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Abstract
We investigate the implications of different forms of multigroup connectivity. Four multigroup con-
nectivity modalities are considered: co-memberships, edge bundles, bridges, and liaison hierarchies. We
propose generative models to generate these four modalities. Our models are variants of planted parti-
tion or stochastic block models conditioned under certain topological constraints. We report findings of a
comparative analysis in which we evaluate these structures, controlling for their edge densities and sizes,
on mean rates of information propagation, convergence times to consensus, and steady-state deviations
from the consensus value in the presence of noise as network size increases.
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1. Introduction
1.1 Motivation and problem description
As the size of a connected social network increases, multigroup formations that are distinguish-
able clusters of individuals become a characteristic and important feature of network topology.
The connectivity of multigroup networks may be based on co-memberships, edge bundles that
connect multiple individuals located in two disjoint groups, bridges that connect two individuals
in two disjoint groups, or liaison hierarchies of nodes. Figure 1 illustrates each form. A large-
scale network may include instances of all four connectivity modalities. The work reported in
this article is addressed to the implications of these different forms of intergroup connectivity.
We set up populations of multiple subgroups and evaluate the implications of different forms
of intergroup connectivity structures. We analyze the implications of different forms by adopt-
ing standard models of opinion formation and information propagation that allow a comparative
analysis on metrics of mean rates of information propagation, convergence times to consensus,
and steady-state deviations from the consensus value under conditions of noise.

1.2 Related literature
Typically, a corporation has formal hierarchical structure and additional informal communi-
cation structures (Likert, 1967). The authority of the large-scale organizations is subject to the
well-known problem of control loss, i.e., the cumulative decay of influence of superiors over sub-
ordinates along the chain-of-command (Williamson, 1970; Friedkin & Johnsen, 2002). Classic
and fascinating work on organization cultures (Crozier, 1964) points to the importance of the
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(a) (b)

(c) (d)

Figure 1. Small-scale illustration of the four forms of multi-
group connectivity structures. (a) Co-memberships. (b) Edge
Bundles. (c) Bridges. (d) Liaisons.

topology of informal communication and influence networks in mitigating and exacerbating
coordination and control problems. Other work has emphasized particular types of network
typologies (linking-pin, bridge, ridge, co-membership, and hierarchical) that may serve as struc-
tural bases of mitigating coordination and control loss (Likert, 1967; Friedkin, 1998; Granovetter,
1973; Schwartz, 1977). In this work, we propose generative network models and provide a com-
parative analysis for these typologies, which we believe are lacking in the literature. Among the
multitude of possible coordination and control structures for large groups, we study four proto-
typical structures and corresponding taxonomy shown in Figure 1. In bridge-connected structure,
communication between subgroups is based on single contact edges between subgroups; the coor-
dination and control importance of such bridges is the emphasis of the Granovetter (1973) model.
According to Granovetter (1973), only weak ties can be bridges and those weak ties are more
likely to be sources of novel information making them surprisingly valuable. Additional refer-
ences include Tortoriello & Krackhardt (2010), Stam & Elfring (2008), Granovetter (1983), Evans
& Davis (2005). In ridge-connected or redundant ties structure, multiple redundant contact edges
connect pairs of groups providing a robust basis of subgroup connectivity; the coordination and
control importance of such ridges is the emphasis of Chapter 8 in Friedkin (1998). Additional
references are Friedkin (1983), White et al. (1976), Boorman & White (1976). In co-membership
intersection structures, subgroups have common members; the coordination and control impor-
tance of such structures is the emphasis of the linking-pin model by Likert (1967). This structure
represents an organization as a number of overlapping work units in which amember of a unit can
belong to other units. Further references include Sawardecker et al. (2009), Cornwell & Harrison
(2004), Borgatti &Halgin (2011). In hierarchical connected structure, distinct subgroups commu-
nicate through liaisons, e.g., a star configuration in which a single individual (whomay or may not
be in a command role) monitors and facilitates all the work by subgroups and is responsible for
all communications among them. Further references are Galbraith (1974), Reynolds & Johnson
(1982), Schwartz (1977), Singhal et al. (2014).

We relate the generative models for the first three connectivity structures (co-memberships,
edge bundles, and bridges) to stochastic block models (SBMs), which were first introduced
in statistical sociology by Holland et al. (1983) and Fienberg & Wasserman (1981). Also
known as planted partition model in theoretical computer science, SBM is a generative graph
model that leads to networks with clusters. Conventionally, SBMs are defined for undirected
binary graphs and nonoverlapping communities. Generalizations of these models to digraphs
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(Wang &Wong, 1987), overlapping memberships (Airoldi et al., 2008), weighted graphs (Aicher
et al., 2014), and arbitrary degree distributions (Karrer & Newman, 2011) have also been studied.

