
BULL. AUSTRAL. MATH. SOC. 5 4 E 9 9 , 5 4 C 5 O , 5 4 B I 5

VOL. 13 ( 1 9 7 5 ) , 5 7 - 6 8 . ( 5 4 E 0 5 , 5 4 E I 5 , I 8 A 3 0 , I 8 A 2 0 )

Special morphisms for

zero-set spaces

Christopher R.A. Gilmour

The author obtains characterizations of the quotients,

epimorphisms and extreme monomorphisms in the category of

separated zero-set spaces and zero-set maps (defined by Hugh

Gordon [Pacific J. Math. 36 (1971), 133-157]). The method

employed, that of init ial i ty constructions, is also used to

elucidate the relationship between zero-set spaces and certain

other topological structures by means of forgetful functors and

their right inverses. Characterizations of pseudocompactness for

zero-set spaces then follow.

1 . Introduction

In [9] Gordon defines the separated zero-set spaces, discusses their

relationship to other topological type structures and introduces the

concepts of realcompactness and pseudocompactness for these spaces. Zero-

set spaces have also been studied by CanfelI [6], Speed [16], and in the

form of the separable M-fine spaces by Tashjian [7 7] and in detail by Hager

[70, 11, 11, 73]. Hager also points out that the axioms for a zero-set

structure were formulated by Alexandroff in [/, 2, 3].

In this paper we obtain characterizations of the quotients,

epimorphisms and extreme monomorphisms in the category of separated zero-
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5 8 C h r i s t o p h e r R . A . G i l m o u r

set spaces and zero-set maps. The method employed, that of ini t ia l i ty

constructions, also enables us to elucidate the relationship between zero-

set spaces and certain other topological structures by means of forgetful

functors and their right inverses. We then deduce characterizations of

pseudocompactness for zero-set spaces.

NOTATION. By "function" we shall mean "real-valued function". We

denote by 0 the constant function which vanishes everywhere.

The zero-set of a function / is denoted by If = f (0) .

The set of al l morphisms between two objects X and Y in a category

A is denoted by A(X, Y) .

2. Background

We br ief ly review some basic resu l t s of Gordon [9 ] .

A zero-set space X i s a pair ( | ^ | , zX) where \x\ i s a set and

zX , the zero-set structure of X , i s a collection of subsets of \x\

satisfying propert ies ( l ) , (2 ) , and (3) below. The sets in zX are

cal led the zero-sets of X and the i r complements with respect to \x\ are

the cozero-sets of X .

(1) zX is closed under finite unions and countable

intersections; 0 and \x\ are in zX .

(2) Disjoint zero-sets are contained in disjoint cozero-sets.

(3) Each cozero-set is a countable union of zero-sets of X .

If for each pair of distinct points in X there is a zero-set

containing just one of them, then we call X a separated zero-set space.

Given zero-set spaces X and Y , a map / : \x\ ->• \Y\ is a zero-set

map if the preimage of each zero-set of Y is a zero-set of X . The

composition of zero-set maps is a zero-set map. Thus we can form the

category ZeAC (respectively ZeAOi ) of zero-set spaces (respectively the

separated zero-set spaces) and zero-set maps.

Denote by R the real line with the zero-set structure consisting of

the closed sets in the usual topology. The collections S(X) of all real-

valued zero-set functions and S*(X) of al l bounded real-valued zero-set

functions, from a zero-set space X to R , are uniformly closed rings and
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lat t ices, under the usual pointwise operations, and contain the constants.

If X is separated then S{X) and S*(X) separate points.

By a Urysohn lemma type argument we have the following theorem of

Gordon's which justifies terminology.

THEOREM 2 .1 . If X is a (separated) zero-set space, then

zX = {If : f € S{X)} = {If : f € S*(X)} .

3. In i t ia l i ty considerations

The zero-set spaces considered in this section are not necessarily

separated.

Given any family of maps {/ } from a set 4 to zero-set spaces

Y , we can always find a unique zero-set space X , with \x\ = A , such

that

(i) each / l i f ts to a zero-set map : X •*• Y , a n d

( i i ) for any zero-set space W and zero-set maps h : W -*• Y ,

i f there i s a map k : \w\ •*• \x\ with ha = fjc , then k

l i f t s to a zero-set map : W -*• X .

