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BLOCKS OF CONSECUTIVE INTEGERS IN SUMSETS (A + B),

SHU-GUANG GUO AND YONG-GAO CHEN

Let A,B C {1,...,n}. For m € Z, let r4,8(m) be the cardinality of the set of
ordered pairs (e, b) € A x B such that a+b = m. For t > 1, denote by (A + B); the set
of the elements m for which 74 g(m) > ¢. In this paper we prove that for any subsets
A,B C{1,...,n} such that |A| +|B| > (4n+4t — 3)/3, the sumset (A + B); contains
a block of consecutive integers with the length at least |A|+|B| —2¢+ 1, and that (a)
for any two subsets A and B of {1,...,n} such that |A| + |B| > (4n)/3, there exists
an arithmetic progression of length n in A + B; (b) for any 2 < r < (4n — 1)/3, there
exist two subsets A and B of {1,...,n} with |4] + |B| = r such that any arithmetic
progression in A + B has the length at most (2n — 1)/3 + 1.

1. INTRODUCTION

Let G be an Abelian group written additively. For two subsets A and B of G, the
sumset and the restricted sumset of A and B are defined as

A+B={a+b:a€AbeB}, A¥B={a+b:a€ Abec B,a#b},

respectively. We abbreviate 24 = A+ A, 2 A = AF A, and we use the standard notation
|A| for the cardinality of the set A. For m € G, let r4 g(m) be the cardinality of the set
of ordered pairs (a, b) € A x B such that a +b=m. For t > 1, denote by (A + B), the
set of the elements m € A + B for which 74 g(m) > t. Obviously, (A+ B), = A+ B.

Pollard [7] first studied the sumset (A + B), and extended the well known Cauchy-
Davenport theorem by showing that for A, B C Z/pZ and ¢t < min([A|, [B[),

t

S (4 +B)| > min(tp, t(|A] +|B| - t)).
i=1
Caldeira and Dias da Silva gave in [2] an extension of the Pollard’s theorem to an arbitrary
field, and in [1] an analogue for restricted sums.
For a positive integer n, let [1,n] = {1,2,...,n}. Many problems in combinatorial
number theory have the following character: for a given arithmetic property P, find f(n)
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such that if A C [1,n] with |A| > f(n), then A has property P. For related research, one
may refer to (3, 4, 5, 6, 7, 9] and the references therein.

Lev {4] proved that if A C [1,n] with |4] > (2n + 3)/3 then 2" A contains a block of
at least 2|A| - 3 consecutive integers. In this paper, we study the blocks of consecutive
integers in (A + B), and prove the following results.

THEOREM 1. Let n,t be positive integers, and let A, B C [1,n] be such that |A]
+|B| 2 n+2t—1. Then (A + B), contains either a block of consecutive integers with
the length at least |A| + |B| — 2t + 1 or three blocks of consecutive integers with the
lengths of two blocks at least 2(]A| + |B| — n — 2t} + 3 and the length of one block at
least 2(|A| + |B| —n —t) + L.

THEOREM 2. Let n,t be positive integers. For any A,B C [1,n] such that |A]
+ |B| = (4n + 4t — 3)/3, the sumset (A + B), contains a block of consecutive integers
with the length at least |A| + |B| — 2t + 1.

Clearly, for a set A of integers, (A + A)> = 2" A, and the above result of Lev follows
from Theorem 2 immediately.

By our method we can construct the blocks of consecutive integers contained in
(A + B),. This allows us to prove the following theorem.

THEOREM 3. Let n,t be positive integers. For any A,B C [1,n] such that |A|
+ |B| = (4n + 4t — 4)/3, the sumset (A + B), contains a block of consecutive integers
with the length at least |A| + |B| — 2t + 1 unless

A=B=[1,(n+t-1)/3]U(2n~t+4)/3,n].

NOTE. It is clear that if A= B = {1,2,...,n}, then |(A+ B),| = |A| +|B| - 2t + 1. So
|A| + |B] — 2t +1 in Theorems 2 and 3 is best possible,

In the case when ¢ = 1, we have (A + B); = A+ B. By Theorems 2 and 3, we have
the following theorem.

THEOREM 4. For any subsets A and B of [1,n] such that |A| + |B| > 4n/3, there
exists an arithmetic progression of lengthn in A + B.

For any 2 € r € (4n—1)/3, the following theorem shows that there exist two subsets
A and B of [1,n] with |A| + |B] = r such that any arithmetic progression in A + B has
the length at most (2n — 1)/3 + 1.

THEOREM 5. For any 2 < r < (4n—1)/3, there exist two subsets A and B of [1,n]
with |A| + |B| = r such that any arithmetic progression in A+ B has the length at most
(JAl + |B])/2 +1.

