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BLOCKS OF CONSECUTIVE INTEGERS IN SUMSETS (A + B)t

SHU-GUANG G U O AND Y O N G - G A O C H E N

Let A,B C {1 , . . . , n}. For m G Z, let rAtB{m) be the cardinality of the set of
ordered pairs (a, b) 6 A x B such that a + b = m. For t ^ 1, denote by (A + B)t the set
of the elements m for which r^si'm) ^ t. In this paper we prove that for any subsets
A,B C { l , . . . ,n} such that |v4| + | 5 | ^ (4n + 4 t -3 ) /3 , the sumset (A + B)t contains
a block of consecutive integers with the length at least \A\ + \B\ — 2t +1, and that (a)
for any two subsets A and B of {1 , . . . , n} such that \A\ + \B\ ^ (4n)/3, there exists
an arithmetic progression of length n in A + B; (b) for any 2 $C r < (An — l)/3, there
exist two subsets A and B of {1, . . . , n} with \A\ + \B\ = r such that any arithmetic
progression in A + B has the length at most (2n — l)/3 + 1.

1. INTRODUCTION

Let G be an Abelian group written additively. For two subsets A and B of G, the
sumset and the restricted sumset of A and B are defined as

A + B = {a + b : a G A,6 € B}, A+B = {a + b : a € A,b £ B,a^ 6},

respectively. We abbreviate 2A = A + A, 2 M = A+A, and we use the standard notation
\A\ for the cardinality of the set A. For m £ G, let rAiB(m) be the cardinality of the set
of ordered pairs (a, b) € A x B such that a + b = m. For t ^ 1, denote by (A + B)t the
set of the elements m € A + B for which ^ ^ ( m ) ^ i. Obviously, (A + B)\ = A + B.

Pollard [7] first studied the sumset (A + B)t and extended the well known Cauchy-
Davenport theorem by showing that for A, B C Z/pZ and t < min(|A|, \B\),

B)t\ > min(«p, t(\A\ + \B\ - t)).

Caldeira and Dias da Silva gave in [2] an extension of the Pollard's theorem to an arbitrary
field, and in [1] an analogue for restricted sums.

For a positive integer n, let [1, n] = {1 ,2 , . . . , n} . Many problems in combinatorial
number theory have the following character: for a given arithmetic property P, find /(n)
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such that if A C [l,n] with \A\ > / (n) , then A has property P. For related research, one
may refer to [3, 4, 5, 6, 7, 9] and the references therein.

Lev [4] proved that if A C [1, n] with \A\ ^ (2n + 3)/3 then 2AA contains a block of
at least 2\A\ - 3 consecutive integers. In this paper, we study the blocks of consecutive
integers in (A + B)t and prove the following results.

THEOREM 1. Let n,t be positive integers, and let A, B C [l,n] be such that \A\
+ \B\ > n + 2t - 1. Then (A + B)t contains either a block of consecutive integers with
the length at least \A\ + \B\ — 2t + 1 or three blocks of consecutive integers with the
lengths of two blocks at least 2(\A\ + \B\ - n - 2t) + 3 and the length of one block at
least 2(\A\ + \B\ - n - t) + 1.

THEOREM 2 . Let n,t be positive integers. For any A,B C [l,n] such that \A\
+ \B\ ^ (An + At — 3)/3, the sumset (A + B)t contains a block of consecutive integers
with the length at least \A\ + \B\ - 2t + 1.

Clearly, for a set A of integers, (A + A)2 = 2AA, and the above result of Lev follows
from Theorem 2 immediately.

By our method we can construct the blocks of consecutive integers contained in
(A + B)t- This allows us to prove the following theorem.

THEOREM 3 . Let n,t be positive integers. For any A,B C [l,n] such that \A\
+ \B\ = (An + At — 4)/3, the sumset (A + B)t contains a block of consecutive integers
with the length at least \A\ + \B\ - 2t + I unless

A= B = [l,(n + t - l)/3] U [(2n - t + 4)/3, n].

NOTE. It is clear that if A = B = {1,2,.. . , n}, then |(,4 + B)t\ = \A\ + \B\ -2t + l. So
|.41 + \B\ - 2t + 1 in Theorems 2 and 3 is best possible.

