) or the dodecahedron.

3.2. Valency 4

LEMMA 3.3. Let Γ be a 3-geodesic transitive but not 3-arc transitive graph of valency 4. Suppose that girth(Γ) = 4. Then $|\Gamma_2(v) \cap \Gamma(u) \cap \Gamma(w)| = 1$ or 2, for each 2-geodesic (u, v, w).

PROOF. Suppose that $\Gamma(v) = \{u_1, u_2, u_3, u_4\}$. Since girth(Γ) = 4, it follows that any pair of vertices in $\Gamma(v)$ are nonadjacent, and $1 \le |\Gamma_2(v) \cap \Gamma(u_1) \cap \Gamma(u_2)| \le 3$. We will now prove that $|\Gamma_2(v) \cap \Gamma(u_1) \cap \Gamma(u_2)| \ne 3$.

Suppose to the contrary that $|\Gamma_2(v) \cap \Gamma(u_1) \cap \Gamma(u_2)| = 3$. Since Γ is 3-geodesic transitive, it follows that for any 2-geodesic (x, y, z) of Γ , $|\Gamma_2(y) \cap \Gamma(x) \cap \Gamma(z)| = 3$. Thus, $|\Gamma_2(v) \cap \Gamma(u_1) \cap \Gamma(u_3)| = |\Gamma_2(v) \cap \Gamma(u_1) \cap \Gamma(u_4)| = 3$.

Since the valency of Γ is 4, it follows that $|\Gamma_2(v) \cap \Gamma(u_1)| = 3$. Thus $\Gamma_2(v) \cap \Gamma(u_1) = \Gamma_2(v) \cap \Gamma(u_1) \cap \Gamma(u_2) = \Gamma_2(v) \cap \Gamma(u_1) \cap \Gamma(u_3) = \Gamma_2(v) \cap \Gamma(u_1) \cap \Gamma(u_4)$. Hence $\Gamma_2(v) = \Gamma_2(v) \cap \Gamma(u_1)$ and diam(Γ) = 2, contradicting the hypothesis that Γ contains 3-geodesics. Therefore, $|\Gamma_2(v) \cap \Gamma(u_1) \cap \Gamma(u_2)| = 1$ or 2. Since Γ is 3-geodesic transitive, $|\Gamma_2(v) \cap \Gamma(u) \cap \Gamma(w)| = 1$ or 2 for any 2-geodesic (u, v, w).

LEMMA 3.4. Let Γ be the complement of the $2 \times (k + 1)$ grid. Then Γ is geodesic transitive with diameter 3 and valency k.

PROOF. By [2, page 222], the intersection array of Γ is (k, k - 1, 1; 1, k - 1, k), so its valency is k and its diameter is 3. Note that Γ is antipodal and each antipodal block has two vertices. The automorphism group of Γ is $S_2 \times S_{k+1}$. We reconstruct Γ in the following way. Let $V(\Gamma) = \{(a_1, 0), (a_2, 0), \dots, (a_{k+1}, 0), (a_1, 1), (a_2, 1), \dots, (a_{k+1}, 1)\}$, and make two vertices $(a_i, 0), (a_j, 1)$ adjacent if and only if $i \neq j$. It is clear that Γ is vertex transitive. Let $u = (a_1, 0)$. Then $\Gamma(u) = \{(a_2, 1), \dots, (a_{k+1}, 1)\}$. As S_{k+1} is k + 1 transitive on $\{a_1, \dots, a_{k+1}\}$, it follows that Γ is arc transitive. Let $v = (a_2, 1)$.

W. Jin

Then $\Gamma_2(u) \cap \Gamma(v) = \{(a_3, 0), (a_4, 0), \dots, (a_{k+1}, 0)\}$. As S_{k+1} is k + 1 transitive on $\{a_1, \dots, a_{k+1}\}$, it follows that $A_{u,v}$ is transitive on $\Gamma_2(u) \cap \Gamma(v)$, and so Γ is 2-geodesic transitive. Finally, from its intersection array, Γ is geodesic transitive. \Box

LEMMA 3.5. Let Γ be a 3-geodesic transitive but not 3-arc transitive graph of valency 4. Suppose that girth(Γ) = 4. Let (u, v, w) be a 2-geodesic and $|\Gamma_2(v) \cap \Gamma(u) \cap \Gamma(w)| = 2$. Then Γ is geodesic transitive and Γ is the complement of the 2 × 5 grid.

PROOF. Since girth(Γ) = 4, any pair of vertices of $\Gamma(v)$ are nonadjacent. Since $|\Gamma_2(v) \cap \Gamma(u) \cap \Gamma(w)| = 2$ and $v \in \Gamma(u) \cap \Gamma(w)$, it follows that $|\Gamma(u) \cap \Gamma(w)| = 3$, and so $|\Gamma_3(u) \cap \Gamma(w)| = 1$, and by Lemma 3.1, Γ is geodesic transitive. Hence Γ is distance transitive and Γ is one of the graphs in [2, Theorems 7.5.2 and 7.5.3]. By inspecting these graphs, Γ is the complement of the 2 × 5 grid.