We say X is initial for the f to the Y . In fact zX is the

collection of all countable intersections of finite unions of prelmages of

zero-sets in the Y under the / . That zX is a zero-set structure

on A is a consequence of [9, 2.5].

If X and Y are zero-set spaces with \x\ = |y| , and if zX c zY ,

then we say X is coarser than Y , Y is finer than X . We have:

The init ial zero-set structure defined above is the coarsest making

each f a zero-set map.

REMARKS, (l) The categorical dual concept to init ial i ty is that of

coinitiality. It follows by [4, 5] that lejw admits the formation of

coinitial structures. Hence in particular ZeAO is complete, cocomplete,

and has products, coproducts, and quotients.

(2) A zero-set eubspace A of a zero-set space X is a subset \A\
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of \X\ having the init ial zero-set structure for the inclusion map

: \A\ -> X . Thus zA consists of sets which are the intersection of A

with zero-sets of X [9].

(3) A zero-set space X is init ial for S(X) to R .

Let {g } be a family of maps on zero-set spaces X to a set A .

The existence of a finest zero-set space X , with \x\ = A , which l i f ts

each g to a zero-set map is ensured by (l) above. That i s , X is

aoinitial for the g from the X . The following theorem gives a

useful characterization in terms of ini t ial i ty.

f 3.

\k
+

Y

THEOREM 3 .1 . Given zero-set spaces X^ and maps ga : \Xa\ •* \x\ ,

X is Goinitial for the g from the X if and only if X is initial to

R for those functions f : \x\ •* |R| which satisfy fga € s[Xa) for each

Proof. Sufficiency. Fix g . Consider the following diagram where

f ranges through the c lass of functions defined in our hypothesis.

Then, by i n i t i a l i t y of X for the / , each g~ l i f t s to a zero-set

map : Xo -*• X . This deals with the dual of condition ( i ) of the
P

def in i t ion . To check the dual of condition ( i i ) , suppose h f ZeAo[x , Y)

and l e t k : \x\ -*• \Y\ be such that kg = h for each a . Y i s

i n i t i a l for a l l I in S{Y) to R . For each I and a ,
(lk)ga = Ih e S[x ) , so Ik i s one of the / . Hence, by i n i t i a l i t y of

y for the I , k i s l i f t ed to a zero-set map : X •*• Y . Thus X i s
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coinitial for the g from the X .

Necessity. We show that {/ : fga € S{Xa) for each a} = S(X) . The

inclusion "3" is tr ivial and "<=" follows by coinitiality of X for the

g . Now i t is known that X is init ial for S(X) to R . The result

follows.

REMARK. The zero-sets of the coinitial zero-set structure on X

characterized in the above theorem are the countable intersections of

finite unions of sets A with the following property: there exists an

/ : |tf| •* |R| such that A = If and fg € s[x
a)

 f o r e a c h a •

In the terminology of Brummer [5] an object X of a concrete category

A is separated if, given that X is ini t ia l for a map / , then / is an

injection and thus an embedding in A .

PROPOSITION 3.2. The objects of ZeAoi are precisely the separated

objects of ZeAo .

We omit the straightforward proof.

4. Special morphisms in liKoi,

To characterise the epimorphisms and the extreme monomorphisms in

Ze/io and leAOb we use the familiar notion of the double of a space Y

along a subset U . That is we glue two copies of Y along U . In the

case of the separated zero-set spaces i t is necessary to impose some

condition on U to ensure that the double is separated. For the non-

separated case no such condition is necessary.

Let £ , •£„ : Y -*• Y JJ_ Y be the two inclusions into the coproduct of

two copies of a zero-set space Y . Define an equivalence relation on

y £ Y by: a H b if and only if either a = b , i^ia) = i~}~{b) € U or

i^{b) = i~1(a) € U . Let q : Y J[ Y •*• Q be the natural map defined onto

the space of equivalence classes with the quotient (that i s , coinitial)

zero-set structure. Let r - qi , n = 1, 2 .

It is easy to show that the double Q of Y along V is the

following pushout in ZeA.0 :
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(A)

vhere j i s the inclusion map.

LEMMA 4 . 1 . If Y is a separated zero-set space and V is a zero-

set of Y then the diagram (A) is a pushout in liAOi, .

Proof. We need to show that Q is separated. Consider the following

diagram:

u L

By the pushout property in ZeAo there exists a unique p in

ZeAo(Q, Y) with pr^ = pr^ = ly .