In the case when t — 1, we have (A + B)i — A + B. By Theorems 2 and 3, we have
the following theorem.

THEOREM 4 . For any subsets A and B of [l,n] such that \A\ + \B\ ^ An/3, there
exists an arithmetic progression of length n in A + B.

For any 2 ^ r ^ (An- l ) /3 , the following theorem shows that there exist two subsets
A and B of [1, n] with \A\ + \B\ = r such that any arithmetic progression in A + B has
the length at most (2n - l ) /3 + 1.

THEOREM 5 . For any 2 ^r ^ (An-1)/3, there exist two subsets A and B of [1,n]
with \A\ + \B\=r such that any arithmetic progression in A + B has the length at most
(\A\ + \B\)/2 + l.

2. LEMMAS

In this section we prove several lemmas, which will be used repeatedly in the proofs
of our theorems. For a set A of integers and an integer k we write A + k for the set
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{a + k : a s A}. Moreover, these lemmas are of some independent interest and can be
applied in certain problems.

LEMMA 1 . Let n,t be positive integers, and let A,B C [l,n] such that \A\ + \B\
^n + t. Then

[2n + 1 - \A\ - \B\ + t, \A\ + \B\ + l-t]G(A + B)t.

PROOF: For n < k ^ \A\ + \B\ + 1 - t, by

\A\ + \ k - B \ = \A\ + \B\2 k-l + t, A C [ l , k - l ) , k-BC [ l , J f c - 1],

we h a v e \A C\(k-B)\ > t. H e n c e k€{A + B ) t .

F o r 2 n + 1 - \A\ - \ B \ + t ^ k ^ n , le t

. 4 ! = {a 6 A : a < k } , B x = {b € B : b < k } .

Then 1^1 ^ \A\ - {n - k + 1) and |£i| > \B\ - (n - k + 1). By

M , | + \k - BY\ = \AX\ + \B,\ 2\A\ + \B\-2{n-k+l)2k-l+t,

Ar C [l.jfc- 1], k- Bi C [ l , fe - 1],

we have \Ai n (fc - By)\ ^ t. Hence /c € (Ai + Bx)t C (A + B)t.

Combining the above arguments, we have

[ 2 n + 1 - \ A \ - \ B \ + t, \A\ + \ B \ + l-t]c{A + B ) t .

This completes the proof. D

LEMMA 2 . Let A and B be two sets of integers, and let a, ft be two integers such

that a ^0. If\[a,p]nA\ + \[a,P]DB\> P-a + t, then a + pG (A + B)t.

PROOF: Since <* + / ? - ( [ a , P ] n A ) C [a,0] and

a + 0- ([a,0]OA) +|[a,^]nB| = \[a,0] n A\ + \[a,0} n B\ > 0 - a + t.

Then

| (a + 0 - ([a, p) fl A)) n ([a, 0] n B) | > t - 1.

Hence
a + ^ € ([a,j8]rii4 + [a, /3]n5) tC (.4 + 5)( .

This completes the proof of Lemma 2. D

LEMMA 3 . Let n, t be positive integers, and let A,BC [l,n] such that \A\ + \B\

^ n + 2t - 1. Let m e [l,n] be the largest integer such that m g (A + B)t and

I e [n + 2,2n + 1] be the least integer such that I $ (A + B)t. Then

[l-l+2t-\A\- \B\, I + 1 - 2t + \A\ + \B\ - 2n] C(A + B)t,

[m-l + 2t + 2n-\A\- \B\, m + 1 - 2t + \A\ + \B\] C{A + B)t.
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PROOF: Let A2 = {a € A : a < I - n} and B2 = {b € B : b < I - n}. Since
I £ {A + B)t, by Lemma 2 we have

| 4 n [ Z - n , n ] | + | B n [ Z - n , n ] | ^ 2n - / + t,

and so

\A2\ + \B2\ = \A\- \An[l-n,n]\ + \B\- \BC\[l-n,n]\

= \A\ + \B\ - ( | 4 n [ l - n , n \ \ + \Bn[l-n,n]|)

> \A\ + \B\ -(2n-l + t) = \A\ + \B\-2n + l-t.

