SOLUTION OF IRVING'S RAMSEY PROBLEM

by HEIKO HARBORTH and HEINZ-MICHAEL NITZSCHKE

(Received 6 June, 1979)

In [1] the following question was posed by R. W. Irving (see also Conjecture 4.10 in [4]): Is there an edge 2-colouring of the complete bipartite graph $K_{13,17}$ with no monochromatic $K_{3,3}$? We give a negative answer in this note (Theorem 2). Furthermore we prove Conjecture 4.11 (i) of [4] (Theorem 1), that is, any edge 2-coloured $K_{2n+1,4n-3}$ contains a monochromatic $K_{2,n}$ with the 2 and *n* vertices a subset of the 2n+1 and 4n-3 vertices, respectively. Theorem 1 is a consequence of Satz 4 in [3], however, we give a direct proof here.

Instead of edge coloured complete bipartite graphs $K_{x,y}$ we use 0-1-matrices $M = (m_{i,j})$, where $m_{i,j} = 0$ or 1 $(1 \le i \le x, 1 \le j \le y)$, if the edge (i, j) of $K_{x,y}$ is of the first or second colour, respectively.

LEMMA 1. If p_{ij} , p_{ik} , and p_{jk} denote the numbers of equal columns (both entries 0 or both entries 1) in the three pairs of rows of any triple of rows (i, j, k) in any 0–1-matrix with c columns, then

$$p_{ii} + p_{ik} + p_{ik} \equiv c \pmod{2}. \tag{1}$$

Proof. Each column contributes 1 or 3 to the sum on the left-hand side.

In the following we denote by [x] and $\{x\}$ the greatest integer $\leq x$ and the smallest integer $\geq x$, respectively.

THEOREM 1. Any (2n+1, 4n-3)-0-1-matrix contains a (2, n)-submatrix with entries 0 only, or 1 only.

Proof. Any column of a (2n+1, 4n-3)-0-1-matrix M contains at least $\binom{n}{2}$ + $\binom{n+1}{2}$ pairs of equal entries. Thus for the total number A of equal pairs in all columns of M we obtain

$$A \ge (4n-3)\left(\binom{n}{2} + \binom{n+1}{2}\right) = 4n^3 - 3n^2.$$
⁽²⁾

Using the pigeonhole principle there is at least one pair of rows in M with

$$p = \left\{\frac{4n^3 - 3n^2}{\binom{2n+1}{2}}\right\} = \left\{2n - 2 - \frac{n-2}{2n+1}\right\} = 2n - 2$$
(3)

equal columns for $n \ge 2$ (if n = 1, then Theorem 1 is trivial).

Glasgow Math. J. 21 (1980) 187-197.

We assume that no pair of rows in M has more than p equal columns. In any triple of rows at most two pairs have p equal columns (Lemma 1). Then the famous theorem of Turán ([2], p. 17) implies that at most $[(2n+1)^2/4] = n^2 + n$ pairs of rows in M have p equal columns. It follows that

$$A \leq (n^{2}+n)(2n-2) + \left(\binom{2n+1}{2} - (n^{2}+n)\right)(2n-3) = 4n^{3} - 3n^{2} - 2n,$$
(4)

which contradicts (2). Thus at least one pair of rows in M has p+1=2n-1 equal columns, that means, $\left\{\frac{2n-1}{2}\right\} = n$ columns have entries 0 only, or 1 only.

THEOREM 2. Any (13, 17)-0-1-matrix contains a (3, 3)-submatrix with entries 0 only, or 1 only.

Proof. We denote by $B = (b_{i,j})$ a (13, 17)-0-1-matrix, by N the (3, 3)-matrix with entries 0 only, and by \overline{M} the matrix M with 0 and 1 interchanged. If M contains a submatrix S, we will write $S \subset M$. The proof is divided into the following Lemmas. Those parts of their proofs which follow by changing 0 and 1 are omitted.

We consider the matrices S_i $(1 \le i \le 10)$ shown opposite as submatrices of B up to exchanges of rows or columns.

LEMMA 2. If S_1 or $\bar{S}_1 \subset B$, then N or $\bar{N} \subset B$,

Proof. If $S_1 \subset B$, then either $N \subset B$, or every row of that (11, 6)-submatrix M of B determined by the columns of S_1 contains at least 4 entries 1, that is, $\binom{4}{3} = 4$ triples of entries 1. Then any distribution of these 44 triples among the 6 columns of M guarantees $\overline{N} \subset M$, since $2\binom{6}{3} < 44$.

LEMMA 3. If S_2 , S_2^T , \overline{S}_2 or $\overline{S}_2^T \subset B$, then N or $\overline{N} \subset B$.

Proof. Let $S_2 \subset B$, or $S_2 \subset B^T$, which corresponds to $S_2^T \subset B$. The first 5 columns and the last 7 rows of S_2 determine $M \subset S_2$. Either $N \subset S_2$, or every row of M contains at least 3 entries 1, that is, $\binom{3}{2} = 3$ pairs of entries 1. In any distribution of these 21 pairs among the 5 columns of M there are 2 columns with 3 pairs of entries 1 in a row, since $2\binom{5}{2} < 21$. Together with column 6 of S_2 , it follows that $\overline{N} \subset S_2$.