In the field of social network science, the four forms of subgroup connectivity illustrated
in Figure 1 are familiar constructs. Comparative research on their implications is limited.
Granovetter (1973) and Watts & Strogatz (1998) have focused on the implications of multigroup
connectivity based on bridges. Friedkin (1998) focused on co-membership and edge-bundle con-
nectivity constructs, referring to them as “ridge” structures. Reynolds & Johnson (1982) focused
on the importance of liaisons. It may be that ridge structures provide a more robust basis of
influence and information flows than thinly dispersed bridges and liaisons. We are unaware of
any comparative analysis of all four forms of intergroup connectivity structures that employs a
common set of dynamical-system behavioral metrics.

1.3 Statement of contribution
In this article, we develop generative-networkmodels that set up sample networks for each form of
multigroup connectivity topology and conduct a comparative analysis of them, which we believe
is lacking in the literature. Our models, under some additional constraints, can be regarded as
SBMs. We compare these network topologies on three metrics: (i) spectral radius that is a metric
of the rate of information propagation in a network propagation models, (ii) convergence time to
consensus based on the classic French–DeGroot opinion dynamics, and (iii) steady-state devia-
tion from the French–DeGroot consensus value in the presence of noise. We perform a regression
analysis to obtain an equitable comparison on the performance of these four connectivity struc-
tures and to account for the discrepancies among their structural properties. We learned that the
development of generative-network models, suitable for this comparative analysis, is nontrivial.
We lay out in detail the assumptions of our models. This is the methodological contribution of
the article. The comparative analysis of network metrics, over samples of networks of increasing
size in the class of each form of multigroup connectivity, is the article’s theoretical contribution to
a better understanding of the implications of these different forms.

For network propagation processes, we refer to the classic references (Lajmanovich & Yorke,
1976; Hethcote, 1978; Allen, 1994) and to the recent review (Mei et al., 2017). For opinion dynamic
processes and the French–DeGroot model, we refer to the classic references (French Jr., 1956;
DeGroot, 1974) and the books (Friedkin, 1998; Jackson, 2010; Bullo, 2018).

1.4 Preliminaries
Graph theory Each graph G (V , E ) is identified with the pair (V , E ). The set of graph nodes
V �= ∅ represents actors or groups of actors in a social network. |V | = n is the size of the network.
The set of graph links E represents the social interactions or ties among those actors. We denote
the set of neighbors of node i with Ni. In a weighted graph, edge weights represent the frequency
or the strength of contact between two individuals, whereas in a binary graph all edge weights are
equal to one. The density of G is given by ratio of the number of its observed to possible edges,
2|E |

n(n− 1) . Graph G is called dense if |E | =O(n2) and sparse if |E | � n2. A graph with density of
1 is a clique.

A walk of minimum length between two nodes is the shortest path or geodesic. Average
geodesic length is defined by L= 1

n(n− 1)
∑

i,j∈V ,i�=j dij, where dij is the length of the geodesic
from node i to node j. A connected acyclic subgraph of G spanning all of its nodes is a spanning
tree. A uniform spanning tree of size n is a spanning tree chosen uniformly at random in the set
of all possible spanning trees of size n. Degree or connectivity of node i is defined as the num-
ber of edges incident on it. The degree distribution of a graph P(k) is the number of nodes with
degree k, or the probability that a node chosen uniformly at random has degree k. The clustering
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coefficient of node i is given by the ratio of existing edges between the neighbors of node i over

all the possible edges among those neighbors. Letting ci = 2ejk : vj, vk ∈Ni, ejk ∈ E
ki(ki − 1) , ki = |Ni|, the

average clustering coefficient of graph G is defined as C= 1
n

∑
i∈V ci.

An Erdős–Rényi graph (1959) is constructed by connecting nodes randomly. Each edge is
included in the graph with a fixed probability p independent from every other edge. We repre-
sent such graph as GER(n, p), where p is the probability that each edge is included in the graph
independent from every other edge. The probability distribution of GER(n, p) follows a binomial
distribution P(k)= (n−1

k
)
pk(1− p)n−1−k, and its average clustering coefficient is given as C= p.

Linear algebra We denote the adjacency matrix of G with A ∈Rn×n whose aijth entry is equal
to the weight of the link between nodes i and j when such an edge exists, and zero otherwise.
Matrix A is irreducible if the underlying digraph is strongly connected. If digraph G is aperiodic
and irreducible, then A is primitive. (A digraph is aperiodic if the greatest common divisor of all
cycle lengths is 1.) A cycle is a closed walk, of at least three nodes, in which no edge is repeated.