2. LEMMAS

In this section we prove several lemmas, which will be used repeatedly in the proofs
of our theorems. For a set A of integers and an integer k¥ we write A + k for the set
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{a+k: a € A}. Moreover, these lemmas are of some independent interest and can be
applied in certain problems.

LEMMA 1. Let n,t be positive integers, and let A, B C [1,n] such that |A| + |B]|
2n+t. Then

[2n+1—-|A| - |B]+¢, |A|+|B|+1~1] C(A+ B).
PRrROOF: For n < k < |A|+ |B|+1-¢, by
|Al+|k-B|=|A|+|B{2k-1+t, AC[,k-1], k—BC[l,k-1],
we have |AN (k — B)| > t. Hence k € (A + B),.
For2n+1—-|A|—|Bl+t< k< n,let
Ai={a€A:a<k}, B ={beB:b<k}
Then |A;] 2 |A]| - (n—k+1) and |By| 2 |B|— (n— k+1). By
|Al|+|k—Bl|=|A1|+[Bll>|A|;+-|B|~2(n—k+1)>k—1+t,
A C,k-1], k~B, C[l,k-1)},
we have |4; N (k — By)| > t. Hence k € (4, + By), C (4 + B),.
Combining the above arguments, we have
[2n+1—|A| = |B|+t, |A|+|B|+1—t] C (A+ B).

This completes the proof. 0

LEMMA 2. Let A and B be two sets of integers, and let ., 8 be two integers such
that o < B. If [, B] N A| + |[a, 8N B| > B — o+ t, then o + f € (A+ B),.
PRrOOF: Since o+ 8 — ([, 8] A) C [e, B) and

|a+ﬂ— ([a,/}]nA)|+|[a,ﬁ]nB| =|la, BN A| + ||, BlNB| > B - + 1.
Then
|(@+ 6~ (281N 4)) (0 BN B)| > ¢~ 1.
Hence
a+pe ((,flNA+[0,f]NB), S (A+ B),.
This completes the proof of Lemma 2. 1]

LEMMA 3. Let n,t be positive integers, and let A, B C [1,n] such that |A| + |B|
> n+2t-1. Let m € [1,n] be the largest integer such that m ¢ (A + B), and
[ € [n+2,2n + 1] be the least integer such that | ¢ (4 + B),. Then

[l-1+2t—|A|—|B|,l+1-2t+]A|+|B| - 2n] C (A+ B),,
[m—1+2t+2n—|A] - |B|, m+1-2t+]|A|+|B|] C (A+ B).
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PROOF: Let Ay = {a € A:a<l-n}and B, = {be B:b<l—n} Since
l ¢ (A+ B), by Lemma 2 we have
tAﬁ[l-—n,nH+|Bﬂ[l—n,n]'$2n—l+t,
and so
|Ao| + |Ba] = [A| = (AN ([l = n,n]| + B| - |[BN [l = n,n}]
=§A(+IB|—(lAﬂ[l—n,n][+|Bﬁ[l—n,n]])
2 |Al+|Bj-(2n—1l+t)=]A|+|B|-2n+1-t
Forl—n<k<!+1-2t+|A|+|B|- 2n, we have

[Agl+ |k — Byl = |Ag| + |Bal 2 1Al + Bl - 2n+ -t 2 k+t—1,
Ay CLk-1], k—B,C[L,k~1]

Hence |42 N (k — By)| > t. Thus k € (A + B2), € (A + B)..
Fori—1+2t—|A| - |Bl|<k<l-nlet

Ay={a€A:a<k}, By={be B:b<k}.
Then
A3 C{1,k—~1], k—B3C[l,k~1],

IA3,+|B31= IAQ'—lAgﬂ[k,l—n—1]|+|B2l—IBQﬂ[k,l—Tl-l”
A+ Bl -2n+1-t=2(l-n—k)
> A+ Bl - l+2k-t.

It follows that
|As| + |k — Ba| = |As| + |Bs| Z |A|+ Bl - l+2k -t =2 k+t-1,

and so |A3 N (k ~ B3)| > t. Hence k € (A3 + Bs), C (4 + B),.
Combining the above arguments, we have

[[~1+2t—|4|-|B]|,l1+1-2t+]|A|+|B| - 2n] C (A+ B),.

Now, we define A’ =n+1— A, B’ =n+1— B and apply the already proved part
of Lemma 3 to A’ + B’ to conclude that

[2n+2-m~1+2t~|4|-|B,2n+2~m+1—-2t+|A|+|B| - 2n] C (A" + B")..
Therefore
[m—1+2t+2n~|A|-|B|, m+1—2t+|A|+|B|] C (A+ B):.