For I - n < k < I + 1 - 2t + \A\ + \B\ - 2n, we have

IA2J + |fc - S 2 | = \A2\ + \B2\ 2 \A\ + \B\ - 2n + I - t ^ k + t - 1,

i 4 2 C [ l , t - l ] , k-B2C [l,k-l].

Hence \A2 D (k - B2)\ ^ t. Thus /fc € (>12 + B2)t C (4 + 5 ) t .

For / - 1 + 2t - |/1| - |B | ^ k ^ / - n, let

i43 = {a G ̂  : a < jfc}, B3 = {6 6 5 : 6 < k).

Then

A s C [ l , i - l ] , A - 5 3 C [ 1 , * - 1 ] ,

|A3| + |B3 | = \A2\ - \A2 n [k,l - n - 1]| + | 5 2 | - \B2 n [*,Z - n - 1]|

^ |A| + \B\ - 2n + I - t - 2(Z - n - jfc)

^ \A\ + \B\ - Z + 2k - t.

It follows that

\A3\ + |fc - B3 | = |A3| + |S 3 | ^ |i4| + \B\ - I + 2k - t > k + t - 1,

a n d s o \ A 3 C\(k- B 3 ) \ ^ t. H e n c e k € (A3 + B 3 ) t Q ( A + B ) t .

Combining the above arguments, we have

[ l - l + 2 t - \ A \ - \ B \ , l + l - 2 t + \ A \ + \ B \ - 2n] C ( A + B ) t .

Now, we define A' = n + 1 — A, B'=n+l — B and apply the already proved part
of Lemma 3 to A' + B' to conclude that

[2n + 2 - m - 1 + 2* - \A\ - | 5 | , 2n + 2 - m + 1 - 2t + \A\ + \B\ - 2n] C {A1 + B')t.

Therefore

[m-l+2t + 2n-\A\- \B\, m+l-2t+\A\ + \B\) C (A + B)t.

This completes the proof. D
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3. P R O O F S O F T H E O R E M S

P R O O F O F T H E O R E M 1: By Lemma 1, we have

[2n + 1 - \ A \ - \ B \ + t, \A\ + \ B \ + l-t]C(A + B ) t .

It is clear that n + 1 6 (A + B)t. Let m 6 [l,n] be the largest integer such that
m i {A + B)t and I e [n + 2,2n+l] be the least integer such that I $. (A + B)t. It follows
from Lemma 3 that

[l-l + 2t-\A\- \B\, l + l - 2 t + \A\ + \B\- 2n] C (A + B)t,

[m - 1 + 2t + 2n - \A\ - \B\, m + l-2t+\A\ + \B\] Q(A + B)t

and

[2n + 1 - \A\ - \B\ + t, \A\ + \B\ + 1 - t] C [m + 1, / - l] C (A + fl)t.

If m > I + 1 - 2t + \A\ + \B\ - 2n, then m - 1 + 2t + 2n - \A\ - \B\ > I. Hence

[Z-l + 2t-|i4|- |B|, Z + l -2t + |i4| + |B|-2n],[m+l,i-l]and [m-l + 2t + 2n-\A\

- \B\, m + I - 2t + \A\ + \B\] are disjoint from each other.

If m ^ / + 1 - 2t + \A\ + \B\ - 2n, by the definition of m, we have rn < I - I +2t

- \A\ - \B\. Hence

[l-l + 2t-\A\- \B\, 1-1}C(A + B)t.

This completes the proof of Theorem 1. D

PROOF OF THEOREM 2: Since (An + At - 3)/3 ^ \A\ + \B\ ^ 2n, it follows that
n ^ 2t - 1, and so

. .. .„ . 4n + 4 t - 3 n + At-3 A
\A\ + \B\ > = n + ^ n + 2t - - .

Hence |.4| + \B\ ^ n + 2t - 1.

Let i € [n + 2,2n + 1] be the least integer such that I g (A + B)t- By Lemma 1 and
Lemma 3, we have I ̂  \A\ + \B\ + 2 - t, and

(1) [/-l+2t-|A|-|B|, /+l-2t+|A| + |B|-2n]u[2n+l-|A|-|fl|+«, l-l] C (A+B)t.