LEMMA 4. If S_3 or $\overline{S}_3 \subset B$, then N or $\overline{N} \subset B$.

Proof. If S_3 is in the first rows and columns of B, then rows 6 to 13, and columns 3 to 17 determine a (8, 15)-submatrix M of B. If there is one row of M with more than 6 entries 1, then Lemma 3 can be used. Otherwise M has at least $8 \times 9 = 72$ entries 0. Let s_i

 $(0 \le i \le 8)$ denote the number of columns of M with exactly i entries 0. Then

$$\sum_{i=0}^{8} s_i = 15, \text{ and } \sum_{i=1}^{8} i s_i \ge 72$$

yield

$$s_5 + 2s_6 + 3s_7 + 4s_8 \ge 12 + 4s_0 + 3s_1 + 2s_2 + s_3 \ge 12.$$
(5)

Together with (5) there are

$$\sum_{i=3}^{8} \binom{i}{3} s_i \ge 10(s_5 + 2s_6 + 3s_7 + 4s_8) \ge 120 > 2\binom{8}{3}$$

triples of entries 0 in the columns of M, so that $N \subseteq M$.

LEMMA 5. If a column of B has 9 entries 0 or 9 entries 1, then N or $\overline{N} \subset B$.

Proof. Let $b_{i,1} = 0$ for all *i* with $1 \le i \le 9$. Rows 1 to 9 and columns 2 to 17 determine $M \subseteq B$. If there is a column of *M* with at least 5 entries 0, we use Lemma 4. Otherwise at least $16\binom{5}{2} = 160$ pairs with both entries 1 in the columns of *M* distributed among all pairs of rows of *M* guarantee 2 rows of *M* having 5 columns with both entries 1, since $4\binom{9}{2} < 160$. Then $\overline{S}_2 \subseteq B$, and we use Lemma 3.

LEMMA 6. If S_4 or $\overline{S}_4 \subset B$, then N or $\overline{N} \subset B$.

Proof. Let S_4 be in the first rows and columns of B. Rows 5 to 13 and columns 1 to 2, 3 to 5, 6 to 7 determine M_1 , M_2 , M_3 , respectively. Either N or $\tilde{N} \subset B$, or every row of M_2 has at most 2 entries 0, and at most 2 entries 1. In at least 5 rows of M_2 there are 2 entries 0 (1). Then either $N \subset B$ ($\tilde{N} \subset B$), or $\bar{S}_3 \subset M_1$ ($S_3 \subset M_3$), and Lemma 4 can be used.

LEMMA 7. If S_5 or $\overline{S}_5 \subset B$, then N or $\overline{N} \subset B$.

Proof. Let S_5 occur in the first rows and columns of B. Rows 4 to 13 and columns 1 to 5 of B determine M_1 , and rows 4 to 13 together with columns 11 to 14 of B determine M_2 . At first $b_{3,j} = 1$ for all j with $1 \le j \le 5$, or Lemma 2 can be used. Next either $N \subseteq B$, or every row in M_1 has at least 3 entries 1. If one row of M_2 exists with more than one entry 1, then together with row 3 of B we have $S_4 \subseteq B$, and use Lemma 6. Otherwise every row of M_2 has 3 entries 0, and any distribution of 10 triples 000 among the 4 columns of M_2 guarantees $N \subseteq M_2$, since $2\binom{4}{2} < 10$.

LEMMA 8. N or \overline{N} exist in any (5, 5)-matrix obtained by changing rows or columns of S_6 , S_6^T , \overline{S}_6 or \overline{S}_6^T .

Proof. If the second or third element of column 5 of S_6 is 1, then $\overline{N} \subset S_6$, and otherwise $N \subset S_6$.

LEMMA 9. If $S_7 \subset B$ (respectively $\overline{S}_7 \subset B$), then either N or $\overline{N} \subset B$, or S_8 (respectively \overline{S}_8) are in rows 3 to 8 and columns 1 to 5 of S_7 (respectively \overline{S}_7), up to exchanges of rows or columns.

Proof. Let $S_7 \subset B$, and M denotes the elements of S_7 in rows 3 to 8 and columns 1 to 5. At least 3 entries 1 exist in every row of M, or $N \subset S_7$. If one row has more than 3 entries 1, then $\binom{4}{2} + 5\binom{3}{2} > 2\binom{5}{2}$ implies that 2 columns exist in M with 3 pairs 11, and together with column 6 of S_7 it follows $\overline{N} \subset S_7$. It remains that M has exactly 18 entries 1. No column of M has more than 4 entries 1, since otherwise $\overline{S}_3 \subset B$ (Lemma 4). No column of M has less than 3 entries 1, since otherwise 4 columns have 4 entries 1, and this forces 2 rows of these 4 columns to have 2 entries 1 and 4 rows to have 3 entries 1, and then $2\binom{2}{2} + 4\binom{3}{2} > 2\binom{4}{2}$ together with column 6 of S_7 guarantees $\overline{N} \subset S_7$. So M can have only 3 columns with 4, and 2 columns with 3 entries 1. Then $N \subset S_7$ (with column 6), or by changing of rows or columns we obtain $M = S_8$.

