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Abstract

In this paper, we first prove that for g ∈ {3, 4}, there are infinitely many 3-geodesic transitive but not 3-arc
transitive graphs of girth g with arbitrarily large diameter and valency. Then we classify the family of
3-geodesic transitive but not 3-arc transitive graphs of valency 3 and those of valency 4 and girth 4.
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1. Introduction

In this paper, all graphs are finite, simple and undirected. A geodesic from a vertex
u to a vertex v in a graph Γ is one of the shortest paths from u to v in Γ, and this
geodesic is called an s-geodesic if the distance between u and v is s. Then Γ is said
to be s-geodesic transitive if, for each 1 ≤ i ≤ s, the automorphism group Aut(Γ) is
transitive on the set of i-geodesics of Γ. For a positive integer s, an s-arc of Γ is a
sequence of vertices (v0, v1, . . . , vs) in Γ such that vi, vi+1 are adjacent and v j−1 , v j+1
where 0 ≤ i ≤ s − 1 and 1 ≤ j ≤ s − 1. In particular, 1-arcs are called arcs. Then Γ

is said to be s-arc transitive if, for each i ≤ s, the group Aut(Γ) is transitive on the
set of i-arcs of Γ. Thus if a graph is s-geodesic transitive (s-arc transitive), then it is
t-geodesic transitive (t-arc transitive) for each t ≤ s.

Clearly, every 3-geodesic is a 3-arc, but some 3-arcs may not be 3-geodesics. If Γ

has girth 4 (the girth of Γ, denoted by girth(Γ), is the length of the shortest cycle in Γ),
then the 3-arcs contained in 4-cycles are not 3-geodesics. The graph in Figure 1 is the
Hamming graph H(3, 2), which is 3-geodesic transitive but not 3-arc transitive with
valency 3 and girth 4. Thus the family of 3-arc transitive graphs is properly contained
in the family of 3-geodesic transitive graphs.

The first remarkable result about 2-arc transitive graphs comes from Tutte [10, 11],
and this family of graphs has been studied extensively; see [1, 7, 8, 12]. The local
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Figure 1. H(3, 2).

structure of the family of 2-geodesic transitive graphs was determined in [3]. In [4], the
authors classified 2-geodesic transitive graphs of valency 4. Later, in [5], a reduction
theorem for the family of normal 2-geodesic transitive Cayley graphs was produced
and those which are complete multipartite graphs were also classified. In this paper,
we study the family of 3-geodesic transitive graphs, and the first theorem shows that
there exist geodesic transitive but not 3-arc transitive graphs with unbounded large
diameter and valency. (The diameter diam(Γ) of a connected graph Γ is the maximum
distance of u, v over all u, v ∈ V(Γ). If Γ is s-geodesic transitive with s = diam(Γ), then
Γ is called geodesic transitive.)

Theorem 1.1. For g ∈ {3,4}, there exist infinitely many geodesic transitive but not 3-arc
transitive graphs of girth g with arbitrarily large diameter and valency. In particular,
these graphs are 3-geodesic transitive but not 3-arc transitive.

Remark 1.2. Let Γ be a 3-geodesic transitive but not 3-arc transitive graph. Then
girth(Γ) ≤ 5. If girth(Γ) = 3, then Γ is not 2-arc transitive, and such graphs have been
investigated; see [3–5]. We suppose that Γ is 2-arc transitive, so girth(Γ) = 4 or 5.
If girth(Γ) = 5, then Γ is nonbipartite, and there is a characterisation of such graphs
in [9].

Our second theorem is a classification of the family of 3-geodesic transitive graphs
which are not 3-arc transitive of valency at most 4. Note that a 3-geodesic transitive
graph of valency 2 is a cycle and so is 3-arc transitive.

Theorem 1.3. Let Γ be a 3-geodesic transitive but not 3-arc transitive graph of valency
k. Suppose that girth(Γ) ≥ 4.

(1) If k = 3, then Γ is either H(3, 2) or the dodecahedron, and both are geodesic
transitive.

(2) If k = 4 and girth(Γ) = 4, then Γ is either H(4, 2) or the complement of the 2 × 5
grid, and both are geodesic transitive.