Since \A\ + \B\ ^ (An + At - 3)/3, it follows that

l + l-2t+\A\ + \B\-2n + 1^2n+l-\A\-\B\+ t.

Hence
[ l - l + 2 t - \ A \ - \ B \ , 1-1]C(A + B ) t .

This completes the proof of Theorem 2.
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P R O O F OF T H E O R E M 3: Since (An + At - 4)/3 = \A\ + \B\ ^ 2n, it follows that
n ^ 2 < - 2 a n d 3 | (n + t-l). If n = 2t-2, then \A\ + \B\ = 2n. Therefore A = B = [l,n],

{A + B)t = [n/2 + 2, 2n - n/2 ].

Clearly, Theorem 3 holds in this case.

In the case when n ^ 2t - 1, by 3 | (n + t - 1) we have n ^ 2t + 1. It follows that
|i4| + | 5 | ^ n + 2 t - 1. Let I € [n + 2 , 2 n + l ] be the least integer such that / £ (yl + S)(.
By Lemma 1 and Lemma 3, we have / ^ \A\ + \B\ + 2 - t, and

(1) [l-l+2t-\A\-\B\, Z+l-2«+|,4| + |B|-2n]u[2n+l-|yl|- |fl |+«) l-l] C (A+B)t.

Since |i4| + \B\ = (An + At - 4)/3, we may denote n + t - 1 = 3u. Then \A\ + \B\ = Au.

C A S E 1. I ^ \A\ + \B\+3-t. Then

Z + 1 - 2t + \A\ + \B\ - 2re + 1 ^ 2n + 1 - \A\ - |B | + t.

Hence

[/ - 1 + 2t - \A\ - \ B \ , 1-\]C(A + B ) t .

C A S E 2. l = \A\ + \B\ + 2- t. Then / = Au + 2 - t and (1) becomes

[* + 1, 2u - i + 1] U [2u - t + 3, 4u + 1 - t] C (^ + S ) t .

We shall show that 2u - t + 2 e (A + B)t.

Since Au + 2 — t = I ^ (A + B)t, by Lemma 2 we have

\An[u + l,3u+l -t]\ + \Bn[u + l,3u + l-t]\ ^ 2u-t + t = 2u.

By |>1| + \B\ = Au we have

| ^ n [ i , « ] | + | 5 n [ i , « ] | ^2u,

and so [1, u] C yl and [1, u] C 5 . Since

D [ u - t + 2,u]| = 2 ( t - 1) > (t-2) + t - 1,

it follows from Lemma 2 that 2u - i + 2 e (A + S) t_i .

If 2u - 1 + 2 £ (A + B)u then u + l $ A\JB,u + 2 $ A\JB, ... ,2u-t+l $ A\JB.

By |J4| + | 5 | = Au, we have

/I = B = [1, u] U [2u - t + 2,3u + 1 - t],

namely
^ = B = [l, (n + t - l)/3] U [(2n - t + 4)/3, n].
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This contradicts the condition. Hence 2u — t + 2 G (A + B)t-

Combining the above arguments, we have

[i + l , 4 u + l -t] C (A + B)t.

This completes the proof of Theorem 3. D

PROOF O F T H E O R E M 5: We use m to denote any positive integer. There are four
cases.

C A S E 1. r = 4m. Let A = B = [1, m] U [n - m + 1, n]. Then

(2) A + B = [2, 2m] U [n - m + 2, n + m] U [2n - 2m + 2, 2n}.

Suppose that A + B contains an arithmetic progression with the common difference d
and the length t ^ 2m + 2. By (2) we have

2m - 1 2m - 1 2m - 1
2m + 2 sC t ^ — + 1 + — + 1 + — + 1.

d a d

Hence d ^ 3. By r ^ (4n — l ) /3 we have n ^ 3m + 1. Since each interval in (2) contains
2m - 1 integers, we have d ^ n - 3m + 2 > 3. Thus d = 3 and n — 3m + 2 = 3. So
t ^ [2n/3] + 1 = 2m + 1, a contradiction. Therefore, any arithmetic progression in A + B
has the length not exceeding 2m + 1.