LEMMA 10. If S_9 or $\overline{S}_9 \subset B$, then N or $\overline{N} \subset B$.

Proof. If we find S_9 in the first rows and columns of B, then by Lemma 2 we can assume $b_{3,j} = b_{2,j+5} = 1$ for j = 1, 2, 3, 4. Let M_1 be determined by rows 4 to 13 and columns 1 to 9. Either $N \subset B$, or in columns 1 to 5, and in columns 5 to 9 of M_1 , respectively, there are at least 30 entries 1. Every column $\neq 5$ of M_1 has at most 6 entries 1, or we can use Lemma 3. Thus column 5 must have at least 6 entries 1. Since Lemma 5 yields N or $\overline{N} \subset B$, column 5 has at most 8 entries 1.

(i) $b_{i,5} = 1$ for all *i* with $8 \le i \le 13$, $b_{i,5} = 0$ otherwise: The elements in rows 4 to 7 of *B* and in columns 1 to 4, 6 to 9, 10 to 14 are denoted by M_2 , M_3 , M_4 , respectively. Every row of M_2 and of M_3 has at least 3 entries 1, otherwise $N \subseteq B$. Then every pair of rows of M_2 and of M_3 has at least 2 columns with both entries 1. Together with rows 2 or 3, and M_4 , we find $\overline{N} \subseteq B$, or every column of M_4 has at least 3 entries 0. Then 2 columns of M_4 together with column 5 of *B* yield $N \subseteq B$.

(ii) $b_{i,5} = 1$ for all *i* with $7 \le i \le 13$, $b_{i,5} = 0$ otherwise: Let M_5 and M_6 denote the elements of *B* in rows 4 to 6, and in columns 1 to 4, and 6 to 9, respectively. Rows 7 to 13 and columns 1 to 4 determine M_7 . Every row of M_5 and of M_6 has at least 3 entries 1 (otherwise $N \subseteq B$), and then at most 3 entries 1 (otherwise $\overline{N} \subseteq B$). Every column of M_5 and of M_6 has at most one entry 0, otherwise $\overline{N} \subseteq B$. Thus we can assume $b_{4,1} = b_{5,2} = b_{6,3} = b_{4,6} = b_{5,7} = b_{6,8} = 0$, and 1 for all other elements of M_5 and of M_6 . As in every pair of columns of M_7 at most 2 pairs 11 occur (otherwise together with column 5 of *B* we obtain $\overline{N} \subseteq B$), there is a row in M_7 with 11 in columns 1 and 4, 2 and 4, or 3 and 4, and we can assume $b_{7,3} = b_{7,4} = 1$. At least 2 elements of $b_{7,6}$ to $b_{7,9}$ are 1, otherwise $N \subseteq B$. These have to be $b_{7,6}$ and $b_{7,7}$, since rows 4, 5, 7 and columns 3, 4, 8, 9 yield $\overline{N} \subseteq B$ or $b_{7,8} = b_{7,9} = 0$. Then rows 5, 6, 7 and columns 1, 4, 6 imply $\overline{N} \subseteq B$ or $b_{7,1} = 0$, and rows 4, 6, 7 and columns 2, 4, 7 imply $\overline{N} \subseteq B$ or $b_{7,2} = 0$.

At least 14 entries 1 occur in M_7 . Column 4 of M_7 contains at most 3 entries 1, since otherwise we can use Lemma 3. No column of M_7 has more than 4 entries 1, and thus two of columns 1 to 3 of M_7 contain exactly 4 entries 1. After possibly changing columns 1 and 2, and rows 4 and 5 we can assume $b_{8,1} = b_{9,1} = b_{10,1} = b_{11,1} = 1$, and $b_{12,1} = b_{13,1} = 0$. Now Lemma 9 guarantees N or $\overline{N} \subset B$, or we can assume S_8 in rows 5, 6, 8, 9, 10, 11 and columns 6, 9, 5, 7, 8, in these sequences.

Then rows 5, 6 and 8, 9, 10 or 11 and columns 1, 4 and 6, 6, 9 or 9, respectively, yield $\overline{N} \subset B$ or $b_{8,4} = b_{9,4} = b_{10,4} = b_{11,4} = 0$. Rows 4, 5, 10 and columns 3, 8, 9 yield $\overline{N} \subset B$ or $b_{10,3} = 0$. Rows 4, 6, 11 and columns 2, 7, 9 yield $\overline{N} \subset B$ or $b_{11,2} = 0$. Then rows 1, 8, 10 and columns 3, 4, 7, rows 1, 7, 9 and columns 2, 8, 9, rows 1, 2, 10 and columns 2, 3, 4, rows 1, 2, 11 and columns 2, 3, 4 yield $N \subset B$ or $b_{8,3} = b_{9,2} = b_{10,2} = b_{11,3} = 1$, respectively. Furthermore $\overline{N} \subset B$ or $b_{8,2} = b_{9,3} = 0$ follow from rows 8, 9, 10 and columns 1, 2, 5, and from rows 8, 9, 11 and columns 1, 3, 5.