If x t y in Q and p(x) t p{y) , then there is an A in zY

containing only one of p(x) and p{y) , since Y is separated. Then

p~^~(A) (. zQ and contains just one of x and y .

If x ? y in Q and p{x) = p(y) , we may assume that x € r^(Y-U)

and y € rAY-U) . By hypothesis U d zY , hence there exists an / in

S{Y) with V = If . Define g : \Q\ •* |R| ty:

? r x = / on Y - V ,

g = 0 otherwise.

Then £ - r,(Y-U) = Zg , and i t only remains to show that g € S(Q) .
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It is sufficient to show that g F € zQ for each F closed in the

real l ine with i t s usual topology. Every such F is the zero-set of some

continuous and hence zero-set map k : R •*• R . Thus g F = Z(kg) and, by

definition of the quotient structure on Q , we need only show that

(kg)q € S(Y^Y) . By coinitiali ty of Y ]]_ Y for i^ and i2 this is

equivalent to showing that {kg)r € S{Y) for n = 1 and n = 2 . Now

(kg)r^ = kf € S{Y) and (kg)r2 is a constant function. This

completes the proof.

The monomorphisms in Ze/to and leAOi are the injections. I t

follows from the pushout property that the epimorphisms in ZeAO are the

surjections; the case for ZeAJOi requires further consideration.

The co-zero-sets of a zero-set space X form a base for a topology on

X which i s completely regular and, if X is separated, is Hausdorff [9].

This topology is delivered by a forgetful functor F . By a dense subset

of a zero-set space X we mean dense in the completely regular space FX .

PROPOSITION 4.2. A morphism in ZeAoi is an epimorphism if and only

if it is dense.

Proof. Sufficiency follows by a standard argument.

Necessity. If / : X -*• Y in ZeA.04 is not dense then the closure

cl f{X) = D{4 : A € zY, A 3 f(X)} is not the whole of Y . Hence there

exists an A in zY with f{X) c A and A t Y . By the above lemma

there i s a separated zero-set space Q with maps r and r in

ZeAO4(y, Q) such that A = {y € Y : r^y) = r2(y)} . Then r^f = r^f but

r l * r2 •

It follows that Zz/vo and le/iOA are well- and cowell-powered.

The following theorem has well-known analogues for other topological-

type structures.

THEOREM 4.3. If f € ZeAo(x, Y) [respectively f € ZeAoiix, Y) )

then the following are equivalent:

(1) / is an embedding (respectively a closed embedding);

(2) / is an equalizer (respectively a multiple equalizer);
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(3) f is an extreme monomorphism.

Proof. We prove (l) °* (2) for the separated case. The remaining

implications have proofs analogous to those for the topological case.

If / is a closed embedding then f(X) = OA where

A = {A : A € zY and f(X) c A} . Then A = Ig for each A in A and

some g. in 5(7) . We show that / equalizes the g. .

Now certainly gAf = g^f = 0 for each A and B in A . Let h in

leAOi(W, I) be given.

f 9A
X 1 • Y — ^ R

Suppose .̂7? = gji for a l l 4 and B in A . Then Z (g ?z) = Z (̂  7j)

for each A and B . Thus, for a fixed A in A ,

Z ^ : B € A} = ̂ [ n f Z ^ : B € A}] = h-X[f(X)} .

In particular Y € A , thus W = h'^Y = h

We can thus define m : \w\ •+ \x\ by m{w) = x where f(x) =

Then m is well-defined and unique since / is an injection, and m

l i f t s to a zero-set map since X is ini t ial for / .

It should be remarked here that we have characterized the multiple

equalizers only. We have been unable to characterize the equalizers (of

pairs) in leAOA .

Since leAO is complete, well- and cowell-powered, a full subcategory

is epireflective in leAO if and only if i t is productive and hereditary

[J4, 10.2.1]. It is easily seen that Ze/iOA is epireflective in ZeAO

and is hence complete. Thus an epireflective subcategory of loAOi is one

which is productive and closed hereditary.

5. Admissible s t ruc tures and pseudocompactness

In [9] Gordon defines and characterizes pseudocompactness for zero-set

spaces and shows, notably, that the product of pseudocompact zero-set

spaces is again pseudocompact.
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The relationship 'between zero-set spaces and uniform spaces, as for

topological and uniform spaces, leads to further characterizations of

pseudocompactness. We 'briefly summarise the relationship of ZeAo to

other topological type categories by means of functors.