We adopt the shorthand notations 1n = [1, . . . , 1]� and 0n = [0, . . . , 0]�. Given x=
[x1, . . . , xn]� ∈Rn, diag (x) denotes the diagonal matrix whose diagonal entries are x1, . . . , xn.
For an irreducible nonnegative matrix A, λmax denotes the dominant eigenvalue of A which is
equal to the spectral radius of A, ρ(A). The left positive eigenvector of A associated with λmax is
called the left dominant eigenvector of A.

Empirical networks properties Our generative-network models attend to three often observed
properties of real networks. (i) Small average shortest path: in networks with a large number of
vertices, the average shortest path lengths are relatively small due to the existence of bridges or
shortcuts. (ii) Heavy tail degree distribution: in contrast to Erdős-Rényi graphs with binomial
degree distribution, degree distributions of more realistic networks display a power law shape:
P(k)∼Ak−α , where typically 2< α < 3. (iii)High average clustering coefficient: in most real-world
networks, particularly social networks, nodes tend to create tightly knit groups with relatively high
clustering coefficient.

Stochastic block model Let n, k ∈Z+ denote the number of vertices and the communities,
respectively; p= (p1, . . . , pk) be a probability vector (the prior) on the k communities, and W ∈
{0, 1}k×k be a symmetric matrix of connectivity probabilities. The pair (X, G ) is drawn under the
SBM(n, p,W) if X is an n-dimensional random vector with i.i.d. components distributed under p,
and G (V , E ) is a simple graph where vertices v and u are connected with probability WXv,Xu ,
independently of any other pairs. We define the community sets by �i =�i(X) :={v ∈ V :Xv = i},
i ∈ {1, . . . , k}.

Note that edges are independently but not identically distributed. Instead, they are condition-
ally independent—that is, conditioned on their groups, all edges are independent and for a given
pair of groups (i, j), they are i.i.d. Because each vertex in a given group connects to all other ver-
tices in the same way, vertices in the same community are said to be stochastically equivalent. The
distribution of (X, G ) for x ∈ {1, . . . , k}n is given by

P{X= x} :=
n∏

u=1
pxu =

k∏
i=1

p|�i(x)|
i

P{E = y|X= x} :=
∏

1≤u<v≤n
Wyuv

xu,xv(1−Wxu,xv)
(1−yuv)

The law of large numbers implies that, almost surely,
1
n
|�i|→ pi.
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Symmetric SBM (SSBM) If the probability vector p is uniform andW has all diagonal entries
equal to qin and all non-diagonal entries equal to qout , then the SBM is said to be symmetric. We
say (X, G ) is drawn under the SSBM(n, k, qin, qout), where the community prior is p= {1/k}k, and
X is drawn uniformly at random with the constraints |{v ∈ V : Xv = i}| = n/k. The case where
qin > qout is called assortative model.

2. Methods
To design our four models, we first generate a sequence of group sizes, and refer to the appendix
for some of the detailed algorithms involved. Second, we produce the community structures
according to the sequence of group sizes and add the interconnections among them in the four
modalities of multigroup connectivity.

2.1 Generating subgroup sizes
In this section, we describe an algorithm to generate relative subgroup sizes and introduce the
resulting properties of these subgroups. We compute a normalized sequence of group sizes with
a heavy tail distribution. We refer to Algorithm 1 in the appendix for a formal description based
on pseudocode. Each subgroup is modeled as a connected dense Erdős-Rényi graph. For ε sub-
stantially smaller than 1 (we shall select it to be 10%), a subgroup of size i is the random graph
GER(i, 1− ε).

Each subgroup of size i and edge probability 1− ε has the following properties:

i. connectivity threshold of t(i)= ln (i)
i

, that is, for 1− ε > t(i), GER is almost surely con-
nected (almost any graph in the ensemble GER is connected);

ii. (1− ε) i(i− 1)
2 edges on average;

iii. small average shortest path close to 1 and depending at most logarithmically on i;
iv. binomial degree distribution: P(k)= (i−1

k
)
(1− ε)k(ε)i−1−k. Note that as ε decreases, the

standard error becomes smaller and the distribution is more densely concentrated around
the mean (i− 1)(1− ε); and

v. large clustering coefficient close to 1 (conditioned on small ε) and equal to C= 1− ε.

Given a population of n individuals, Algorithm 1 generates a sequence of relative subgroup
sizes, such that, when interpreted as a disconnected graph, the collection of these subgroups
exhibits a heavy tail degree distribution. An example of subgroup sizes generated by Algorithm 1
is illustrated in Figure 2.