If $b_{12,3} = b_{13,3} = 1$, then Lemma 4 can be used. Therefore we can assume $b_{12,3} = 0$ after possibly changing rows 12 and 13. Then rows 1, 2, 12 and columns 1 to 4 imply $N \subset B$ or $b_{12,2} = b_{12,4} = 1$. Rows 4, 6, 12 and columns 2, 4, 7, and columns 2, 4, 9 yield $\overline{N} \subset B$ or $b_{12,7} = b_{12,9} = 0$. Then rows 1, 3, 12 and columns 6 to 9 yield $N \subset B$ or $b_{12,6} = b_{12,8} = 1$. It follows $b_{13,6} = 0$, or Lemma 4 can be used. If $b_{13,2} = 0$, then rows 1, 2, 13 and columns 1 to 4 yield $N \subset B$ or $b_{13,3} = b_{13,4} = 1$, rows 1, 7, 13 and columns 1, 2, 8 yield $N \subset B$ or $b_{13,8} = 1$, and then we find \overline{N} in rows 4, 5, 13 and columns 3, 4, 8. If, however, $b_{13,2} = 1$, then rows 10, 12, 13 and columns 2, 5, 8 yield $\overline{N} \subset B$ or $b_{13,8} = 0$, rows 1, 3, 13 and columns 6 to 9 yield $N \subset B$ or $b_{13,7} = b_{13,9} = 1$, and then we find \overline{N} in rows 4, 6, 13 and columns 2, 7, 9.

(iii) $b_{i,5} = 1$ for all *i* with $6 \le i \le 13$, $b_{i,5} = 0$ otherwise: At least 2 of the elements $b_{3,10}$ to $b_{3,13}$ of *B* (say $b_{3,10}$ and $b_{3,11}$) are 0, otherwise $\overline{N} \subset B$ (with rows 1 and 2). At least one of the elements $b_{4,10}$, $b_{4,11}$, $b_{5,10}$, $b_{5,11}$ (say $b_{4,10}$) is 1, otherwise $N \subset B$ (with column 5). Columns 6 to 9, rows 4 to 5 and rows 6 to 13 of *B* determine M_8 and M_9 , respectively. Both rows of M_8 have at least 3 entries 1 (otherwise $N \subset B$), and then at most 3 entries 1 (otherwise $\overline{N} \subset B$). If one column of M_8 has both entries 0, then $\overline{N} \subset B$. Thus we can assume $b_{4,9} = b_{5,8} = 0$, and all other elements of M_8 are 1.

In every column of M_9 there are at most 4 entries 1, or we can use Lemma 4 (with column 5). At least 30 entries 1 are in columns 5 to 9 of M_1 , or $N \subset B$. Thus exactly 4 entries 1 occur in every column of M_9 , and exactly 2 entries 1 in every row of M_9 . We can assume $b_{6,9} = b_{7,9} = b_{8,9} = b_{9,9} = 0$. If in 2 of rows 1 to 4 of M_9 , and in columns 1 and 2 of M_9 there are 4 entries 1, then we have found \overline{S}_3 , and Lemma 4 can be used. Otherwise we can assume $b_{6,6} = b_{6,8} = b_{7,6} = b_{7,8} = 1$, and $b_{6,7} = b_{7,7} = 0$ (after possibly changing columns 6 and 7). Then in these sequences the elements of rows 3, 6, 7, 2, 4 and of columns 6, 8, 7, 9, 10 of B represent S_6 , and Lemma 8 completes the proof.

LEMMA 11. If S_{10} or $\overline{S}_{10} \subset B$, then N or $\overline{N} \subset B$.

Proof. Let S_{10} be in the first rows and columns of *B*. Then $b_{2,6} = b_{2,7} = b_{2,8} = b_{3,1} = b_{3,2} = b_{3,3} = 1$, or $N \subseteq B$. The elements of *B* in rows 4 to 13 and columns 1 to 3, 4 to 5,

and 6 to 8 are denoted by M_1 , M_2 and M_3 , respectively. If we observe Lemma 4, it suffices to discuss 3 cases: M_2 has (i) one row 00, (ii) 4 rows 11, or (iii) 4 rows 01.