We do not have examples of 3-geodesic transitive but not 3-arc transitive graphs of
valency 4 with girth 5 at the time of writing, and we conjecture that there is no such
graph.
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2. Proof of Theorem 1.1

To facilitate the following discussion, we recall the definition of the Hamming
graph. The Hamming graph Γ = H(d, n) has vertex set ∆d = {(x1, . . . , xd) | xi ∈ ∆},
the cartesian product of d copies of ∆, where ∆ = {1, a, . . . , an−1}, d ≥ 2 and n ≥ 2.
Then two vertices v and v′ are adjacent if and only if they are different in exactly one
coordinate. Thus, if we suppose that |v − v′| is the number of different coordinates of
v and v′, then v and v′ are adjacent if and only if |v − v′| = 1. Moreover, v′ ∈ Γi(v) if
and only if |v − v′| = i, where 1 ≤ i ≤ diam(Γ) and Γi(v) is the set of vertices of Γ which
have distance i from v. The graph Γ has valency d(n − 1).

When n = 2 and d ≥ 2, the Hamming graph H(d, 2) is often called a d-cube
graph, see [2, pages 261–262]. If n = 2, then girth(H(d, n)) = 4; if n ≥ 3, then
girth(H(d, n)) = 3. In the following discussion, we always suppose that Hamming
graph H(d, n) and ∆ are as defined above.

A graph Γ is said to be G-geodesic transitive if, for each i ≤ diam(Γ), the group
G ≤ Aut(Γ) is transitive on the set of i-geodesics of Γ.

Lemma 2.1. Let Γ = H(d, n) with vertex set ∆d where d ≥ 2 and n ≥ 2. Let G = X o S d ≤

Aut(Γ) where X ≤ S n. If X acts 2-transitively on ∆, then Γ is G-geodesic transitive. In
particular, Γ is geodesic transitive.

Proof. Suppose that X acts 2-transitively on ∆. Then X acts primitively but not
regularly on ∆. It follows from [6, Lemma 2.7A] that G acts primitively and hence
transitively on V(Γ).

First, we prove that Γ is (G, 1)-geodesic transitive. Suppose that (v0, v1) is a 1-
geodesic of Γ. Since G acts transitively on V(Γ), we can assume that v0 = (1, 1, . . . , 1).
Since, for any two vertices u, u′ of Γ, u′ ∈ Γi(u) if and only if |u − u′| = i, that is, u
and u′ have exactly i different entries, it follows that v1 = (1, . . . , b, . . . , 1) for some
b ∈ ∆\{1}. Now since X acts 2-transitively on ∆, it follows that the stabiliser X1 acts
transitively on ∆\{1}, hence there exists σ ∈ X1 such that bσ = a. It follows that there
exists α ∈ Gv0 � X1 o S d such that vα1 = (1, . . . , b, . . . , 1)α = (a, 1, . . . , 1). Thus Γ is
(G, 1)-geodesic transitive.

Next, we prove that, for each j = 2, 3, . . . , d, whenever Γ is (G, j − 1)-geodesic
transitive, then Γ is (G, j)-geodesic transitive.

Let (v0, v1, . . . , v j−1, v j) be a j-geodesic of Γ where 2 ≤ j ≤ d. Suppose that Γ is
(G, j − 1)-geodesic transitive. Then we can fix a ( j − 1)-geodesic (v0, v1, . . . , v j−1)
such that v0 = (1, 1, . . . , 1), and for each i = 1, 2, . . . , j − 1, vi = (a, a, . . . , a, 1, . . . , 1)
where the first i entries are equal to a and the last d − i entries are equal to 1. Now since
v j ∈ Γ j(v0) ∩ Γ j−1(v1) ∩ · · · ∩ Γ1(v j−1) and since v j ∈ Γk(v) if and only if |v − v j| = k, it
follows that v j = (a, . . . , a, 1, . . . , x, . . . , 1) for some x ∈ ∆\{1}, where the first j − 1
entries are equal to a. Moreover, since X acts 2-transitively on {1, a, . . . , an−1}, X1

acts transitively on ∆\{1}. Since X1 o S d−( j−1) ≤ Gv0,...,v j−1 , it follows that there exists
γ ∈Gv0,...,v j−1 such that vγj = (a, . . . , a, 1, . . . , x, . . . , 1)γ = (a, . . . , a, a, 1, . . . , 1) where the
first j entries are equal to a, and the last d − j entries are equal to 1. Therefore, Γ is
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(G, j)-geodesic transitive. Finally, since diam(Γ) = d, it follows that Γ is G-geodesic
transitive, and so is also geodesic transitive. �

Proof of Theorem 1.1. Let Γ = H(d,n) be the Hamming graph with d ≥ 2,n ≥ 3. Then
Γ has girth 3, diameter d and valency d(n − 1). Thus Γ is not 3-arc transitive. Further,
by Lemma 2.1, Γ is geodesic transitive.