As part of Algorithm 1, we design the probability distribution for the subgroup size i to be

proportional to
1
i3
. The choice of exponent equal to 3 is based on the following notes: first, in order

for f (i)= k
iα

and its mean to be well defined, one should have α ≥ 2; second, if one additionally
requires the distribution to have a finite variance, then α ≥ 3. With exponent 3, the outcome of
each realization of the algorithm is a collection of mostly small connected subgroups.

2.2 Models of multigroup connectivity
In this section, we describe the algorithms that generate realizations of the four multigroup
connectivity modalities.

For three of the four modalities (bridges, edge bundles, and co-members), we connect the
subgroups through a minimal set of pairwise coordination problems among them. Specifically,
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Figure 2. A collection of subgroups on 100
individuals.

Figure 3. Example of a network of 50 individu-
als in subgroups connected by bridges.

aminimal set of pairwise coordination problems is modeled through the notion of a random span-
ning tree among the subgroups. To define the generative algorithms for these three structures, we
apply the notion of SBMs.

2.2.1 Bridge connectivity model
Here, we propose an algorithm to generate the bridge connected model. This structure can be
modeled as an SBMwhere the communities are connected through a uniform randomly generated
spanning tree, and the interconnections are through precisely one node of each subgroup. We
denote the edge set of this random tree with ET . The graph is drawn under the SBM(n, p,WB),
conditioned under connectivity, where p is calculated by Algorithm 1, andWB is given by

WB
ij =

⎧⎪⎪⎨
⎪⎪⎩

1− ε, if i= j
1

n2pipj
= 1

sisj
, if i �= j and ij ∈ ET

0, otherwise

(1)

where si = |�i| denotes the size of group i, and WB contains a tree structure. Note that given an
SBM, a node in community i has npjWij neighbors in expectation in community j. We illustrate a
realization of our algorithm in Figure 3.

2.2.2 Edge bundle connectivity model
In this section, we propose an algorithm to generate the edge bundle connectivity model. Again
we apply a random spanning tree as the building block of the interconnections. Here, instead of
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Figure 4. Example of a network of 50 indi-
viduals in subgroups connected by bundles of
edges.

adding a single edge as the basis of intergroup connectivity, we add multiple edges whose number
grows with the size of the subgroups. We illustrate an algorithm realization in Figure 4.

We draw the graph under the SBM(n, p,WEB), conditioned under redundant connectivity.
Communities are connected through a uniform randomly generated spanning tree with edge set
ET . The interconnections involve two or more nodes from neighboring subgroups. p is calculated
by Algorithm 1, andWEB is given by

WEB
ij =

⎧⎪⎪⎨
⎪⎪⎩

1− ε, if i= j
αij

n2pipj
= αij

sisj
, if i �= j and ij ∈ ET

0, otherwise

(2)

whereWEB contains a tree structure, αij = αji ≥ 2 for all i, j, and αij scales with sisj.

2.2.3 Co-membership connectivity model
In addition to the existence of a uniform random spanning tree over the subgroup, our co-
membership connectivity model generation is conditioned under the following topological
constraint: we consider each pair of connected subgroups, say i and j, and select a fraction of
edges in the complete bipartite graph over i and j. For each of these selected edges, we randomly
select one of the two individuals, say the individual in i, and we turn this individual into a member
of the subgroup j by adding edges from this individual to almost all members of v. We illustrate
an algorithm realization in Figure 5.

The co-membership model can be generated as a realization of SBM(n, p,WC), conditioned
under the edge bundles initiated from a single node in one of the corresponding subgroups. Again
ET denotes the edge set of the random tree, p is calculated by Algorithm 1, andWC is given by

WC
ij =

⎧⎪⎪⎨
⎪⎪⎩

1− ε, if i= j
αij

n2pipj
= αij

sisj
, if i �= j and ij ∈ ET

0, otherwise

(3)

whereWC contains a tree structure, αij = αji ≥ 3 for all i, j, and αij scales with either si or sj (αij ≈ si
or αij ≈ sj).

2.2.4 Liaison hierarchy connectivity model
Here, applying Algorithm 1 we first generate the subgroups as dense Erdős–Rényi graphs. Then
we partition the subgroups into sets of 2 or 3, and (i) assign a liaison to each of sets and (ii)
recursively assign a new liaison to groups of 2 or 3 liaisons until we reach the root at the top
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Figure 5. Example of 50 individuals in a co-membership
connected network.

Figure 6. Example of 50 individuals in sub-
groups joined by a liaison hierarchy generated
by Algorithm 3.

of the hierarchy. The resulting graph is a hierarchical tree structure with random branching fac-
tors of 2 and 3. A detailed description is provided in Algorithm 3 in the appendix, and Figure 6
illustrates a realization of this model.