(i) $b_{4,4} = b_{4,5} = 0$. Then $N \subset B$, or $b_{4,1} = b_{4,2} = b_{4,3} = b_{4,6} = b_{4,7} = b_{4,8} = 1$. By Lemma 4 we can assume one entry 0 in each of rows 2 to 5 of M_2 . The corresponding rows of M_1 and M_3 have exactly 2 entries 1, since otherwise N or $\overline{N} \subset B$. Then we can assume 2 equal rows in M_1 (say $b_{5,1} = b_{6,1} = b_{5,2} = b_{6,2} = 1$ and $b_{5,3} = b_{6,3} = 0$). As M_3 has at least one column with both entries 1 in rows 2 and 3 (say $b_{5,6} = b_{6,6} = 1$), we find \overline{N} in rows 4, 5, 6 and columns 1, 2, 6.

(ii) $b_{i,4} = b_{i,5} = 1$ for all *i* with $4 \le i \le 7$. In M_1 and M_3 rows 4 to 7 have at least one, and rows 8 to 13 at least 2 entries 1 (otherwise $N \subset B$). Together there are at least 16 entries 1, which guarantee at least one column with 6 entries 1 in M_1 , and in M_3 , since by Lemma 3 we can assume at most 6 entries 1 in every column. At most 2 entries 1 exist in the first 4 rows of every column of M_1 and M_3 (otherwise $\overline{N} \subset B$). If a column with 6 entries 1 in M_1 or M_3 has exactly one entry 1 in the first 4 rows, then N or $\overline{N} \subset B$ by Lemma 9, since the existence of S_8 would force a row 11 in rows 8 to 13 of M_2 , and then Lemma 4 can be used. As M_1 and M_3 cannot both have a column with 4 entries 0 in the first 4 rows (otherwise we use Lemma 4), we can assume that in M_1 a column exists, which has 6 entries 1, and 2 of them in the first 4 rows. Thus we may choose $b_{i,3} = 1$ for $i = 6, 7, \ldots, 11$ and $b_{4,3} = b_{5,3} = b_{12,3} = b_{13,3} = 0$. Then by Lemma 9 we can assume S_8 in rows 6 to 11 and columns 4 to 8 of B. After possibly changing rows 12 and 13 we have $b_{12,4} = b_{13,5} = 1$, and $b_{12,5} = b_{13,4} = 0$ (otherwise we have cases (i) or (iii), or \overline{S}_3 , and Lemma 4 can be used). Together with rows 1 and 2 of B we get $N \subset B$, or $b_{12,1} = b_{12,2} = b_{13,1} = b_{13,2} = 1$.

We next prove, that 6 entries 1 in columns 2 or 3 of M_3 yield N or $\overline{N} \subset B$. After possibly changing rows 6 and 7, 8 and 9, 10 and 11, so as columns 7 and 8 of B we can assume $b_{12,8} = b_{13,8} = b_{5,8} = 1$, and $b_{4,8} = 0$ (rows 4 and 5 can be changed). By Lemma 9 we find N or $\overline{N} \subset B$, or S_8 in rows 5, 6, 12, 8, 13, 10 and columns 4, 5, 1, 3, 2 after possibly changing columns 1 and 2 of B. Thus we assume $b_{5,1} = b_{6,1} = b_{6,2} = b_{8,2} = b_{10,2} = 0$, $b_{8,1} = b_{10,2} = 0$, $b_{10,2} = 0$ $b_{10,1} = b_{5,2} = 1$. Then rows 8, 10, 12, 13 and columns 1, 6, 8 of B yield $N \subseteq B$, or $b_{12,6} = b_{13,6} = 0$. Rows 12 and 13 together with rows 1 and 3 of B yield $N \subset B$, or $b_{12,7} = b_{13,7} = 1$. Rows 8, 9, 10, 11 and columns 1, 3, 6 of B yield $\overline{N} \subset B$, or $b_{9,1} = b_{11,1} = 0$. Together with rows 1 and 2 it follows $b_{9,2} = b_{11,2} = 1$ (otherwise $N \subseteq B$). Rows 7, 9, 11 and columns 2, 3, 7 yield $\overline{N} \subset B$, or $b_{7,2} = 0$. Rows 1, 6, 7 and columns 1, 2, 6 force $N \subset B$, or $b_{7,1} = 1$. Rows 5, 12, 13 and columns 2, 7, 8 yield $\overline{N} \subset B$, or $b_{5,7} = 0$. Rows 1, 5, 6 and columns 1, 6, 7 force $N \subset B$, or $b_{5,6} = 1$. If now $b_{4,1} = 1$, then 6 entries 1 are in column 1 of M_1 , and by Lemma 9 it remains $b_{4,6} = 1$, $b_{4,7} = 0$ (S_8 is in rows 4, 7, 8, 12, 10, 13 and columns 4, 5, 8, 7, 6 of B). Then in case $b_{4,2} = 0$ we find S_3 in columns 2, 7 and rows 1, 4, 6, 8, 10 of B, and we use Lemma 4, and in case $b_{4,2} = 1$ rows 4, 5, 9 and columns 2, 4, 6 yield $N \subset B$. If otherwise $b_{4,1} = 0$, then rows 1, 2, 4 and columns 1, 2, 3 yield $N \subset B$, or $b_{4,2} = 1$. Then $b_{4,7} = 0$ forces $N \subseteq B$ (rows 1, 4, 5 and columns 1, 3, 7), and $b_{4,7} = 1$ gives $S_3 \subset B$ (rows 4, 9, 11, 12, 13, columns 2, 7), and we use Lemma 4.