We have seen that there is a forgetful functor F from ZeAo to

CfLQ , the category of completely regular spaces and continuous inaps. Now

F has a unique right inverse i? : CAg •* ZeAo where the zero-sets of RX

are the zero-sets of the continuous functions on X . Furthermore R is

left adjoint to F and C/uj is thus embedded as a full bicoreflective

subcategory of ZeAo .

The above holds, mutatis mutandis, for the forgetful functor F' from

the category of proximity spaces and proximity maps to ZeAo , which

assigns to a proximity space the init ial zero-set structure for the

proximity functions (to the real line with i t s standard proximity

structure) to R . Here the unique right inverse P of F' , also left

adjoint to F' , has the defining property: if X is a zero-set space,

then sets in PX are distal if they are contained in disjoint zero-sets of

X .

The functor F : ZeAo •* Cuj preserves ini t ial i ty (in the obvious

sense) and thus products. Also F clearly preserves extreme

monomorphisms. It is then straightforward to prove the following special

case of a theorem of Brummer [5, 1.9.2].

PROPOSITION 5 .1 . If A is an epirefleative subcategory of Ctg ,

then the class of all zero-set spaces X , with FX an object of A ,

forms an epireflective subcategory of ZeAo .

EXAMPLES. (1) Gordon [9] defines a zero-set space X to be compact

i f FX i s compact. A compact zero-set space Y i s a compactification of

a zero-set space X if X i s a dense zero-set subspace of Y . Thus the

separated compact zero-set spaces form an epiref lect ive subcategory of

ZeAOA .

(2) A ZMiltrafilter on a separated zero-set space X is real if i t

has the countable intersection property; X is realcompact if every real

z-ultrafilter is fixed [9]. The realcompact spaces form an epireflective

subcategory of ZeAOi . In [£] I raised the question of whether the

induced topology of a realcompact zero-set space is realcompact. This was
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answered in the affirmative by Hager, in a personal le t ter , using the

Shirota theorem. A direct and simple proof is given by Salbany in [J5].

Zero-set spaces with realcompact induced topology are not necessarily real-

compact. The following counter-example was communicated by Hager.

Let X be an uncountable set of nonmeasurable cardinality equipped

with the separated zero-set structure consisting of the countable and

co-countable sets. The co-countable sets form a real a-ultrafilter on X

which is not fixed. But FX is a discrete topological space and thus

realcompact.

Let UX (respectively U*X ) be the ini t ial uniform structure on a

zero-set space X for S(X) (respectively S*(X) ) to the real line with

i t s usual uniformity. UX and V*X are functorial. There is a forgetful

functor F" from the category of uniform spaces and uniformly continuous

maps to ZeAO which assigns to a uniform space Y the ini t ial zero-set

structure for the real-valued uniformly continuous functions on Y , to

R . Both U and U* are right inverses of F" . U* has the further

properties: for a zero-set space X ,

(1) U*X is the finest precompact uniform structure admitted by

X ;

(2) U*X is the coarsest uniform structure on X that is

delivered by a functor right inverse to F" ;

(3) U*X is the unique admissible precompact uniform structure

on X in which any two disjoint zero-sets of X can be

separated by a uniformly continuous function; {of. [7 ;

15 I 3, 15 J 6]).

A separated zero-set space X is pseudocompaot if every s-ultra-

f i l ter on X is real [9]. We have:

THEOREM 5.2. The following are equivalent for a separated zero-set

space X :

(1) X is pseudocompact;

(2) S(X) = S*{X) ;

( 3 ) UX = U*X ;

(h) every admissible uniform structure on X is precompact;
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(5) MX is the same for each right inverse M of F" ;

(6) X admite a unique eompaotifioation;

(7) X admits a unique preaompaat uniform structure;

(8) X admits a unique uniform structure.

The analogues of conditions (l)-(5) are equivalent for a completely

regular Hausdorff space X , as are the analogues of conditions (6)-(8),

[7; 15 Q, R]. In general however the analogue of the implication

"(l) °* (6)" i s not true for these spaces. Gordon showed that for zero-set

spaces conditions (1), (2), and (6) are equivalent [9]. The proofs of the

remaining implications correspond to those for the topological case and may

uti l ise the properties of V* l isted above.
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