3. Results
Realistic networks are usually not exclusively based on a single modality of subgroup connectivity.
Our comparative analysis of connectivity modalities is oriented to the question of the implica-
tions of a shift away from one modality toward another modality, e.g., a modality shift from a
liaison hierarchy toward direct bridges among subgroups, or from bridges among subgroups to
intergroup edge bundles, or from intergroup edge bundles to co-memberships.

In Figure 7, we present a comparison of the average shortest paths and average degrees of our
generated networks as a function of network size for each of the four multigroup connectivity
modalities. Each sample point on the curves is based on 100 realizations on networks with sizes
that increase in step sizes of 50 up to 2,000 nodes. In analyses that increase the sample point size to
1,500 over a range of sizes up to 500, there is no marked change in the trajectories. In general, the
confidence interval bands are narrow. Here, and elsewhere, red refers to the bridge model, purple
to the edge bundle model, green to the co-membership model, and blue to the liaison hierarchy
model. Figure 7(a) shows that the liaison hierarchy increasingly distinguishes itself from the three
modalities as network size increases. Its displayed trajectory is conditional on the liaison structure
design. Average shortest paths are insensitive to redundancies. Hence, the lack of distinctions
among the other three modalities is not surprising. Figure 7(b) shows that the four modalities are
systematically ordered with respect to their average degrees: (co-membership)> (edge-bundle)>

(bridge) > (liaison) with respect to their average degrees.
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(a)

(b)

Figure 7. In each plot, red refers to the bridge
model, purple to the edge bundle model, green to
the co-membership model, and blue to the liaison
hierarchy model. (a) Plot of average shortest path.
(b) Plot of average degree.

3.1 Spectral radius and propagation processes
Propagation phenomena appear in various disciplines, such as spread of infectious diseases, trans-
mission of information, diffusion of innovations, cascading failures in power grids, and spread of
wildfires in forests. Based on the application, the objective can vary from avoiding epidemic out-
breaks and eradicating the disease in a population to facilitating the spread of an ideology or
product over a network in marketing campaigns. In this subsection, we provide a comparison of
the system behavior under the simple and well-studied epidemic models proposed in the literature
for our four proposed network models.

Let x(t)= (
x1(t), . . . , xn(t)

)� denote the infection probabilities of each node at time t and A ∈
R
n×n denote the adjacency matrix of the contact graph. Let β > 0 be the infection rate, and γ > 0

be the recovery rate to the susceptible state. Then the linearization of the SI (Susceptible-Infected)
and SIS (Susceptible-Infected-Susceptible) network propagation models about the no-infection
equilibrium point 0n on a weighted digraph are given by, respectively,

ẋ= βAx (4)

ẋ= (βA− γ In)x (5)

The following results are well known (see the classic works (Lajmanovich & Yorke, 1976; Allen,
1994; Wang et al., 2003) and the recent review (Mei et al., 2017)). In the SI model, the epidemic
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Table 1. Nonlinear regression results for spectral radius, controlling for net-
work size and average degree, and indicator variables for the connectivity
modalities with bridge modality as baseline (15,200 networks, R2 = 0.833)

Coeff. S.E. p Value

Constant −2.8103 0.12916 <0.0001
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

N 0.0038847 5.2749e-05 <0.0001
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Degree 5.0734 0.088421 <0.0001
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Edge-bundle 0.2012 0.019035 <0.0001
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Co-membership −1.8589 0.062881 <0.0001
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Liaison 0.24287 0.023229 <0.0001
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

N2 −8.3082e-07 2.1709e-08 <0.0001

Figure 8. Plot of spectral radius.

initially experiences exponential growth with rate βλmax. In the SIS model, near the onset of an
epidemic outbreak, the exponential growth rate is βλmax − γ and the outbreak tends to align with
the dominant eigenvector.

In Figure 8, we plot the spectral radius of the networks as a function of network size 50–2,000
for the four models. In Table 1, we evaluate the differences among these curves controlling a
network’s size (N), average degree (Degree), and (0,1) indicator variables for the edge-bundle,
co-membership, and liaison modalities with the bridge modality taken as the baseline. Similar
findings were obtained with 660K observations on a reduced range of network sizes 24–655. The
average degree of a network has a positive effect on the speed of viral propagation. Controlling
for network size and average degree, relative to the propagation speeds in the bridge modality,
propagation speeds in the edge-bundle and liaison modalities are greater and those of the co-
membership modality are less. The elevated curve for co-membership modality in Figure 8 is
based on its systematically higher average degrees.

