BLOCKS OF CONSECUTIVE INTEGERS IN SUMSETS $(A+B)_{t}$

Shu-Guang Guo and Yong-Gao Chen

Let $A, B \subseteq\{1, \ldots, n\}$. For $m \in \mathbf{Z}$, let $r_{A, B}(m)$ be the cardinality of the set of ordered pairs $(a, b) \in A \times B$ such that $a+b=m$. For $t \geqslant 1$, denote by $(A+B)_{t}$ the set of the elements m for which $r_{A, B}(m) \geqslant t$. In this paper we prove that for any subsets $A, B \subseteq\{1, \ldots, n\}$ such that $|A|+|B| \geqslant(4 n+4 t-3) / 3$, the sumset $(A+B)_{t}$ contains a block of consecutive integers with the length at least $|A|+|B|-2 t+1$, and that (a) for any two subsets A and B of $\{1, \ldots, n\}$ such that $|A|+|B| \geqslant(4 n) / 3$, there exists an arithmetic progression of length n in $A+B$; (b) for any $2 \leqslant r \leqslant(4 n-1) / 3$, there exist two subsets A and B of $\{1, \ldots, n\}$ with $|A|+|B|=r$ such that any arithmetic progression in $A+B$ has the length at most $(2 n-1) / 3+1$.

1. Introduction

Let G be an Abelian group written additively. For two subsets A and B of G, the sumset and the restricted sumset of A and B are defined as

$$
A+B=\{a+b: a \in A, b \in B\}, \quad A \widehat{+} B=\{a+b: a \in A, b \in B, a \neq b\}
$$

respectively. We abbreviate $2 A=A+A, 2^{\wedge} A=A \widehat{+} A$, and we use the standard notation $|A|$ for the cardinality of the set A. For $m \in G$, let $r_{A, B}(m)$ be the cardinality of the set of ordered pairs $(a, b) \in A \times B$ such that $a+b=m$. For $t \geqslant 1$, denote by $(A+B)_{t}$ the set of the elements $m \in A+B$ for which $r_{A, B}(m) \geqslant t$. Obviously, $(A+B)_{1}=A+B$.

Pollard [7] first studied the sumset $(A+B)_{t}$ and extended the well known CauchyDavenport theorem by showing that for $A, B \subseteq \mathbf{Z} / p \mathbf{Z}$ and $t \leqslant \min (|A|,|B|)$,

$$
\sum_{i=1}^{t}\left|(A+B)_{i}\right| \geqslant \min (t p, t(|A|+|B|-t))
$$

Caldeira and Dias da Silva gave in [2] an extension of the Pollard's theorem to an arbitrary field, and in [1] an analogue for restricted sums.

For a positive integer n, let $[1, n]=\{1,2, \ldots, n\}$. Many problems in combinatorial number theory have the following character: for a given arithmetic property P, find $f(n)$

[^0]Copyright Clearance Centre, Inc. Serial-fee code: 0004-9727/04 \$A2.00+0.00.
such that if $A \subseteq[1, n]$ with $|A|>f(n)$, then A has property P. For related research, one may refer to $[\mathbf{3}, 4,5,6,7,9]$ and the references therein.

Lev [4] proved that if $A \subseteq[1, n]$ with $|A| \geqslant(2 n+3) / 3$ then $2^{\wedge} A$ contains a block of at least $2|A|-3$ consecutive integers. In this paper, we study the blocks of consecutive integers in $(A+B)_{t}$ and prove the following results.

Theorem 1. Let n, t be positive integers, and let $A, B \subseteq[1, n]$ be such that $|A|$ $+|B| \geqslant n+2 t-1$. Then $(A+B)_{t}$ contains either a block of consecutive integers with the length at least $|A|+|B|-2 t+1$ or three blocks of consecutive integers with the lengths of two blocks at least $2(|A|+|B|-n-2 t)+3$ and the length of one block at least $2(|A|+|B|-n-t)+1$.