CASE 2. r = 4m + 1. Let A — [1, m] U [n - m + 1, n] and B = A U {n - m}. Then

(3) A + B = [2, 2m] U [n - m + 1, n + m] U [2n - 2m + 1,2n].

By r ^ (4n — l) /3 we have n ^ 3m + 1. Suppose that A + B contains an arithmetic
progression with the common difference d and the length t ^ 2m+ 2. By (3), n ^ 3m +1
and t ^ 2m + 2, we have m ^ 2 and

2m - 1 2m 2m
2m + 2 ^ t ^ ; h l + —r + l + —r + 1-

a d d
Hence d ^ 3. Since each interval in (3) contains at most 2m integers, we have d ^ n - 3 m
+ 1 > 2. Thus d = 2,3 and n - 3 m + l = 2,3. Ifd = 3, then* ^ [ (2n -2 ) /3 ]+ l = 2m + l,
a contradiction. If d — 2, then, by d ^ n - 3m + 1 ^ 2, we have n - 3m + 1 = 2. By (3)
we have

A + B = [2,2m] U [2m + 2,4m + 1] U [4m + 3,6m + 2].

This implies that t ^ 2m + 1, a contradiction. Therefore, any arithmetic progression in
A + B has the length not exceeding 2m + 1.

CASE 3. r = Am + 2. Let A = B = [1, m] U [n - m, n]. Then

(4) /I + B = [2,2m] U [n - m + 1, n + m] U [2n - 2m, 2n].
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Suppose that A + B contains an arithmetic progression with the common difference d
and the length t ^ 2m + 3. By (4) we have

„ ^ ^ 2m - 1 , 2m 2m + 1
2m + 3^t^ — + 1 + — + 1 + — + l.

a a a
Hence d ^ 3. By r ^ {An — l ) /3 we have n ^ 3ro + 2. Since each interval in (4) contains
at most 2m + 1 integers, we have d ^ n - 3m ^ 2. Thus d = 2,3 and n - 3m = 2,3.
If d = 3, then t ^ [(2n - l)/3] + 1 ^ 2m + 2, a contradiction. If d = 2, then, by
d ^ n — 3m ^ 2, we have n - 3m = 2. By (4) we have

A + B = [2,2m] U [2m + 3,4m + 2] U [4m + 4,6m + 4].

This implies that t ^ 2m + 2, a contradiction. Therefore, any arithmetic progression in
A + B has the length not exceeding 2m + 2.

CASE 4. r = 4m+ 3. Let A = [l,m]u[n-m,n] and B = Au{n-m- 1}. Then

(5) A + B = [2,2m] U [n - m, n + m] U [2n - 2m - 1, 2n].

Suppose that A + B contains an arithmetic progression with the common difference d
and the length t ^ 2m + 3. By r ^ (4n - l)/3 we have n ^ 3m + 3. By (5), t ^ 2m + 3
and n ^ 3m + 3, we have m ^ 2 and

2m - 1 2m + 1 2m + 2
2m + 3 ^ t ^ — - — + 1 + — - — + 1 + — + 1.

d a d

Hence d < 3. Since each interval in (5) contains at most 2m + 2 integers, we have
O n - 3 m - 1 ^ 2 . Thus d = 2,3 and n - 3m - 1 = 2,3. If d - 3 and n - 3m - 1 = 2,
then t ^ [(2n - l)/3] + 1 < 2m + 2, a contradiction. If rf = 3 and n - 3m - 1 = 3, then

A + 5 = [2,2m] U [2m + 4,4m + 4] U [4m + 7,6m + 8]

and t ^ (4m + 4)/3 + 1 ^ 2m + 2, a contradiction. If d - 2, then, by d ^ n - 3m - 1 ^ 2,
we have n — 3m —1 = 2. By (5) we have

A + B = [2,2m] U [2m + 3,4m + 3] U [4m + 5,6m + 6].

This implies that t ^ 2m + 2, a contradiction. Therefore, any arithmetic progression in
A + B has the length not exceeding 2m +2. This completes the proof of Theorem 5. U
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