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Abstract

Since the outbreak of the COVID-19 epidemic, it has posed a great crisis to the health and
economy of the world. The objective is to provide a simple deep-learning approach for
predicting, modelling, and evaluating the time evolutions of the COVID-19 epidemic. The
Dove Swarm Search (DSS) algorithm is integrated with the echo state network (ESN) to optimize
the weight. The ESN-DSS model is constructed to predict the evolution of the COVID-19 time
series. Specifically, the self-driven ESN-DSS is created to form a closed feedback loop by
replacing the input with the output. The prediction results, which involve COVID-19 temporal
evolutions of multiple countries worldwide, indicate the excellent prediction performances of
our model compared with several artificial intelligence prediction methods from the literature
(e.g., recurrent neural network, long short-termmemory, gated recurrent units, variational auto
encoder) at the same time scale. Moreover, themodel parameters of the self-driven ESN-DSS are
determined which acts as a significant impact on the prediction performance. As a result, the
network parameters are adjusted to improve the prediction accuracy. The prediction results can
be used as proposals to help governments and medical institutions formulate pertinent precau-
tionarymeasures to prevent further spread. In addition, this study is not only limited toCOVID-19
time series forecasting but also applicable to other nonlinear time series prediction problems.

1. Introduction

Since the spread of the novel Corona Virus Pneumonia (COVID-19) epidemic in December
2019, the epidemic has triggered a serious health and economic crisis worldwide. COVID-19
exhibits high transmissibility, high mutation rates, and immune evasion properties [1]. The
re-infection, recurrence, or seasonal epidemic of COVID-19 or new variant remains a substantial
global public health threat. Accordingly, for the present situation, to carry out an effective
prevention and control strategy, using mathematical or data-driven artificial intelligence
(AI) models to analyse and predict disease spread will be of great help. Nowadays, there are
many studies to make progress in COVID-19 spread analysis and prediction using mathematical
or AI-based models [2].

In modelling the pandemic mathematically, the COVID-19 spread can be modelled using
differential equations. Typical methods have the susceptible-infectious-recovered (SIR), the
susceptible-exposed infectious recovered, and the relational improved model. In mathematical
epidemic models, there are also many other types of research to forecast the temporal evolutions
of COVID-19, including the non-central beta probability distribution approach, reduced-space
Gaussian process regression, fractional nonlinear grey Bernoulli model, the Bayesian structural
time series models, and so forth [3].

AI techniques are applied extensively in predictions of the COVID-19 epidemic due to their
accuracy. In machine learning-based prediction methods, the authors used active learning
models to predict the multimodal data. For predicting the COVID-19 epidemic, there are other
machine learning methods, including the logistic, support vector regression (SVR), spatiotem-
poral autoregressive models, and so forth [4]. Furthermore, the research related to deep learning
for predicting the COVID-19 time evolution has also been widely concerned. Some studies used
multiple deep-learning approaches for predicting the COVID-19 epidemiological data and
compared the prediction accuracy of these different methods. In addition, some studies estimate
the effect of weather parameters on transmissions of COVID-19, such as temperature, rainfall,
humidity, and solar irradiation, and could reflect a seasonal outbreak profile. There are some
related research reviews about the forecast of the COVID-19 pandemic [5].

However, the uncertainness of COVID-19 time series evolution could lead to difficulties in
mathematical modelling, and the limited availability of temporal data restricts the accuracy of
prediction by using AI methods. The temporal evolution prediction of COVID-19 belongs to a
sort of nonlinear time series prediction. Many researchers have shown that recurrent neural
networks (RNNs) exhibit significant performances in nonlinear time series forecasts. However,
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the computational cost of the RNN training process is expensive
owing to the back propagation through time algorithm in the
training process, and gradient vanishing or explosion problems
easily happen [6]. To address these issues, some variants of RNN,
such as long short-termmemory (LSTM) and gated recurrent units
(GRU), have been proposed and widely used to tackle the tasks of
nonlinear time series forecasts. However, these models still have
relatively high computational complexity. The simple methods are
used to predict the evolutions of complex nonlinear time series.

Echo state network (ESN) is a highly efficient computational
framework based on RNN, also known as reservoir computing, and
thus it is suitable for nonlinear time series forecast. The reason why
ESN is efficient is that only the output weight matrix needs to be
trained by a simple linear regression algorithm, whereas other
connection matrices do not need to be trained, but are assigned
randomly. This simple and fast learning process can enormously
reduce the computational expenses of training compared to stand-
ard RNN, LSTM, and GRU. ESN can be successful in performing
computationally hard tasks and has been proven to be very effective
in solving problems in many application fields, including dynam-
ical systems modelling, chaotic time series prediction, equalizing
communication channels, speech recognition and polyphonic
music processing, classification tasks, meteorological forecasting,
industrial plants monitoring, energy consumption and wind power
generation prediction, turbofan engine multi-regime time series
prediction, electricity price prediction, and intelligent stock trading
system [7]. The classical SIR model is adopted to produce a set of
independent synthetic time series data. These generated data to
train and test a classical ESN, and then the authors use the trained
ESN to forecast the spread of COVID-19. ESN based on the RNN
framework which has the advantage of low computational costs is
very suitable for dealing with problems of complex nonlinear time
series forecasting [8].