Let Γ = J(n, k) be the Johnson graph with 1 ≤ k < [n/2] where [n/2] is the integer
part of n/2. Then Γ has girth 3, diameter k and valency k(n − k). Thus Γ is not 2-
arc transitive, and so is not 3-arc transitive. Further, by Devillers et al. (‘On the
transitivities of graphs’, Proposition 2.1, submitted for publication), Γ is geodesic
transitive.

Let Γ = H(d, 2) with d ≥ 3. Then, girth(Γ) = 4 and Γ has both diameter and valency
d. Hence Γ is not 3-arc transitive. It follows from Lemma 2.1 that Γ is geodesic
transitive. �

3. Proof of Theorem 1.3
3.1. Valency 3

A graph Γ is said to be distance transitive if Aut(Γ) is transitive on the ordered
pairs of vertices at any given distance. Suppose that Γ is a distance transitive graph
of valency k and diameter d. Then the cells of the distance partition with respect
to u are orbits of Au where A := Aut(Γ), and every vertex in Γi(u) is adjacent to the
same number of other vertices in Γi−1(u), say ci. Similarly, every vertex in Γi(u)
is adjacent to the same number of other vertices in Γi+1(u), say bi. We denote by
(k, b1, . . . , bd−1; 1, c2, . . . , cd) the intersection array of Γ.

The distance from vertex u to vertex v is denoted by dΓ(u, v). We give a useful
lemma.

Lemma 3.1. Let Γ be an i-geodesic transitive graph where 1 ≤ i ≤ diam(Γ) − 1. Let u, v
be two vertices of Γ such that dΓ(u, v) = i. Suppose that |Γi+1(u) ∩ Γ(v)| = 1. Then Γ is
geodesic transitive and b j = 1 for each i ≤ j ≤ diam(Γ) − 1.

Proof. Let (u0 = u, u1, . . . , ui = v) be an i-geodesic of Γ. Since |Γi+1(u0) ∩ Γ(ui)| = 1,
it follows that bi = 1 and Γ is (i + 1)-geodesic transitive. Let j be an integer such
that i ≤ j ≤ diam(Γ) − 2. Suppose that bk = 1 for every i ≤ k ≤ j. Then Γ is ( j + 1)-
geodesic transitive. Let (u0, . . . ,u j+2) be a ( j + 2)-geodesic. Since Γ is ( j + 1)-geodesic
transitive, it follows that b j = |Γ j+1(u1) ∩ Γ(u j+1)|.

Suppose that x ∈ Γ j+2(u0)∩ Γ(u j+1). Then dΓ(x,u1) ≤ j + 1. If dΓ(x,u1) < j + 1, then
dΓ(x, u0) ≤ dΓ(x, u1) + 1 < j + 2, contradicting the assumption. Thus dΓ(x, u1) = j + 1,
that is, x ∈ Γ j+1(u1) ∩ Γ(u j+1). Thus Γ j+2(u0) ∩ Γ(u j+1) ⊆ Γ j+1(u1) ∩ Γ(u j+1), and hence
b j+1 = |Γ j+2(u0) ∩ Γ(u j+1)| ≤ |Γ j+1(u1) ∩ Γ(u j+1)| = b j = 1. Thus, Γ is ( j + 1)-geodesic
transitive. By induction, Γ is geodesic transitive. �

Lemma 3.2. Let Γ be a 3-geodesic transitive but not 3-arc transitive graph of valency 3.
Suppose that girth(Γ) ≥ 4. Then Γ is geodesic transitive, and Γ is H(3, 2) or the
dodecahedron.
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Proof. Since Γ is 3-geodesic transitive but not 3-arc transitive, it follows that
girth(Γ) = 4 or 5.