Theorem 2. Let n, t be positive integers. For any $A, B \subseteq[1, n]$ such that $|A|$ $+|B| \geqslant(4 n+4 t-3) / 3$, the sumset $(A+B)_{t}$ contains a block of consecutive integers with the length at least $|A|+|B|-2 t+1$.

Clearly, for a set A of integers, $(A+A)_{2}=2^{\wedge} A$, and the above result of Lev follows from Theorem 2 immediately.

By our method we can construct the blocks of consecutive integers contained in $(A+B)_{t}$. This allows us to prove the following theorem.

ThEOREM 3. Let n, t be positive integers. For any $A, B \subseteq[1, n]$ such that $|A|$ $+|B|=(4 n+4 t-4) / 3$, the sumset $(A+B)_{t}$ contains a block of consecutive integers with the length at least $|A|+|B|-2 t+1$ unless

$$
A=B=[1,(n+t-1) / 3] \cup[(2 n-t+4) / 3, n]
$$

Note. It is clear that if $A=B=\{1,2, \ldots, n\}$, then $\left|(A+B)_{t}\right|=|A|+|B|-2 t+1$. So $|A|+|B|-2 t+1$ in Theorems 2 and 3 is best possible.

In the case when $t=1$, we have $(A+B)_{1}=A+B$. By Theorems 2 and 3 , we have the following theorem.

Theorem 4. For any subsets A and B of $[1, n]$ such that $|A|+|B| \geqslant 4 n / 3$, there exists an arithmetic progression of length n in $A+B$.

For any $2 \leqslant r \leqslant(4 n-1) / 3$, the following theorem shows that there exist two subsets A and B of $[1, n]$ with $|A|+|B|=r$ such that any arithmetic progression in $A+B$ has the length at most $(2 n-1) / 3+1$.

THEOREM 5. For any $2 \leqslant r \leqslant(4 n-1) / 3$, there exist two subsets A and B of $[1, n]$ with $|A|+|B|=r$ such that any arithmetic progression in $A+B$ has the length at most $(|A|+|B|) / 2+1$.

2. Lemmas

In this section we prove several lemmas, which will be used repeatedly in the proofs of our theorems. For a set A of integers and an integer k we write $A+k$ for the set
$\{a+k: a \in A\}$. Moreover, these lemmas are of some independent interest and can be applied in certain problems.

Lemma 1. Let n, t be positive integers, and let $A, B \subseteq[1, n]$ such that $|A|+|B|$ $\geqslant n+t$. Then

$$
[2 n+1-|A|-|B|+t,|A|+|B|+1-t] \subseteq(A+B)_{t} .
$$

Proof: For $n<k \leqslant|A|+|B|+1-t$, by

$$
|A|+|k-B|=|A|+|B| \geqslant k-1+t, \quad A \subseteq[1, k-1], \quad k-B \subseteq[1, k-1],
$$

we have $|A \cap(k-B)| \geqslant t$. Hence $k \in(A+B)_{t}$.
For $2 n+1-|A|-|B|+t \leqslant k \leqslant n$, let

$$
A_{1}=\{a \in A: a<k\}, \quad B_{1}=\{b \in B: b<k\}
$$

Then $\left|A_{1}\right| \geqslant|A|-(n-k+1)$ and $\left|B_{1}\right| \geqslant|B|-(n-k+1)$. By

$$
\begin{gathered}
\left|A_{1}\right|+\left|k-B_{1}\right|=\left|A_{1}\right|+\left|B_{1}\right| \geqslant|A|+|B|-2(n-k+1) \geqslant k-1+t \\
A_{1} \subseteq[1, k-1], \quad k-B_{1} \subseteq[1, k-1]
\end{gathered}
$$

we have $\left|A_{1} \cap\left(k-B_{1}\right)\right| \geqslant t$. Hence $k \in\left(A_{1}+B_{1}\right)_{t} \subseteq(A+B)_{t}$.
Combining the above arguments, we have

$$
[2 n+1-|A|-|B|+t,|A|+|B|+1-t] \subseteq(A+B)_{t}
$$

This completes the proof.
Lemma 2. Let A and B be two sets of integers, and let α, β be two integers such that $\alpha \leqslant \beta$. If $|[\alpha, \beta] \cap A|+|[\alpha, \beta] \cap B|>\beta-\alpha+t$, then $\alpha+\beta \in(A+B)_{t}$.