This completes the proof. 0

https://doi.org/10.1017/5000497270003450X Published online by Cambridge University Press


https://doi.org/10.1017/S000497270003450X

(5] Blocks of consecutive integers 287

3. PrOOFS OF THEOREMS

PRrROOF OF THEOREM 1: By Lemma 1, we have
[2n+1—|A| - |B|+t, |A|+|B|+1~t] C(A+ B),.

It is clear that n + 1 € (A + B);. Let m € [1,n] be the largest integer such that
m & (A+B), and | € [n+2,2n+ 1] be the least integer such that [ ¢ (A + B),. It follows
from Lemma 3 that

[[-1+2t—|A|=|B|,l+1-2t+|A]+|B| - 2n] C (4 + B),,
[m—1+2t+2n—|A|-|B,m+1-2t+|A]+|B|] C (A+ B),

and
[2n+1—|A| - |B|+t, |A|+|B]+1—-t]C[m+1, {-1C (A+B),.

Hm>10+1-2t+|A|+|B|~- 2n, then m — 1+ 2t + 2n — |A| — [B| > |. Hence
[l—=1+2t—|A|—|B|, {+1-2t+|A|+|B|-2n],[m+1,1~1] and [m—1+2t+2n—|4]
—|B|, m+ 1 — 2t + |A| + | B|] are disjoint from each other.

Ifm<1+1-2t+|A|+|B| — 2n, by the definition of m, we have m <[ -1+ 2t
— |A| — |B|. Hence

[[-1+2t—|A|-|B|,1-1] C(A+ B),.

This completes the proof of Theorem 1. 0
PRrooF OF THEOREM 2: Since (4n + 4t — 3)/3 < |A| + |B| £ 2n, it follows that
n 2 2t — 1, and so

4 4t -3 4t -3 4
fA|+|B|>ﬁ3—=n+”—t3—>n+2t—§.

Hence |A|+ |B| 2 n+2t - 1.
Let [ € [n+ 2, 2n + 1] be the least integer such that [ ¢ (A + B);. By Lemma 1 and
Lemma 3, we have | > |A| + |B|+ 2 —t, and

(1) [1-142t—|A|—|B|, I+1-2t+]A|+|B|-2n]| U [2n+1—|A|—-|B|+t, |-1] C (A+B)..
Since |A| + |B] 2 (4n + 4t — 3)/3, it follows that
l+1-2t+|Al+[B|-2n+122n+1-|A|—|B| +t.

Hence
[[-1+2t—|A|-|B|,{-1] C(A+ B),.

This completes the proof of Theorem 2. 1]
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PrOOF OF THEOREM 3: Since (4n + 4t — 4)/3 = |A| + |B| < 2n, it follows that
n>2t-2and3 | (n+t—1). If n = 2t—2, then |A|+|B| = 2n. Therefore A = B = [1,n],
(A4 B),=[n/2+2, 2n—n/2].

Clearly, Theorem 3 holds in this case.

In the case whenn > 2t — 1, by 3| (n + ¢ — 1) we have n > 2t + 1. It follows that
|A|+|B| 2 n+2t—1. Let | € [n+2,2n+ 1] be the least integer such that [ ¢ (A + B),.
By Lemma 1 and Lemma 3, we have [ > |A| + |B| + 2 —t, and

(1) [{—1+2t—|A|—|B|, I+1-2t+|A|+|B|-2n) U [2n+1—|A|-|B|+t, |~1] C (A+B),.

Since |A|+ |B| = (4n + 4t — 4)/3, we may denote n+t — 1 = 3u. Then |A| + |B| = 4u.
Case 1. [ > |A|+|B| +3 —t. Then

I+1-2t+|A|+|B|-2n+122n+ 1~ |A| - |B| +t.

Hence
[[—1+2t—|A|-|B|,l-1) C(A+B).

CasE 2. = |A}+|B|+2—t Thenl=4u+2—t and (1) becomes
t+1,2u—t+1JU2u-t+3,4u+1~1t] C (A+ B),.

We shall show that 2u — ¢t + 2 € (A + B),.
Since du+2—t=1¢ (A + B);, by Lemma 2 we have

[ANfu+1,3u+1—t]|+|BNu+1,3u+1—t]| <u—t+t=2u
By |A| + |B| = 4u we have
[An(1,u]| +|BN[1,4]| > 24,
and so [1, u] C A and [1, u] C B. Since
[AN[u—t+2,u)|+|BNu—t+2,u)|=20t-1)>(t-2)+t -1,

it follows from Lemma 2 that 2u — t + 2 € (A + B),;.
If2u—t+2¢ (A+B);,thenu+1¢ AUB,u+2¢ AUB, ..., 2u—t+1¢ AUB.
By |A| + |B| = 4u, we have

A=B=[Lu]URu—t+23u+1-t,

namely
A=B=[1,(n+t-1)/3]U[(2n —t + 4)/3,n].
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This contradicts the condition. Hence 2u — ¢t + 2 € (A + B),.
Combining the above arguments, we have

t+1,4u+1—t] C (A+ B),.