LEMMA 3.6. Let Γ be the incidence graph of the 2-(7,4,2) design (the complement of the Fano plane). Then Γ is not 3-geodesic transitive.

PROOF. By [2, page 222], Γ is distance transitive and its intersection array is (4, 3, 2; 1, 2, 4). Hence it is arc transitive. Note that its automorphism group is $A \cong PGL(3, 2)$) of order 168. Let (u, v, w) be a 2-geodesic. Then $|A_u| = 12$, $|A_{u,v}| = 3$ and $|A_{u,v,w}| = 1$. However, $|\Gamma_3(u) \cap \Gamma(w)| = 2$, so $A_{u,v,w}$ is not transitive on $\Gamma_3(u) \cap \Gamma(w)$, that is, Γ is not 3-geodesic transitive.

LEMMA 3.7. Let Γ be a 3-geodesic transitive but not 3-arc transitive graph of valency 4. Suppose that girth(Γ) = 4. Let (u, v, w) be a 2-geodesic and $|\Gamma_2(v) \cap \Gamma(u) \cap \Gamma(w)| = 1$. Then $\Gamma \cong H(4, 2)$.

PROOF. Since Γ is 3-geodesic transitive and $|\Gamma_2(v) \cap \Gamma(u) \cap \Gamma(w)| = 1$, it follows that for every 2-geodesic (x, y, z), $|\Gamma_2(y) \cap \Gamma(x) \cap \Gamma(z)| = 1$. Suppose that $\Gamma(v) = \{u_1 = u, u_2 = w, u_3, u_4\}$. Then $|\Gamma_2(v) \cap \Gamma(u_i) \cap \Gamma(u_j)| = 1$ whenever $i \neq j$.

Suppose that $\Gamma_2(v) \cap \Gamma(u_1) = \{w_1, w_2, w_3\}$ and $\Gamma_2(v) \cap \Gamma(u_1) \cap \Gamma(u_2) = \{w_1\}$. Then $\{u_1, u_2\} \subseteq \Gamma(v) \cap \Gamma(w_1)$, and it follows that $|\Gamma(v) \cap \Gamma(w_2)| \ge 2$. Hence w_2 is adjacent to at least one of u_3, u_4 . Without loss of generality, assume that w_2 is adjacent to u_3 . Since $|\Gamma_2(v) \cap \Gamma(u_1) \cap \Gamma(u_j)| = 1$, where j = 2, 3, 4, it follows that w_3 is not adjacent to u_2 or u_3 . Since $|\Gamma(v) \cap \Gamma(w_3)| \ge 2$, it follows that w_3 is adjacent to u_4 . Moreover, $\Gamma(v) \cap \Gamma(w_1) = \{u_1, u_2\}$. It follows that $|\Gamma(x) \cap \Gamma(z)| = 2$ for every 2-geodesic (x, y, z).

Now suppose that $\Gamma_2(v) \cap \Gamma(u_2) = \{w_1, w_4, w_5\}$. Since $|\Gamma_2(v) \cap \Gamma(u_2) \cap \Gamma(u_3)| = 1$ and u_3, w_1 are not adjacent, it follows that u_3 is adjacent to exactly one of w_4, w_5 . Suppose that u_3 is adjacent to w_4 . By noting that $|\Gamma_2(v) \cap \Gamma(u_2) \cap \Gamma(u_4)| = 1$, $|\Gamma(v) \cap \Gamma(w_j)| = 2$ where j = 1, 2, 3, 4, 5, $\Gamma(v) \cap \Gamma(w_1) = \{u_1, u_2\}$ and $\Gamma(v) \cap \Gamma(w_4) = \{u_2, u_3\}$, we see that u_4 is adjacent to w_5 .

Assume that $\Gamma_2(v) \cap \Gamma(u_3) = \{w_2, w_4, w_6\}$. Since $|\Gamma_2(v) \cap \Gamma(u_3) \cap \Gamma(u_4)| = 1$ and u_4 is not adjacent to w_2, w_4 , it follows that u_4 is adjacent to w_6 . Thus $\Gamma_2(v) = \{w_1, w_2, w_3, w_4, w_5, w_6\}$.

If w_1 is adjacent to one of w_2, w_3, w_4, w_5 , then girth(Γ) = 3, which contradicts the assumption girth(Γ) = 4. Suppose that w_1 is adjacent to w_6 . Then since Γ is 3-geodesic transitive, w_2 is adjacent to one of w_3, w_4, w_5, w_6 . If w_2 is adjacent to w_6 , then diam(Γ) = 2 and Γ is distance transitive of 11 vertices. By inspecting candidates from [2, page 222], such a graph does not exist, giving a contradiction. If w_2 is adjacent to w_3 or w_4 , then (w_2, w_3, u_1) or (w_2, w_4, u_3) is a triangle, which contradicts the assumption that girth(Γ) = 4. Thus w_2 is adjacent to w_5 . Similarly, w_3 is adjacent to w_4 . Thus $\Gamma(u_2) = \{v, w_1, w_4, w_5\} \subseteq \Gamma(u_1) \cup \Gamma_2(u_1)$, and so $\Gamma(u_2) \cap \Gamma_3(u_1) = \emptyset$. Since $u_2 \in \Gamma_2(u_1)$ and Γ is 3-geodesic transitive, it follows that diam(Γ) = 2 and Γ is distance transitive with 11 vertices. By inspecting the graphs of [2, page 222], such a graph does not exist, giving a contradiction. Thus $\Gamma(w_1) \cap \Gamma_2(v) = \emptyset$, so $|\Gamma(w_1) \cap \Gamma_3(v)| = 2$.