Proof: Since $\alpha+\beta-([\alpha, \beta] \cap A) \subseteq[\alpha, \beta]$ and

$$
|\alpha+\beta-([\alpha, \beta] \cap A)|+|[\alpha, \beta] \cap B|=|[\alpha, \beta] \cap A|+|[\alpha, \beta] \cap B|>\beta-\alpha+t
$$

Then

$$
|(\alpha+\beta-([\alpha, \beta] \cap A)) \cap([\alpha, \beta] \cap B)|>t-1
$$

Hence

$$
\alpha+\beta \in([\alpha, \beta] \cap A+[\alpha, \beta] \cap B)_{t} \subseteq(A+B)_{t}
$$

This completes the proof of Lemma 2.
Lemma 3. Let n, t be positive integers, and let $A, B \subseteq[1, n]$ such that $|A|+|B|$ $\geqslant n+2 t-1$. Let $m \in[1, n]$ be the largest integer such that $m \notin(A+B)_{t}$ and $l \in[n+2,2 n+1]$ be the least integer such that $l \notin(A+B)_{t}$. Then

$$
\begin{gathered}
{[l-1+2 t-|A|-|B|, l+1-2 t+|A|+|B|-2 n] \subseteq(A+B)_{t}} \\
{[m-1+2 t+2 n-|A|-|B|, m+1-2 t+|A|+|B|] \subseteq(A+B)_{t}}
\end{gathered}
$$

Proof: Let $A_{2}=\{a \in A: a<l-n\}$ and $B_{2}=\{b \in B: b<l-n\}$. Since $l \notin(A+B)_{t}$, by Lemma 2 we have

$$
|A \cap[l-n, n]|+|B \cap[l-n, n]| \leqslant 2 n-l+t
$$

and so

$$
\begin{aligned}
\left|A_{2}\right|+\left|B_{2}\right| & =|A|-|A \cap[l-n, n]|+|B|-|B \cap[l-n, n]| \\
& =|A|+|B|-(|A \cap[l-n, n]|+|B \cap[l-n, n]|) \\
& \geqslant|A|+|B|-(2 n-l+t)=|A|+|B|-2 n+l-t
\end{aligned}
$$

For $l-n \leqslant k \leqslant l+1-2 t+|A|+|B|-2 n$, we have

$$
\begin{gathered}
\left|A_{2}\right|+\left|k-B_{2}\right|=\left|A_{2}\right|+\left|B_{2}\right| \geqslant|A|+|B|-2 n+l-t \geqslant k+t-1 \\
A_{2} \subseteq[1, k-1], \quad k-B_{2} \subseteq[1, k-1]
\end{gathered}
$$

Hence $\left|A_{2} \cap\left(k-B_{2}\right)\right| \geqslant t$. Thus $k \in\left(A_{2}+B_{2}\right)_{t} \subseteq(A+B)_{t}$.
For $l-1+2 t-|A|-|B| \leqslant k \leqslant l-n$, let

$$
A_{3}=\{a \in A: a<k\}, \quad B_{3}=\{b \in B: b<k\}
$$

Then

$$
\begin{aligned}
& A_{3} \subseteq[1, k-1], \quad k-B_{3} \subseteq[1, k-1] \\
\left|A_{3}\right|+\left|B_{3}\right|= & \left|A_{2}\right|-\left|A_{2} \cap[k, l-n-1]\right|+\left|B_{2}\right|-\left|B_{2} \cap[k, l-n-1]\right| \\
\geqslant & |A|+|B|-2 n+l-t-2(l-n-k) \\
\geqslant & |A|+|B|-l+2 k-t
\end{aligned}
$$