3.2 Time to convergence in influence processes generating consensus with distributed linear
averaging

Consensus algorithms play an important role in many multiagent systems. They are usually
defined as in French–DeGroot discrete-time averaging recursion

x(t+ 1)=Wx(t) (6)
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Figure 9. Plot of convergence time for the
four network models with equal neighboring
weights.

where W is row stochastic and x(t) ∈Rn is the vector of individuals’ opinions at time t. For
primitive stochastic matrices, the solution to Equation (6) satisfies

lim
k→∞

x(k)= (
vTx(0)

)
1n (7)

where v is the left dominant eigenvector of W satisfying v1 + · · · + vn = 1. Convergence time to
consensus may be defined as τasym = 1

log (1/rasym) and it gives the asymptotic number of steps for
the error to decrease by the factor 1/e, where rasym denotes the asymptotic convergence factor. It
is well known, e.g., see Bullo Bullo (2018), Chapter 10, that convergence to consensus is exponen-
tially fast as ρt

2, where ρ2 is the second largest eigenvalue of W in magnitude. We construct W
from A as follows:

W = (D+ In)−1(A+ In) (8)

where D= diag (A1n) denotes the diagonal matrix of all the nodes’ out-degrees, with dii =∑n
j=1 aij ∀i. Equation (8) gives positive weights wii that are equal to thewij weights of i’s neighbors

in A.
In Figure 9, we plot the average convergence times of the networks as a function of network

size 50–2,000 for the four models. In Table 2, we evaluate the differences among these curves
controlling a network’s size (N), average degree (Degree), and (0,1) indicator variables for the
edge-bundle, co-membership, and liaison modalities with the bridge modality taken as the base-
line. Similar findings were obtained with 660K observations on a reduced range of network sizes
24–655. The convergence times of the bridge modality are larger than those of the three other
modalities, and the liaison modality has the fastest convergence times. Higher average degrees
lower times to convergence. Controlling for network size and average degree, the convergence
times of the edge-bundle modality are faster than those of the co-membership modality.

3.3 Consensus processes subject to white Gaussian noise
The general form of a French–DeGroot influence process with white Gaussian noise is

x(t+ 1)=Wx(t)+ e(t) (9)

where e(t) is a random vector with zero mean and covariance 
e having independent entries. In
the presence of noise, the states of the agents will be brought close to each other, but will not fully
align to exact consensus. The resulting noisy consensus is referred to as persistent disagreement.
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Table 2. Nonlinear regression results for convergence time, controlling for
network size and average degree, and indicator variables for the connectivity
modalities with bridge modality as baseline (15,200 networks, R2 = 0.637)

Coeff. S.E. p Value

Constant 6991.1 590.12 <0.0001
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

N 11.558 0.241 <0.0001
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Degree −3300.9 403.98 <0.0001
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Edge-bundle −4652.9 86.969 <0.0001
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Co-membership −2993.9 287.29 <0.0001
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Liaison −7790.3 106.13 <0.0001
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

N2 −0.0018372 9.9184e-05 <0.0001

Figure 10. Plot of δss of graph A for the four net-
work models with equal neighboring weights.

For strongly connected and aperiodic graphs, the consensus dynamics (6) correspond to an irre-
ducible and aperiodic Markov chain. The matrixW then corresponds to the transition probability
matrix and its normalized left dominant eigenvector π corresponds to the stationary distribution
vector of the chain. The results on the steady-state disagreement by Jadbabaie & Olshevsky (2017)
apply to reversible Markov chains which with the choice of weights on our adjacency matrix will
be met. For the Markov chain with reversible transition matrix W and with uncorrelated noise,
the mean square asymptotic error δss can be measured by

δss = πTHDπ
eDπ1n (10)

where Dπ = diag (π) andH is the matrix of hitting times for the Markov chain. The algorithm by
Kemeny & Snell (1976) is applied to compute H.

In Figure 10, we plot the steady-state mean deviation from consensus, given by Equation (10),
on the networks as a function of network size 50–2,000 for the four models. In Table 3, we evalu-
ate the differences among these curves controlling a network’s size (N), average degree (Degree),
and (0,1) indicator variables for the edge-bundle, co-membership, and liaison modalities with the
bridge modality taken as the baseline. Similar findings were obtained with 660K observations on
a reduced range of network sizes 24–655. The steady-state mean deviations for the bridge modal-
ity are larger than those of the three other modalities. Higher average degrees lower steady-state
mean deviations from consensus. Although the modalities have distinguishable effects, again we
note that average degree differences are “boiled into” the modality models, so that when average
degree is controlled, the relative ordering of modalities is altered. The edge-bundle and liaison
modalities have greater noise reduction properties than the co-membership modality.
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Table 3. Nonlinear regression results for steady-state mean deviation from
consensus, controlling for network size and average degree, and indicator
variables for the connectivity modalities with bridge modality as baseline
(15,200 networks, R2 = 0.768)