In this study, a data self-driven ESN-based COVID-19 time
series prediction model is designed [9]. Specifically, the feedback
loop is closed by replacing the input with the output. In simulation
experiments, we forecast the number of daily cumulative confirmed
cases in nine countries. Some existing deep-learning approaches in
prediction at time scale, where the results indicate that ourmethods
can achieve better prediction performance. In addition, we analyse
the effect of the data self-driven ESNmodel parameters on predict-
ive accuracy [10]. By selecting the appropriate data scaling ratio, the
number of neurons, the leakage rate, and the spectral radius of the
connection matrix of neurons, these parameters are adaptively
adjusted to improve prediction performances [11, 12]. The key
contribution of the given model is given below.

Novel method

This ESN-Dove Swarm Search (DSS) approach ensembles the self-
driven forecasting phase that maximizes the performances in terms
of forecasting the epidemics. The self-driven ESN sustains complex
temporal information through the learning of training samples to
autonomously evolve.

Decision-making

Forecasting the epidemic as possible as earlier without any signifi-
cant delay or any other difficulties which affects the forecasting
performance when compared to several AI prediction approaches
which includes the RNN, GRU’s, LSTM, and variational auto
encoder (VAE).

Hyperparameter tuning

The hyperparameters of the ESN algorithm are updated and opti-
mized with the use of the DSS algorithm and thus the forecasting of
COVID-19 is achieved effectively.

The paper organization of this researchwork is listed in Section 2
as a literature review on the forecasting of epidemics, including
various existing approaches that are related to forecasting the
epidemics by utilizing AI, regression, and ARIMA models, the
challenges and disadvantages of the existing work and the research
gap of this work. The proposed methodology of this work is
explained in Section 3 including several approaches to attain effect-
ive performance. Section 4 shows the result section and the experi-
mental analysis is analysed and determined by applying the
performance evaluation, graphical representation, and comparative
analysis whereas the conclusion and future work are comprised in
Section 5.

2. Literature survey

MacIntyre et al. [13] implemented AI in public health to warn the
epidemics at an early stage. This article concentrated on the role of
AI in terms of monitoring the epidemics and the various epidemics
intelligence systems that include the Health Map, Met biota Epi-
demics intelligence from the Open source, Epitweetr, ProMED-
mail, EPIWATCH, Blue Dot, and Global Bio surveillance Portal
were demonstrated. The epidemic warnings could be generated by
AI technology without any human involvement. After a thorough
investigation, EPIWATCH had a significant value in collecting
epidemic intelligence, and the epidemic was detected and alerted
at an early stage. However, AI-based epidemic warning systems
were not widely used.

Uzun Ozsahin et al. [14] developed Black-Box-based Pearson
Correlation approach in prediction process. The objectives of this
article include the comparison of the COVID-19 cases between
Greece and Israel on a weekly, a comparison of the morality rate
between Greece and Israel per month, an analysis and determine
the influence of vaccination and forecasting the total number of
individuals who are affected by COVID-19 in Israel. The correl-
ation analysis was utilized to achieve these objectives. After the
experimental analysis, the results revealed that the accuracy of the
MLR was 98.2%, which is better than ANN in terms of predicting
COVID-19. Meanwhile, this study failed to investigate the regres-
sion, ensemble, and optimization models that were necessary to
improve the overall performance.

Arora et al. [15] evolved a concept to predict and forecast
COVID-19 using the Regression as well as ARIMA models. The
data were taken from Johns Hopkins University for 5 months
in 2020. The Root Mean Squared Logarithmic Error (RMSLE)
was employed to estimate the errors of a proposed model. After
the experimental analysis, it was revealed that the RMSLE of the
S-ARIMAmodel was 1.83, and the result of the S-ARIMAapproach
was superior when compared to the regression models. On the
other hand, the computational process was complex.