It follows that

$$
\left|A_{3}\right|+\left|k-B_{3}\right|=\left|A_{3}\right|+\left|B_{3}\right| \geqslant|A|+|B|-l+2 k-t \geqslant k+t-1
$$

and so $\left|A_{3} \cap\left(k-B_{3}\right)\right| \geqslant t$. Hence $k \in\left(A_{3}+B_{3}\right)_{t} \subseteq(A+B)_{t}$.
Combining the above arguments, we have

$$
[l-1+2 t-|A|-|B|, l+1-2 t+|A|+|B|-2 n] \subseteq(A+B)_{t}
$$

Now, we define $A^{\prime}=n+1-A, B^{\prime}=n+1-B$ and apply the already proved part of Lemma 3 to $A^{\prime}+B^{\prime}$ to conclude that

$$
[2 n+2-m-1+2 t-|A|-|B|, 2 n+2-m+1-2 t+|A|+|B|-2 n] \subseteq\left(A^{\prime}+B^{\prime}\right)_{t}
$$

Therefore

$$
[m-1+2 t+2 n-|A|-|B|, m+1-2 t+|A|+|B|] \subseteq(A+B)_{t}
$$

This completes the proof.

3. Proofs of Theorems

Proof of Theorem 1: By Lemma 1, we have

$$
[2 n+1-|A|-|B|+t,|A|+|B|+1-t] \subseteq(A+B)_{t}
$$

It is clear that $n+1 \in(A+B)_{t}$. Let $m \in[1, n]$ be the largest integer such that $m \notin(A+B)_{t}$ and $l \in[n+2,2 n+1]$ be the least integer such that $l \notin(A+B)_{t}$. It follows from Lemma 3 that

$$
\begin{gathered}
{[l-1+2 t-|A|-|B|, l+1-2 t+|A|+|B|-2 n] \subseteq(A+B)_{t}} \\
{[m-1+2 t+2 n-|A|-|B|, m+1-2 t+|A|+|B|] \subseteq(A+B)_{t}}
\end{gathered}
$$

and

$$
[2 n+1-|A|-|B|+t,|A|+|B|+1-t] \subseteq[m+1, l-1] \subseteq(A+B)_{t}
$$

If $m>l+1-2 t+|A|+|B|-2 n$, then $m-1+2 t+2 n-|A|-|B|>l$. Hence $[l-1+2 t-|A|-|B|, l+1-2 t+|A|+|B|-2 n],[m+1, l-1]$ and $[m-1+2 t+2 n-|A|$ $-|B|, m+1-2 t+|A|+|B|]$ are disjoint from each other.

If $m \leqslant l+1-2 t+|A|+|B|-2 n$, by the definition of m, we have $m<l-1+2 t$ $-|A|-|B|$. Hence

$$
[l-1+2 t-|A|-|B|, l-1] \subseteq(A+B)_{t}
$$

This completes the proof of Theorem 1.
Proof of Theorem 2: Since $(4 n+4 t-3) / 3 \leqslant|A|+|B| \leqslant 2 n$, it follows that $n \geqslant 2 t-1$, and so

$$
|A|+|B| \geqslant \frac{4 n+4 t-3}{3}=n+\frac{n+4 t-3}{3} \geqslant n+2 t-\frac{4}{3} .
$$

Hence $|A|+|B| \geqslant n+2 t-1$.
Let $l \in[n+2,2 n+1]$ be the least integer such that $l \notin(A+B)_{t}$. By Lemma 1 and Lemma 3, we have $l \geqslant|A|+|B|+2-t$, and
(1) $[l-1+2 t-|A|-|B|, l+1-2 t+|A|+|B|-2 n] \cup[2 n+1-|A|-|B|+t, l-1] \subseteq(A+B)_{t}$.