This completes the proof of Theorem 3. 0
PRrRooOr OF THEOREM 5: We use m to denote any positive integer. There are four
cases.

Case 1. r=4m. Let A=B=[1,m|U[n—m+ 1,n|. Then
(2) A+B=1[22m|U[n—m+2,n+m]U[2n — 2m +2,2n]|.

Suppose that A + B contains an arithmetic progression with the common difference d
and the length t > 2m + 2. By (2) we have

2m ~1 2m -1 2m -1
i+

<t<LK
2m+2<t < P 7 7

Hence d € 3. By r < (4n — 1)/3 we have n 2 3m + 1. Since each interval in (2) contains
2m — 1 integers, we have d 2 n—-3m+2 2 3. Thusd=3andn—-3m+2=3. So
t < [2n/3]+1 = 2m+1, a contradiction. Therefore, any arithmetic progression in A + B
has the length not exceeding 2m + 1.

Case 2. r=4m+1. Let A={1,m]U[n—m+1,n] and B = AU {n — m}. Then
(3) A+B={2,2m|U[n-m+1,n+m]U[2n —2m + 1, 2n].

By r < (4n — 1)/3 we have n > 3m + 1. Suppose that A + B contains an arithmetic
progression with the common difference d and the length t > 2m+2. By (3),n 2 3m+1
and t > 2m + 2, we have m 2 2 and

om — 1 2 2
AL W L L)

Im+2<t<
m+ d d d

Hence d < 3. Since each interval in (3) contains at most 2m integers, we haved > n—3m
+1>2 Thusd=2,3and n—3m+1=2,3. Ifd = 3, then t < [(2n—2)/3] +1 = 2m+1,
a contradiction. If d = 2, then, by d>n—-3m+12> 2, we have n-3m+1=2. By (3)
we have

A+ B=[2,2m]U[2m +2,4m + 1] U [4m + 3,6m + 2].

This implies that ¢t < 2m + 1, a contradiction. Therefore, any arithmetic progression in
A + B has the length not exceeding 2m + 1.

CASE 3. r=4m +2. Let A= B =[1,m]U[n —m,n]. Then

4) A+ B=[22m]U[n—-m+1,n+m]U[2n — 2m,2n].
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Suppose that A + B contains an arithmetic progression with the common difference d
and the length t > 2m + 3. By (4) we have

2m -1 2m 2m +1
1+ —+1+
a Tttt a

Hence d < 3. By r < (4n — 1)/3 we have n > 3m + 2. Since each interval in (4) contains
at most 2m + 1 integers, we have d 2 n—-3m > 2. Thusd = 2,3 and n — 3m = 2,3.

Ifd =3, thent < [(2n - 1)/3] + 1 <€ 2m + 2, a contradiction. If d = 2, then, by
d>2n—3m > 2, we have n — 3m = 2. By (4) we have

2m+3 £t <

+1,

A+ B =[2,2m]U [2m +3,4m + 2] U [4m + 4,6m + 4].

This implies that ¢ < 2m + 2, a contradiction. Therefore, any arithmetic progression in
A + B has the length not exceeding 2m + 2.

CASE4. r=4m+3. Let A=(l,m]Ju{n—m,n] and B= AU {n — m — 1}. Then
(5) A+B=1[2?2m|U[n—m,n+m|U[2n—2m — 1,2n].

Suppose that A 4+ B contains an arithmetic progression with the common difference d
and the lengtht > 2m + 3. By r < (dn—1)/3 we haven > 3m +3. By (5),t > 2m +3
and n 2> 3m + 3, we have m 2> 2 and

2m—1+1+2m+1+1+2m+2
d d d

Hence d < 3. Since each interval in (5) contains at most 2m + 2 integers, we have
d>n—-3m—-122 Thusd=2,3andn-3m-1=23 Ifd=3andn—-3m-1=2,
then ¢t < [(2n - 1)/3] +1 < 2m+ 2, a contradiction. If d=3 and n —3m — 1 = 3, then

2m+3 <t <

A+ B =[2,2m]U(2m +4,4m + 4] U [4m + 7,6m + 8]

and t € (dm+4)/3+1 < 2m+ 2, a contradiction. If d =2, then, by d > n—3m—1 > 2,
we have n — 3m — 1 = 2. By (5) we have

A+ B =[2,2m]U [2m +3,4m + 3] U [dm + 5,6m + 6].

This implies that t € 2m + 2, a contradiction. Therefore, any arithmetic progression in
A + B has the length not exceeding 2m + 2. This completes the proof of Theorem 3. 0
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