In the following we can assume that at most 5 entries 1 exist in columns 2 and 3 of M_3 , that is, 6 entries 1 occur in column 1 of M_3 . By Lemma 9, this is possible only in two

cases, either $b_{4,6} = b_{5,6} = 1$ and $b_{12,6} = b_{13,6} = 0$, or $b_{4,6} = b_{5,6} = 0$ and $b_{12,6} = b_{13,6} = 1$. In the first case we find N in rows 1, 3, 12, 13 and columns 4 to 8, or $b_{12,7} = b_{12,8} = b_{13,7} = b_{13,8} = 1$. Then more than 5 entries 1 occur in column 2 or 3 of M_3 , or $N \subset B$ (rows 1, 4, 5, columns 3, 7, 8). In the second case we use Lemma 9, and we can assume S_8 in columns 3, 2, 1, 4, 5 of B, and (j) in rows 11, 9, 10, 8, 13, 12, or (jj) in rows 11, 8, 10, 9, 13, 12 of B, after possibly changing columns 1 and 2. In other words, we can assume $b_{10,2} = b_{11,1} = 0$, $b_{10,1} = b_{11,2} = 1$ and (j) $b_{8,2} = b_{9,1} = 0$, $b_{8,1} = b_{9,2} = 1$, or (jj) $b_{8,2} = b_{9,1} = 1$, $b_{8,1} = b_{9,2} = 0$.

In case (j) rows 9, 11, 12, 13 and columns 2, 6, 7 yield $\overline{N} \subset B$ or $b_{12,7} = b_{13,7} = 0$, rows 8, 10, 12, 13 and columns 1, 6, 8 yield $\overline{N} \subset B$ or $b_{12,8} = b_{13,8} = 0$, and then we have N in rows 1, 12, 13 and columns 3, 7, 8.

In case (*jj*) $b_{4,7} = b_{5,7} = 0$ or 1 yield N in rows 1, 4, 5 and columns 3, 6, 7, or \overline{N} in rows 4, 5, 7 and columns 4, 5, 7, respectively, and thus we can assume $b_{4,7} = 0$, $b_{5,7} = 1$, after possibly changing rows 4 and 5. Then rows 1, 3, 4 and columns 6, 7, 8 imply $N \subseteq B$ or $b_{4,8} = 1$, and rows 4, 5, 6 and columns 4, 5, 8 imply $\overline{N} \subseteq B$ or $b_{5,8} = 0$. If $b_{4,2} = 0$, then $b_{5,2} = 1$ or N is in rows 1, 4, 5 and columns 2, 3, 6. Rows 5, 11, 13 and columns 2, 5, 7 yield $\overline{N} \subseteq B$ or $b_{13,7} = 0$. Then rows 1, 3, 13 and columns 4, 7, 8 imply $N \subseteq B$ or $b_{13,8} = 1$. Rows 4, 10, 13 and columns 1, 5, 8 then yield $\overline{N} \subseteq B$ or $b_{4,1} = 0$, and we find N in rows 1, 2, 4 and columns 1, 2, 3. If, otherwise, $b_{4,2} = 1$, then $b_{6,2} = 0$ or \overline{N} is in rows 4, 6, 8 and columns 5, 7, 8 yield $N \subseteq B$ or $b_{12,7} = 1$. Then rows 5, 9, 12 and columns 1, 4, 7 yield $\overline{N} \subseteq B$ or $b_{5,1} = 0$. Rows 11, 12, 13 and columns 2, 6, 7 yield $\overline{N} \subseteq B$ or $b_{13,7} = 0$. Then rows 1, 3, 13 and columns 2, 6, 7 yield $\overline{N} \subseteq B$ or $b_{13,7} = 0$. Then rows 1, 3, 13 and columns 1, 4, 7 yield $\overline{N} \subseteq B$ or $b_{5,1} = 0$. Rows 11, 12, 13 and columns 2, 6, 7 yield $\overline{N} \subseteq B$ or $b_{13,7} = 0$. Then rows 1, 3, 13 and columns 1, 4, 7 yield $\overline{N} \subseteq B$ or $b_{5,1} = 0$. Rows 11, 12, 13 and columns 2, 6, 7 yield $\overline{N} \subseteq B$ or $b_{13,7} = 0$. Then rows 1, 3, 13 and columns 4, 7, 8 imply $N \subseteq B$ or $b_{13,8} = 1$. At last rows 4, 10, 13 and columns 1, 5, 8 yield $\overline{N} \subseteq B$ or $b_{4,1} = 0$, and we find N in rows 1, 3, 6.