Coeff. S.E. p Value

Constant 30.894 0.84085 <0.0001
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

N 0.031003 0.0003434 <0.0001
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Degree −9.1312 0.57562 <0.0001
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Edge-bundle −16.807 0.12392 <0.0001
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Co-membership −10.502 0.40935 <0.0001
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Liaison −14.052 0.15122 <0.0001
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

N2 −9.1291e-06 1.4133e-07 <0.0001

4. Discussion
In this article, we have proposed simple, synergistic, and stochastic algorithms to generate four
modalities of multigroup connectivity and have compared their implications. These algorithms
are a variant of what is known as planted partition or SBMs, under some further topological con-
straints including that the intergroup connectivity is shaped by an underlying tree. Models 1–3
are nested in the following sense: for appropriate parameters, (1) graphs generated by the bridge
connectivity structure are subgraphs of those generated by the edge bundles and (2) graphs gen-
erated by the edge bundle connectivity structure could be subgraphs of those generated by the
co-membership. However, moving from the edge bundles to co-memberships, we introduce an
additional constraint; that is, edge bundles of the spanning tree are initiated from the same node
in one of neighboring subgroups in the co-membership model. The work touches on two central
traditions in network analysis: models of network structure and models of dynamical processes
that unfold on networks composed of multiple small groups with dense within-group edges. In a
connected network, any two such groups might be intersecting (with one or more individuals who
aremembers of both) or disjoint. Two disjoint subgroupsmay be linked by a bridge, or bymultiple
edges, or by individuals who are not members of any dense group. We consider networks that can
be strictly characterized in terms of one of these types of intergroup connectivity. The touchstone
for our analysis is the work that has been conducted on multiple-group connectivity based on
bridges. Here we elaborate the analysis with a comparison of implications of group-connectivity
based on (i) aminimal set of bridges, (ii) a minimal block-model structure in which pairs of groups
are linked bymultiple edges, (iii) a minimal set of groupmembership intersections, and (iv) a hier-
archical tree of group-independent agents (intermediary liaisons.) No doubt there are many ways
to construct realizations of each type of connectivity. No doubt there are many process metrics
that might be examined. We compare structures in terms of network process metrics. We focus
on metrics of two processes—epidemic propagation and consensus formation. These metrics are
sensitive to network topology. We emphasize that the results of these comparative analyses are
not merely due to the different numbers of links being added to isolated clusters. The regression
results controlling for the network sizes and average node degrees affirm this claim. We constrain
topology to four broad classes of markedly nonrandom clustered networks. Our contribution is to
show the feasibility of a principled approach to a comparative analysis that we believe is currently
lacking with respect to these distinguishable topological classes.

Our findings on the speed of viral propagation show that the speeds differ depending on the
form ofmultigroup connectivity. The average degree of a network has a positive effect on the speed
of viral propagation. If the average degree differences, shown in Figure 7(b), are characteristic
features of the modalities, then Figure 8 shows the net effect of each modality. Controlling for
network size and average degree, our regression analysis in Table 1 evaluates the independent
contributions of average degree and modality type. If it were possible to construct modality types
with identical average degrees, then the regression results suggest that the bridge, edge-bundle,
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and liaison modalities do not substantially differ in their speeds of viral propagation, and that the
co-membership modality dampens the speed of viral propagation.

Our findings on the times to convergence to consensus show that convergence times differ
depending on the form ofmultigroup connectivity. The average degree of a network has a negative
effect on convergence times; that is, higher average degrees are associated with faster convergence
to consensus. If the average degree differences, shown in Figure 7(b), are characteristic features
of the modalities, then Figure 9 shows the net effect of each modality. The bridge modality has
slower convergence times than all other modalities. If it were possible to construct modality types
with identical average degrees, then the regression results in Table 2 suggest somewhat similar
results. As in Figure 9, the convergence times in the bridge modality are greater than all other
modalities, and the liaisonmodality has the fastest convergence times. The regression on the edge-
bundle and co-membership modalities indicates that, for a given average degree and network size,
convergence is faster for edge-bundle than co-membership modalities.