Let (u, v,w) be a 2-geodesic of Γ. Suppose first that girth(Γ) = 4. Then there are
six edges between Γ(u) and Γ2(u), and |Γ(u) ∩ Γ(w)| = 2 or 3. If |Γ(u) ∩ Γ(w)| = 3,
then Γ is isomorphic to the complete bipartite graph K3,3 which is 3-arc transitive,
a contradiction. Suppose that |Γ(u) ∩ Γ(w)| = 2. Then |Γ3(u) ∩ Γ(w)| = 1, and by
Lemma 3.1, Γ is geodesic transitive. Next assume that girth(Γ) = 5. Then |Γ(u) ∩
Γ(w)| = 1 and |Γ3(u) ∩ Γ(w)| = 0 or 1. If |Γ(u) ∩ Γ(w)| = 0, then Γ is geodesic transitive.
If |Γ(u) ∩ Γ(w)| = 1, then by Lemma 3.1, Γ is also geodesic transitive. Therefore,
Γ is distance transitive, and so Γ is one of the graphs listed in [2, pages 221–222,
Theorems 7.5.1 and 7.5.2].

Since Γ is 3-geodesic transitive, it follows that Γ has 3-geodesics and so the diameter
of Γ is at least 3. By inspecting the candidates in [2, pages 221–222, Theorems 7.5.1
and 7.5.2], Γ is either H(3, 2) or the dodecahedron. �

3.2. Valency 4

Lemma 3.3. Let Γ be a 3-geodesic transitive but not 3-arc transitive graph of valency 4.
Suppose that girth(Γ) = 4. Then |Γ2(v) ∩ Γ(u) ∩ Γ(w)| = 1 or 2, for each 2-geodesic
(u, v,w).

Proof. Suppose that Γ(v) = {u1, u2, u3, u4}. Since girth(Γ) = 4, it follows that any pair
of vertices in Γ(v) are nonadjacent, and 1 ≤ |Γ2(v) ∩ Γ(u1) ∩ Γ(u2)| ≤ 3. We will now
prove that |Γ2(v) ∩ Γ(u1) ∩ Γ(u2)| , 3.

Suppose to the contrary that |Γ2(v) ∩ Γ(u1) ∩ Γ(u2)| = 3. Since Γ is 3-geodesic
transitive, it follows that for any 2-geodesic (x, y, z) of Γ, |Γ2(y) ∩ Γ(x) ∩ Γ(z)| = 3.
Thus, |Γ2(v) ∩ Γ(u1) ∩ Γ(u3)| = |Γ2(v) ∩ Γ(u1) ∩ Γ(u4)| = 3.

Since the valency of Γ is 4, it follows that |Γ2(v) ∩ Γ(u1)| = 3. Thus Γ2(v) ∩
Γ(u1) = Γ2(v) ∩ Γ(u1) ∩ Γ(u2) = Γ2(v) ∩ Γ(u1) ∩ Γ(u3) = Γ2(v) ∩ Γ(u1) ∩ Γ(u4). Hence
Γ2(v) = Γ2(v) ∩ Γ(u1) and diam(Γ) = 2, contradicting the hypothesis that Γ contains 3-
geodesics. Therefore, |Γ2(v) ∩ Γ(u1) ∩ Γ(u2)| = 1 or 2. Since Γ is 3-geodesic transitive,
|Γ2(v) ∩ Γ(u) ∩ Γ(w)| = 1 or 2 for any 2-geodesic (u, v,w). �

Lemma 3.4. Let Γ be the complement of the 2 × (k + 1) grid. Then Γ is geodesic
transitive with diameter 3 and valency k.

Proof. By [2, page 222], the intersection array of Γ is (k, k − 1, 1; 1, k − 1, k), so its
valency is k and its diameter is 3. Note that Γ is antipodal and each antipodal block
has two vertices. The automorphism group of Γ is S 2 × S k+1. We reconstruct Γ in the
following way. Let V(Γ) = {(a1, 0), (a2, 0), . . . , (ak+1, 0), (a1, 1), (a2, 1), . . . , (ak+1, 1)},
and make two vertices (ai, 0), (a j, 1) adjacent if and only if i , j. It is clear that Γ

is vertex transitive. Let u = (a1, 0). Then Γ(u) = {(a2, 1), . . . , (ak+1, 1)}. As S k+1 is
k + 1 transitive on {a1, . . . , ak+1}, it follows that Γ is arc transitive. Let v = (a2, 1).
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Then Γ2(u) ∩ Γ(v) = {(a3, 0), (a4, 0), . . . , (ak+1, 0)}. As S k+1 is k + 1 transitive on
{a1, . . . , ak+1}, it follows that Au,v is transitive on Γ2(u) ∩ Γ(v), and so Γ is 2-geodesic
transitive. Finally, from its intersection array, Γ is geodesic transitive. �

Lemma 3.5. Let Γ be a 3-geodesic transitive but not 3-arc transitive graph of valency 4.
Suppose that girth(Γ) = 4. Let (u, v,w) be a 2-geodesic and |Γ2(v) ∩ Γ(u) ∩ Γ(w)| = 2.
Then Γ is geodesic transitive and Γ is the complement of the 2 × 5 grid.

Proof. Since girth(Γ) = 4, any pair of vertices of Γ(v) are nonadjacent. Since
|Γ2(v) ∩ Γ(u) ∩ Γ(w)| = 2 and v ∈ Γ(u) ∩ Γ(w), it follows that |Γ(u) ∩ Γ(w)| = 3, and
so |Γ3(u) ∩ Γ(w)| = 1, and by Lemma 3.1, Γ is geodesic transitive. Hence Γ is distance
transitive and Γ is one of the graphs in [2, Theorems 7.5.2 and 7.5.3]. By inspecting
these graphs, Γ is the complement of the 2 × 5 grid. �

Lemma 3.6. Let Γ be the incidence graph of the 2-(7, 4, 2) design (the complement of
the Fano plane). Then Γ is not 3-geodesic transitive.

Proof. By [2, page 222], Γ is distance transitive and its intersection array is
(4, 3, 2; 1, 2, 4). Hence it is arc transitive. Note that its automorphism group is
A � PGL(3, 2)) of order 168. Let (u, v,w) be a 2-geodesic. Then |Au| = 12, |Au,v| = 3
and |Au,v,w| = 1. However, |Γ3(u) ∩ Γ(w)| = 2, so Au,v,w is not transitive on Γ3(u) ∩ Γ(w),
that is, Γ is not 3-geodesic transitive. �

Lemma 3.7. Let Γ be a 3-geodesic transitive but not 3-arc transitive graph of valency 4.
Suppose that girth(Γ) = 4. Let (u, v,w) be a 2-geodesic and |Γ2(v) ∩ Γ(u) ∩ Γ(w)| = 1.
Then Γ � H(4, 2).

Proof. Since Γ is 3-geodesic transitive and |Γ2(v) ∩ Γ(u) ∩ Γ(w)| = 1, it follows that
for every 2-geodesic (x, y, z), |Γ2(y) ∩ Γ(x) ∩ Γ(z)| = 1. Suppose that Γ(v) = {u1 = u,
u2 = w, u3, u4}. Then |Γ2(v) ∩ Γ(ui) ∩ Γ(u j)| = 1 whenever i , j.

Suppose that Γ2(v) ∩ Γ(u1) = {w1,w2,w3} and Γ2(v) ∩ Γ(u1) ∩ Γ(u2) = {w1}. Then
{u1, u2} ⊆ Γ(v) ∩ Γ(w1), and it follows that |Γ(v) ∩ Γ(w2)| ≥ 2. Hence w2 is adjacent
to at least one of u3, u4. Without loss of generality, assume that w2 is adjacent to u3.
Since |Γ2(v) ∩ Γ(u1) ∩ Γ(u j)| = 1, where j = 2, 3, 4, it follows that w3 is not adjacent
to u2 or u3. Since |Γ(v) ∩ Γ(w3)| ≥ 2, it follows that w3 is adjacent to u4. Moreover,
Γ(v) ∩ Γ(w1) = {u1, u2}. It follows that |Γ(x) ∩ Γ(z)| = 2 for every 2-geodesic (x, y, z).