(iii) $b_{i,4} = 0$, $b_{i,5} = 1$ for all *i* with $4 \le i \le 7$. There are at most 13 entries 1 in M_2 (otherwise (ii)). At least 3 entries 1 are in every row of rows 4 to 13 in columns 1 to 5, or in 4 to 8 (otherwise $N \subseteq B$). Thus at least 17 entries 1 exist in M_1 , and in M_3 , and either we use Lemma 3, or at least 2 columns of M_1 , and at least 2 columns of M_3 have exactly 6 entries 1.

Every column in the first 4 rows of M_1 or of M_3 has at least 2 entries 1 (otherwise $S_3 \subset B$, and we use Lemma 4). In the first 4 rows of M_1 and M_3 there exists at most one column with 4 entries 1 (otherwise $\overline{N} \subset B$), which we can assume not to be in M_1 . Each of the first 4 rows of M_1 and of M_3 has at least 2 entries 1 (otherwise $N \subset B$). Altogether the first 4 rows of M_1 contain at least 8 entries 1, so that 2 columns have exactly 3 entries 1, and we can assume $b_{4,3} = b_{5,3} = b_{6,3} = b_{4,2} = b_{5,2} = b_{7,2} = 1$, $b_{6,2} = b_{7,3} = 0$ (otherwise $\overline{N} \subset B$). Then $b_{6,1} = b_{7,1} = 1$, or $N \subset B$.

After possibly changing rows 6 and 7, and columns 2 and 3 of B we can assume column 3 to be one of the 2 columns of M_1 with 6 entries 1, that is, $b_{8,3} = b_{9,3} = b_{10,3} = 1$. Then Lemma 9 can be used, and we find S_8 in rows 4, 8, 5, 9, 6, 10 and columns 8, 7, 6, 4, 5 of B (columns 4 and 5 of S_8 have to be in M_2), that is,

$$b_{4,7} = b_{4,8} = b_{5,6} = b_{5,8} = b_{6,6} = b_{6,7} = b_{8,4} = b_{8,7} = b_{8,8}$$

$$= b_{9,4} = b_{9,6} = b_{9,8} = b_{10,4} = b_{10,6} = b_{10,7} = 1,$$

SOLUTION OF IRVING'S RAMSEY PROBLEM

and

$$b_{4,6} = b_{5,7} = b_{6,8} = b_{8,5} = b_{8,6} = b_{9,5} = b_{9,7} = b_{10,5} = b_{10,8} = 0$$

In rows 4, 5, 7 and columns 2, 5, 8 of B we find \bar{N} , or $b_{7,8} = 0$, and then $b_{7,6} = b_{7,7} = 1$ (otherwise $N \subset B$). Rows 4, 5, 8, 9 and columns 2, 3, 8 of B yield $\bar{N} \subset B$, or $b_{8,2} = b_{9,2} = 0$.

If 6 entries 1 are in column 1 of M_1 , then N or $\overline{N} \subset B$ by Lemma 9 (S_8 is impossible, since rows 6 and 7 are identical in columns 4 to 8). Thus 6 entries 1 exist in column 2 of M_1 . Then Lemma 9 can be used, and columns 4 and 5 of S_8 have to be in M_2 . Then at most 11 entries 1 exist in M_2 , and therefore M_1 has more than 18 entries 1, that means, at least one column of M_1 has 7 entries 1, and Lemma 3 can be used.

LEMMA 12. Let Z_i denote the number of pairs of rows of B with i equal columns. Then either N or $\overline{N} \subset B$, or

$$Z_9 + Z_{10} \ge 12 + \sum_{i \le 6} Z_i.$$
(6)

Proof. If $Z_i > 0$ for i > 10, then by Lemma 2 we have N or $\overline{N} \subset B$. Otherwise, if s_i denotes the number of columns with *i* entries 0, then

$$\sum_{i \le 10} Z_i = {\binom{13}{2}} = 78, \text{ and } \sum_{i \ge 0} s_i = 17,$$
(7)

$$\sum_{\leq 10} i Z_i = \sum_{i \geq 0} \left(\binom{i}{2} + \binom{13-i}{2} \right) s_i \geq 36 \sum_{i \geq 0} s_i = 612.$$
(8)

At most 2 pairs of rows in every triple of rows of B have an even number of equal columns (Lemma 1, c = 17). Again the Theorem of Turán ([2], p. 17) implies then

 $Z_0 + Z_2 + Z_4 + Z_6 + Z_8 + Z_{10} \le [13^2/4] = 42.$ (9)

With (7) and $Z_8 + Z_{10}$ from (9) we obtain

$$\sum_{i \le 10} iZ_i = 2(Z_9 + Z_{10}) + Z_8 + Z_{10} + 7 \sum_{i \le 10} Z_i - \sum_{i \le 6} (7 - i)Z_i$$
$$\leq 2(Z_9 + Z_{10}) + 588 - 2 \sum_{i \le 6} Z_i.$$
(10)

From (8) and (10) we obtain (6).

LEMMA 13. If there are three rows a, b, c in B, so that the number of equal columns is at least 9 in rows a and b, and in rows a and c, then N or $\overline{N} \subset B$.