Finally, our findings for levels of steady-state stochastic deviations from consensus in the
presence of noise show that the mean deviations differ depending on the form of multigroup
connectivity. The average degree of a network has a negative effect on steady deviation; that is,
higher average degrees are associated with smaller deviations (more reduction of noise). If the
average degree differences, shown in Figure 7(b), are characteristic features of the modalities, then
Figure 10 shows the net effect of each modality. The bridge modality has greater deviations (less
reduction of noise) than all other modalities. If it were possible to construct modality types with
identical average degrees, then the regression results in Table 3 suggest somewhat similar results.
As in Figure 9, the levels of noise reduction in the bridge modality are less than in all other modali-
ties. The regression on the edge-bundle, co-membership, and liaison modalities indicate that edge
bundles are associated with the greatest reduction of noise.

The important caveat on our findings is that they are conditional on positions taken in the
models with which we generated realizations of each modality; see Algorithms 1 and 2 in the
appendix. In addition, although it is reasonable that differences of average degree are associated
with different modalities, we have not derived bounds on average degree for each modality (this
may be an intractable problem). Furthermore, our analysis of multigroup connectivity modalities
involves a uniform modality, whereas real networks with multiple subgroups are likely to be con-
nected with mixed modalities including instances of bridges, edge-bundles, co-memberships, and
liaison nodes who are not members of any group. We believe that these obvious limitations are
outweighed by the insights obtained from an analysis of artificial network topologies with control-
lable features. In the set of findings of this paper, we were particularly struck by (1) the implications
on network process metrics of the social cohesion entailed in edge-bundle and co-membership
modalities of multigroup connectivity and (2) by the strong effects on process metrics of network
differences of average degree arising from the multiple modalities.

An interesting future research direction is to propose sufficiently predictive indicators that
enable one to categorize an arbitrary graph into any of the four connectivity structures dis-
cussed in this paper. In other words, we are interested in the following question: “given an
empirically observed graph, can one provide a computationally efficient algorithm to identify
subgroups and classify them into these different connectivity structures?” We find the results
on the following literature relevant: recovery of the communities in the prolific community
detection literature (Newman & Girvan, 2004; Fortunato, 2010), graph clustering (Schaeffer,
2007), and graph modularity (Newman, 2006). SBMs are widely recognized generative models
for community detection and clustering in graphs and they provide a ground truth for identifying
subgroups. Abbe Abbe (2017) surveys recent developments for necessary and sufficient conditions
for community recovery and community detection in SBMs.
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Appendix: Algorithm specifications
In this appendix, we present a detailed pseudocode description for three relevant algorithms. Specifically, we present pseu-
docode for generating relative subgroup sizes, for the subproblem of generating a sequence of realizations of a random
variable subject to a fixed sum, and for the liaison generative model.

Algorithm 1: Generating sequence of relative subgroup sizes
Input: n= number of nodes
Parameter: α = 3 exponent of power law
Output: sequence of relative subgroup sizes p

1 define a random variable X taking values over {3, 4, . . . , n}, with probability mass
function P[X= x]∝ 1/x3 to denote the random size of the subgroups

2 invoke Algorithm 2 to incrementally and greedily generate a sequence of realizations
for X, denoted by {S1, . . . , Sk}, satisfying the constraint S1 + · · · + Sk = n

3 for i= 1 : k do
4 pi← Si/n
5 return p

Algorithm 2: Generating a sequence of realizations of a given random variable with fixed
sum

Input: a discrete variable X taking values in {xmin, . . . , xmax} with given pmf, number: n
Output: S= {S1, . . . , Sk} a sequence of realizations of X, adjusted in a greedy

incremental way such that S0 + · · · + Sk = n
1 S←{}, ntmp← n
2 while ntmp ≥ xmin do
3 x̄← realization of X
4 if x̄≤ ntmp then
5 S← S∪ {x̄},
6 ntmp← ntmp − x̄

7 for i= 1 : ntmp do
8 randomly select an number S∗ in the sequence S satisfying S∗ < xmax
9 S∗ ← S∗ + 1

10 return S
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Algorithm 3: Liaison hierarchy connectivity
Input: collection of subgroups generated using Algorithm 1
Parameter: branching factor of each liaison = 2 or 3
Output: graph composed of subgroups plus hierarchy interconnections

1 define a random variable L taking values over {2, 3}, with pmf P[L= l]∝ 1/l3 to
denote the random branching factor of liaisons

2 nl← no. of subgroups
3 while nl > 1 do
4 invoke Algorithm 2 to generate a sequence of realizations for L, denoted by

{S1, . . . , Sk}, satisfying the constraint S1 + · · · + Sk = nl
5 for i= 1 : k do
6 generate a liaison with branching factor Si
7 incrementally connect the liaison to Si unattended subgroups, if any

exist, or unattended liaisons, after attending to all subgroups
8 nl← k
9 assign one liaison to the top of the hierarchy

10 return hierarchical tree with the subgroups as the leaves
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