Now suppose that Γ2(v) ∩ Γ(u2) = {w1,w4,w5}. Since |Γ2(v) ∩ Γ(u2) ∩ Γ(u3)| = 1 and
u3,w1 are not adjacent, it follows that u3 is adjacent to exactly one of w4,w5. Suppose
that u3 is adjacent to w4. By noting that |Γ2(v) ∩ Γ(u2) ∩ Γ(u4)| = 1, |Γ(v) ∩ Γ(w j)| = 2
where j = 1, 2, 3, 4, 5, Γ(v) ∩ Γ(w1) = {u1, u2} and Γ(v) ∩ Γ(w4) = {u2, u3}, we see that
u4 is adjacent to w5.

Assume that Γ2(v) ∩ Γ(u3) = {w2,w4,w6}. Since |Γ2(v) ∩ Γ(u3) ∩ Γ(u4)| = 1 and
u4 is not adjacent to w2, w4, it follows that u4 is adjacent to w6. Thus Γ2(v) =

{w1,w2,w3,w4,w5,w6}.
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If w1 is adjacent to one of w2,w3,w4,w5, then girth(Γ) = 3, which contradicts the
assumption girth(Γ) = 4. Suppose that w1 is adjacent to w6. Then since Γ is 3-
geodesic transitive, w2 is adjacent to one of w3,w4,w5,w6. If w2 is adjacent to w6,
then diam(Γ) = 2 and Γ is distance transitive of 11 vertices. By inspecting candidates
from [2, page 222], such a graph does not exist, giving a contradiction. If w2 is
adjacent to w3 or w4, then (w2,w3, u1) or (w2,w4, u3) is a triangle, which contradicts
the assumption that girth(Γ) = 4. Thus w2 is adjacent to w5. Similarly, w3 is adjacent
to w4. Thus Γ(u2) = {v,w1,w4,w5} ⊆ Γ(u1) ∪ Γ2(u1), and so Γ(u2) ∩ Γ3(u1) = ∅. Since
u2 ∈ Γ2(u1) and Γ is 3-geodesic transitive, it follows that diam(Γ) = 2 and Γ is distance
transitive with 11 vertices. By inspecting the graphs of [2, page 222], such a graph
does not exist, giving a contradiction. Thus Γ(w1) ∩ Γ2(v) = ∅, so |Γ(w1) ∩ Γ3(v)| = 2.

Now suppose that Γ3(v) ∩ Γ(w1) = {r1, r2}. Then Γ(w1) = {u1, u2, r1, r2}. Since
(w1,u1,w2) is a 2-geodesic and |Γ(w1) ∩ Γ(w2)| = 2, and since w2 is not adjacent to u2, it
follows that w2 is adjacent to exactly one of r1, r2. Without loss of generality, suppose
that w2 is adjacent to r1. Similarly, each of w3,w4,w5, is also adjacent to exactly
one of r1, r2. Thus {w1,w2,w3,w4,w5} ⊆ Γ2(v) ∩ [Γ(r1) ∩ Γ(r2)]. By the 3-geodesic
transitivity, |Γ2(v) ∩ Γ(r1)| ≥ 3. If |Γ2(v) ∩ Γ(r1)| = 4, then Γ is geodesic transitive
with diameter 3 and 14 vertices. Hence Γ is distance transitive. By inspecting the
graphs of [2, page 222], only the incidence graph of 2-(7, 4, 2) design has 14 vertices
and diameter 3. However, by Lemma 3.6, this graph is not 3-geodesic transitive,
giving a contradiction. Hence |Γ2(v) ∩ Γ(r1)| = 3, and so |Γ4(v) ∩ Γ(r1)| = 1 or 0. If
|Γ4(v) ∩ Γ(r1)| = 0, then Γ is geodesic transitive of diameter 3, with 15 vertices and
intersection array (4,3,2; 1,2,3). By checking the distance transitive graphs of valency
4 of [2, page 222], such a graph does not exist. If |Γ4(v) ∩ Γ(r1)| = 1, then by Lemma
3.1, Γ is geodesic transitive, and so is distance transitive. In particular, a part of its
intersection array is (4, 3, 2, 1, . . . ; 1, 2, 3, . . .). Checking the distance transitive graphs
of valency 4 of [2, page 222], only H(4, 2) has such a property. Further, it follows from
Lemma 2.1 that H(4, 2) is also geodesic transitive. �

The proof of Theorem 1.3 follows from Lemmas 3.2, 3.3, 3.5 and 3.7.
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