Now suppose that $\Gamma_3(v) \cap \Gamma(w_1) = \{r_1, r_2\}$. Then $\Gamma(w_1) = \{u_1, u_2, r_1, r_2\}$. Since (w_1, u_1, w_2) is a 2-geodesic and $|\Gamma(w_1) \cap \Gamma(w_2)| = 2$, and since w_2 is not adjacent to u_2 , it follows that w_2 is adjacent to exactly one of r_1, r_2 . Without loss of generality, suppose that w_2 is adjacent to r_1 . Similarly, each of w_3, w_4, w_5 , is also adjacent to exactly one of r_1, r_2 . Thus $\{w_1, w_2, w_3, w_4, w_5\} \subseteq \Gamma_2(v) \cap [\Gamma(r_1) \cap \Gamma(r_2)]$. By the 3-geodesic transitivity, $|\Gamma_2(v) \cap \Gamma(r_1)| \ge 3$. If $|\Gamma_2(v) \cap \Gamma(r_1)| = 4$, then Γ is geodesic transitive with diameter 3 and 14 vertices. Hence Γ is distance transitive. By inspecting the graphs of [2, page 222], only the incidence graph of 2-(7, 4, 2) design has 14 vertices and diameter 3. However, by Lemma 3.6, this graph is not 3-geodesic transitive, giving a contradiction. Hence $|\Gamma_2(v) \cap \Gamma(r_1)| = 3$, and so $|\Gamma_4(v) \cap \Gamma(r_1)| = 1$ or 0. If $|\Gamma_4(v) \cap \Gamma(r_1)| = 0$, then Γ is geodesic transitive of diameter 3, with 15 vertices and intersection array (4, 3, 2; 1, 2, 3). By checking the distance transitive graphs of valency 4 of [2, page 222], such a graph does not exist. If $|\Gamma_4(v) \cap \Gamma(r_1)| = 1$, then by Lemma 3.1, Γ is geodesic transitive, and so is distance transitive. In particular, a part of its intersection array is $(4, 3, 2, 1, \ldots; 1, 2, 3, \ldots)$. Checking the distance transitive graphs of valency 4 of [2, page 222], only H(4, 2) has such a property. Further, it follows from Lemma 2.1 that H(4, 2) is also geodesic transitive.

The proof of Theorem 1.3 follows from Lemmas 3.2, 3.3, 3.5 and 3.7.

References

- B. Alspach, M. Conder, D. Marušič and M. Y. Xu, 'A classification of 2-arc-transitive circulants', J. Algebraic Combin. 5 (1996), 83–86.
- [2] A. E. Brouwer, A. M. Cohen and A. Neumaier, *Distance-Regular Graphs* (Springer, Berlin, 1989).
- [3] A. Devillers, W. Jin, C. H. Li and C. E. Praeger, 'Local 2-geodesic transitivity and clique graphs', J. Combin. Theory Ser. A 120 (2013), 500–508.
- [4] A. Devillers, W. Jin, C. H. Li and C. E. Praeger, 'Line graphs and geodesic transitivity', Ars Math. Contemp. 6 (2013), 13–20.
- [5] A. Devillers, W. Jin, C. H. Li and C. E. Praeger, 'On normal 2-geodesic transitive Cayley graphs', J. Algebraic. Combin. 39 (2014), 903–918.
- [6] J. D. Dixon and B. Mortimer, *Permutation Groups* (Springer, New York, 1996).
- [7] A. A. Ivanov and C. E. Praeger, 'On finite affine 2-arc transitive graphs', *European J. Combin.* 14 (1993), 421–444.
- [8] C. H. Li and J. M. Pan, 'Finite 2-arc-transitive abelian Cayley graphs', *European J. Combin.* 29 (2008), 148–158.

W. Jin

- [9] C. E. Praeger, 'An O'Nan-Scott theorem for finite quasiprimitive permutation groups and an application to 2-arc transitive graphs', J. London Math. Soc. 47(2) (1993), 227–239.
- [10] W. T. Tutte, 'A family of cubical graphs', Proc. Cambridge Philos. Soc. 43 (1947), 459–474.
- [11] W. T. Tutte, 'On the symmetry of cubic graphs', *Canad. J. Math.* **11** (1959), 621–624.
- [12] R. Weiss, 'The non-existence of 8-transitive graphs', Combinatorica 1 (1981), 309–311.

WEI JIN, School of Statistics, Research Center of Applied Statistics, Jiangxi University of Finance and Economics, Nanchang, Jiangxi 330013, PR China e-mail: jinwei@jxufe.edu.cn

190