Proof. Let a, b, c be rows 1, 2, 3 of B. If more than 5 columns with both entries 0 (or both entries 1) occur in one pair of rows we use Lemma 2. If then the pairs of rows 1 and 2, and of rows 1 and 3 both contain 5 columns with both entries 0, or both contain 5 columns with both entries 1, then N or $\overline{N} \subset B$ follows directly, or by use of Lemmas 7, 10, or 11. Thus in the following we can assume 5 pairs with both entries 0 in the first 5 columns of rows 1 and 2, 5 pairs with both entries 1 in columns 6 to 10 of rows 1 and 3, and exactly 4

195

columns with both entries 1 in rows 1 and 2, and exactly 4 columns with both entries 0 in rows 1 and 3.

If in rows 2 and 3 there are less than 7 equal columns, then by Lemma 12 we have $Z_9 + Z_{10} \ge 13$ in *B*. Then the pigeonhole principle guarantess that one row of *B* exists which has together with each of two other rows at least 9 equal columns, among which in both pairs of rows occur 5 columns with both entries 0, or 5 columns with both entries 1. Thus we can use Lemmas 7, 10 or 11 to get N or $\overline{N} \subset B$.

In columns 11 to 17 occur at least 2 columns with both entries 0 in rows 1 and 3, and at least 2 columns with both entries 1 in rows 1 and 2. We can assume $b_{1,11} = b_{1,12} = b_{3,11} = b_{3,12} = 0$ and $b_{1,13} = b_{1,14} = b_{2,13} = b_{2,14} = 1$. Then S_1 or $\overline{S}_1 \subset B$, or $b_{2,11} = b_{2,12} = 1$ and $b_{3,13} = b_{3,14} = 0$. Now at least 7 equal columns in rows 2 and 3 are possible only if at least 4 of them occur in columns 1 to 10. More than 4 columns, however, yield N or $\overline{N} \subset B$. Thus we can choose $b_{3,1} = b_{3,2} = b_{2,8} = b_{2,9} = b_{2,10} = 0$, $b_{3,3} = b_{3,4} = b_{3,5} = b_{2,6} = b_{2,7} = 1$, and without loss of generality $b_{2,15} = b_{2,16} = b_{3,15} = b_{3,16} = 1$. Then $\overline{N} \subset B$, or $b_{1,15} = b_{1,16} = 0$.

If column 15 in rows 4 to 13 contains more than 6 entries 0, or more than 5 entries 1, then S_2 or $\overline{S}_2 \subset B$, and we can use Lemma 3. It remains to consider that column 15 in rows 4 to 13 contains (i) 5 entries 1, and (ii) 6 entries 0.

(i) $b_{i,15} = 1$ for all *i* with $4 \le i \le 8$. By Lemma 9 we can assume S_8 in rows 3 to 8 and columns 1 to 5. There exist 3 rows in this S_8 which together with row 3 of *B* have 2 columns with both entries 1. If one of these rows contains more than one entry 1 in columns 6 to 10, then $\overline{S}_{10} \subset B$, and we use Lemma 11. Otherwise in columns 6 to 10 we find \overline{N} , or we have 3 rows with at least 4 entries 0, and 8 rows with at least 3 entries 0.

Then any distribution of $3\binom{4}{2} + 8\binom{3}{2} = 42$ pairs 00 among the columns 6 to 10 guarantees

 $S_3 \subset B$ (since $4\binom{5}{2} < 42$), and we use Lemma 4.

(ii) $b_{i,15} = 0$ for all *i* with $4 \le i \le 9$. By Lemma 9 we can assume \bar{S}_8 in rows 4 to 9 and columns 6 to 10. If column 16 has at least 4 entries 0 in rows 4 to 9, then $S_3 \subset B$ (together with row 1 of *B*), and Lemma 4 can be used. Thus we can assume $b_{4,16} = b_{5,16} = b_{6,16} = 1$. If then in columns 3 to 5 in one of rows 4 to 6 there are 2 entries 1, then $\bar{S}_{10} \subset B$, and we use Lemma 11. Otherwise $N \subset B$, or in rows 4 to 6 and columns 1 and 2 occur entries 1 only. Then, however, we find \bar{N} in rows 4 to 6 and columns 1, 2 and 16, and Lemma 13 is proved.

The proof of Theorem 2 is complete, since Lemma 12 for any B guarantees the existence of three rows which enable us to apply Lemma 13.

REFERENCES

1. R. K. Guy, (Ed.), Sixth British Combinatorial Conference, Unsolved Problems, No. 13 (Typescript 1977).

2. F. Harary, Graph theory, (Addison-Wesley, 1969).

3. H. Harborth and I. Mengersen, Ein Extremalproblem für Matrizen aus Nullen und Einsen, J. Reine Angew. Math. 309 (1979), 149-155.

4. R. W. Irving, A bipartite Ramsey problem and the Zarankiewicz numbers. Glasgow Math. J. 19 (1978), 13-26.

TECHNISCHE UNIVERSITÄT BRAUNSCHWEIG D-3300 Braunschweig, West Germany