Since $|A|+|B| \geqslant(4 n+4 t-3) / 3$, it follows that

$$
l+1-2 t+|A|+|B|-2 n+1 \geqslant 2 n+1-|A|-|B|+t
$$

Hence

$$
[l-1+2 t-|A|-|B|, l-1] \subseteq(A+B)_{t}
$$

This completes the proof of Theorem 2.

Proof of Theorem 3: Since $(4 n+4 t-4) / 3=|A|+|B| \leqslant 2 n$, it follows that $n \geqslant 2 t-2$ and $3 \mid(n+t-1)$. If $n=2 t-2$, then $|A|+|B|=2 n$. Therefore $A=B=[1, n]$,

$$
(A+B)_{t}=[n / 2+2,2 n-n / 2]
$$

Clearly, Theorem 3 holds in this case.
In the case when $n \geqslant 2 t-1$, by $3 \mid(n+t-1)$ we have $n \geqslant 2 t+1$. It follows that $|A|+|B| \geqslant n+2 t-1$. Let $l \in[n+2,2 n+1]$ be the least integer such that $l \notin(A+B)_{t}$. By Lemma 1 and Lemma 3, we have $l \geqslant|A|+|B|+2-t$, and
(1) $[l-1+2 t-|A|-|B|, l+1-2 t+|A|+|B|-2 n] \cup[2 n+1-|A|-|B|+t, l-1] \subseteq(A+B)_{t}$.

Since $|A|+|B|=(4 n+4 t-4) / 3$, we may denote $n+t-1=3 u$. Then $|A|+|B|=4 u$. Case 1. $l \geqslant|A|+|B|+3-t$. Then

$$
l+1-2 t+|A|+|B|-2 n+1 \geqslant 2 n+1-|A|-|B|+t
$$

Hence

$$
[l-1+2 t-|A|-|B|, l-1] \subseteq(A+B)_{t}
$$

CASE 2. $l=|A|+|B|+2-t$. Then $l=4 u+2-t$ and (1) becomes

$$
[t+1,2 u-t+1] \cup[2 u-t+3,4 u+1-t] \subseteq(A+B)_{t}
$$

We shall show that $2 u-t+2 \in(A+B)_{t}$.
Since $4 u+2-t=l \notin(A+B)_{t}$, by Lemma 2 we have

$$
|A \cap[u+1,3 u+1-t]|+|B \cap[u+1,3 u+1-t]| \leqslant 2 u-t+t=2 u
$$

By $|A|+|B|=4 u$ we have

$$
|A \cap[1, u]|+|B \cap[1, u]| \geqslant 2 u
$$

and so $[1, u] \subseteq A$ and $[1, u] \subseteq B$. Since

$$
|A \cap[u-t+2, u]|+|B \cap[u-t+2, u]|=2(t-1)>(t-2)+t-1
$$

it follows from Lemma 2 that $2 u-t+2 \in(A+B)_{t-1}$.
If $2 u-t+2 \notin(A+B)_{t}$, then $u+1 \notin A \cup B, u+2 \notin A \cup B, \ldots, 2 u-t+1 \notin A \cup B$. By $|A|+|B|=4 u$, we have

$$
A=B=[1, u] \cup[2 u-t+2,3 u+1-t]
$$

namely

$$
A=B=[1,(n+t-1) / 3] \cup[(2 n-t+4) / 3, n]
$$

This contradicts the condition. Hence $2 u-t+2 \in(A+B)_{t}$.
Combining the above arguments, we have

$$
[t+1,4 u+1-t] \subseteq(A+B)_{t}
$$

This completes the proof of Theorem 3.
Proof of Theorem 5: We use m to denote any positive integer. There are four cases.

Case 1. $r=4 m$. Let $A=B=[1, m] \cup[n-m+1, n]$. Then

$$
\begin{equation*}
A+B=[2,2 m] \cup[n-m+2, n+m] \cup[2 n-2 m+2,2 n] \tag{2}
\end{equation*}
$$

Suppose that $A+B$ contains an arithmetic progression with the common difference d and the length $t \geqslant 2 m+2$. By (2) we have

$$
2 m+2 \leqslant t \leqslant \frac{2 m-1}{d}+1+\frac{2 m-1}{d}+1+\frac{2 m-1}{d}+1 .
$$

Hence $d \leqslant 3$. By $r \leqslant(4 n-1) / 3$ we have $n \geqslant 3 m+1$. Since each interval in (2) contains $2 m-1$ integers, we have $d \geqslant n-3 m+2 \geqslant 3$. Thus $d=3$ and $n-3 m+2=3$. So $t \leqslant[2 n / 3]+1=2 m+1$, a contradiction. Therefore, any arithmetic progression in $A+B$ has the length not exceeding $2 m+1$.

Case 2. $r=4 m+1$. Let $A=[1, m] \cup[n-m+1, n]$ and $B=A \cup\{n-m\}$. Then

$$
\begin{equation*}
A+B=[2,2 m] \cup[n-m+1, n+m] \cup[2 n-2 m+1,2 n] \tag{3}
\end{equation*}
$$

By $r \leqslant(4 n-1) / 3$ we have $n \geqslant 3 m+1$. Suppose that $A+B$ contains an arithmetic progression with the common difference d and the length $t \geqslant 2 m+2$. By (3), $n \geqslant 3 m+1$ and $t \geqslant 2 m+2$, we have $m \geqslant 2$ and

$$
2 m+2 \leqslant t \leqslant \frac{2 m-1}{d}+1+\frac{2 m}{d}+1+\frac{2 m}{d}+1
$$

Hence $d \leqslant 3$. Since each interval in (3) contains at most $2 m$ integers, we have $d \geqslant n-3 m$ $+1 \geqslant 2$. Thus $d=2,3$ and $n-3 m+1=2,3$. If $d=3$, then $t \leqslant[(2 n-2) / 3]+1=2 m+1$, a contradiction. If $d=2$, then, by $d \geqslant n-3 m+1 \geqslant 2$, we have $n-3 m+1=2$. By (3) we have

$$
A+B=[2,2 m] \cup[2 m+2,4 m+1] \cup[4 m+3,6 m+2]
$$

This implies that $t \leqslant 2 m+1$, a contradiction. Therefore, any arithmetic progression in $A+B$ has the length not exceeding $2 m+1$.

Case 3. $r=4 m+2$. Let $A=B=[1, m] \cup[n-m, n]$. Then

$$
\begin{equation*}
A+B=[2,2 m] \cup[n-m+1, n+m] \cup[2 n-2 m, 2 n] \tag{4}
\end{equation*}
$$

Suppose that $A+B$ contains an arithmetic progression with the common difference d and the length $t \geqslant 2 m+3$. By (4) we have

$$
2 m+3 \leqslant t \leqslant \frac{2 m-1}{d}+1+\frac{2 m}{d}+1+\frac{2 m+1}{d}+1
$$

Hence $d \leqslant 3$. By $r \leqslant(4 n-1) / 3$ we have $n \geqslant 3 m+2$. Since each interval in (4) contains at most $2 m+1$ integers, we have $d \geqslant n-3 m \geqslant 2$. Thus $d=2,3$ and $n-3 m=2,3$. If $d=3$, then $t \leqslant[(2 n-1) / 3]+1 \leqslant 2 m+2$, a contradiction. If $d=2$, then, by $d \geqslant n-3 m \geqslant 2$, we have $n-3 m=2$. By (4) we have

$$
A+B=[2,2 m] \cup[2 m+3,4 m+2] \cup[4 m+4,6 m+4] .
$$

This implies that $t \leqslant 2 m+2$, a contradiction. Therefore, any arithmetic progression in $A+B$ has the length not exceeding $2 m+2$.
CASE 4. $r=4 m+3$. Let $A=[1, m] \cup[n-m, n]$ and $B=A \cup\{n-m-1\}$. Then

$$
\begin{equation*}
A+B=[2,2 m] \cup[n-m, n+m] \cup[2 n-2 m-1,2 n] . \tag{5}
\end{equation*}
$$

Suppose that $A+B$ contains an arithmetic progression with the common difference d and the length $t \geqslant 2 m+3$. By $r \leqslant(4 n-1) / 3$ we have $n \geqslant 3 m+3$. By $(5), t \geqslant 2 m+3$ and $n \geqslant 3 m+3$, we have $m \geqslant 2$ and

$$
2 m+3 \leqslant t \leqslant \frac{2 m-1}{d}+1+\frac{2 m+1}{d}+1+\frac{2 m+2}{d}+1
$$

Hence $d \leqslant 3$. Since each interval in (5) contains at most $2 m+2$ integers, we have $d \geqslant n-3 m-1 \geqslant 2$. Thus $d=2,3$ and $n-3 m-1=2,3$. If $d=3$ and $n-3 m-1=2$, then $t \leqslant[(2 n-1) / 3]+1 \leqslant 2 m+2$, a contradiction. If $d=3$ and $n-3 m-1=3$, then

$$
A+B=[2,2 m] \cup[2 m+4,4 m+4] \cup[4 m+7,6 m+8]
$$

and $t \leqslant(4 m+4) / 3+1 \leqslant 2 m+2$, a contradiction. If $d=2$, then, by $d \geqslant n-3 m-1 \geqslant 2$, we have $n-3 m-1=2$. By (5) we have

$$
A+B=[2,2 m] \cup[2 m+3,4 m+3] \cup[4 m+5,6 m+6] .
$$

This implies that $t \leqslant 2 m+2$, a contradiction. Therefore, any arithmetic progression in $A+B$ has the length not exceeding $2 m+2$. This completes the proof of Theorem 5. 0

References

[1] C. Caldeira and J.A. Dias da Silva, 'A Pollard type result for restricted sums', J. Number Theory 72 (1998), 153-173.
[2] C. Caldeira and J.A. Dias da Silva, 'The invariant polynomials degrees of the Kronecker sum of two linear operators and additive theory', Linear Algebra Appl. 315 (2000), 125-138.
[3] Y.O. Hamidoune, 'The representation of some integers as a subset sum', Bull. London Math. Soc. 26 (1994), 557-563.
[4] V.F. Lev, 'On consecutive subset sums', Discrete Math. 187 (1998), 151-160.
[5] V.F. Lev, 'Blocks and progressions in subset sum sets', Acta Arith 106 (2003), 123-142.
[6] M.B. Nathanson, 'Sumsets containing k-free integers', in Number Theory (Ulm, 1987), Lecture Notes in Math. 1380 (Springer-Verlag, New York, 1989), pp. 179-184.
[7] M.B. Nathanson, Additive number theory: inverse problems and the geometry of sumsets, Graduate Texts in Math. 165 (Springer-Verlag, New York 1996).
[8] J.M. Pollard, 'A generalization of a theorem of Cauchy and Davenport', J. London Math. Soc. 8 (1974), 460-462.
[9] A. Sárközy, 'Finite addition theorems, II', J. Number Theory 48 (1994), 197-218.

Department of Mathematics
Southeast University
Nanjing 210096
Jiangsu
Peoples Republic of China and
Department of Mathematics
Yancheng Teachers College
Yancheng 224002
Jiangsu
Peoples Republic of China
e-mail: ychgsg@163.com

Department of Mathematics
Nanjing Normal University
Nanjing 210097
Jiangsu
Peoples Republic of China
e-mail:ygchen@njnu.edu.cn

[^0]: Received 22nd March, 2004
 Supported by the National Natural Science Foundation of China, Grant Nol0171046.