Hasan et al. [16] presented data-driven modelling as well as
predicting the COVID-19 outbreak for the policymaking of the
public. In this article, the data-driven method was proposed for
modelling and predicting COVID-19 and it was used by the
decision-makers in handling and controlling the outbreak via
non-pharmaceutical interventions. For the discrete-time stochastic
augmented compartmental approach, an extended Kalman filter
was employed in which the change in time of the reproduction
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number was determined. The active recovered, and the confirmed
cases were considered as the input. After a thorough analysis, it was
revealed that the proposed approach could be utilized to develop a
short to medium forecast in which COVID-19 was predicted.
Meanwhile, the forecasting results were not accurate.

Saqib et al. [17] developed a concept to forecast the spread of
COVID-19 progression using the hybrid polynomial Bayesian
ridge regression model. The hybrid polynomial Bayesian ridge
regression was utilized to formulate the model with n-degree
polynomial. After the experimental analysis, it was revealed that
the proposed model was better than all other approaches in terms
of root mean square error (RMSE). Meanwhile, the significant
factors, such as social distancing, stability of the healthcare
systems, and awareness of the people were not analysed in this
article.

Dash et al. [18] implemented a concept to forecast the COVID-
19 outbreak using the deep learning method as SVR. The principles
of the support vector machine were utilized by the SVR. Here, the
LSTM and SVR approaches were utilized to determine the pan-
demic behaviours. The simulation outcome revealed that the rate of
forecasting the pandemic behaviour by the LSTM approach was
95.5%, which was superior when compared to all other existing
approaches. Meanwhile, a large number of training data were
required for effective performance.

Namasudra et al. [19] demonstrated a concept to predict
COVID-19 cases using the nonlinear neural network-based fore-
casting model. A novel nonlinear autoregressive (NAR) neural
network time series (NAR-NNTS) was proposed to forecast the
COVID-19 cases. The training methods which include the Leven-
berg–Marquardt, scaled conjugate gradient, and Bayesian regular-
ization were employed to train the NAR-NNTS model. After the
experimental analysis, it was revealed that proposed NAR-NNTS
model was superior to all other approaches in predicting the data of
COVID-19.Meanwhile, a large timewas taken to detect COVID-19
cases.

Ketu et al. [20] implemented an enhanced Gaussian process
regression-based forecasting model for COVID-19 outbreak. The
multi-task Gaussian process (MTGP) regression model with
enhanced predictions of novel COVID-19 outbreak was proposed
in this article. The MTGP regression model was employed to
forecast the outbreak of COVID-19 all over the world and it helps
to plan the preventive measures to minimize the spread of the
disease. After the experimental analysis, the results of the proposed
model were outperformed when compared to all other approaches
in terms of detecting its correctness as well as suitability. Mean-
while, this article failed to investigate the significant parameters,
such as the distribution of age, population density, and the viru-
lence of the virus which were used to improve the prediction
accuracy.

Research gap

Despite the various advantages obtained from the above-
mentioned literature in terms of forecasting epidemics, there are
some gaps in the existing literature, which are listed below.

Absence of AI-based epidemic warning systems: The existing
literature does not include the warning systems that integrate
with AI, which is necessary to early warning of the epidemics.
This gap is addressed in the proposed model by developing an
AI-based epidemic warning system to forecast the infectious
disease earlier.

Complexity in the computational process: Due to the high
processing time and the availability of computational resources,
the computational process is complex. This gap is addressed in the
proposed model by providing efficient resources and lowering the
processing time.

A large number of training data are required: The existing
literature requires a large number of training data to forecast
epidemics like COVID-19. The proposed model addresses this
gap by predicting the epidemics with a limited number of
training data.

3. Proposed methodology

The workflow of the proposed method is illustrated in Figure 1.
First, the figure depicts that the data of COVID-19 affected cases.
The collected datasets are subjected to a data preprocessing
phase and the unwanted data are eliminated by using the min-
imum–maximum approach. The data self-driven ESN model is
constructed for forecasting the evolution of the COVID-19 time
series and then the DSS algorithm is integrated with the ESN to
optimize the weight. Hence, the predicted output is determined.
Finally, the performance evaluation is carried out to evaluate the
accuracy of the proposed model in terms of forecasting COVID-
19. Basically, the ESN-DSS model is proposed to perform the
prediction of COVID-19 based on the extracted relevant factors.
The input data are generated in COVID-19 time series based on
the current internal state and weight. A closed feedback loop is
generated that replaced the original input in the prediction
process, the output of the ESN is employed with future values,
and the variables are determined as input. In the feedback loop,
the proposed method iteratively makes predictions for succes-
sive time steps by using its own previous predictions as input.

Figure 1. Workflow of the proposed method.
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The feedback loop frequently updated the prediction outcome
based on the output that generated self-contained and self-
adaptive system. The complex temporal dependencies are
formed in the closed-loop architecture leads to form more
accurate and better COVID-19 prediction.

In COVID-19 prediction, the ESN is used to validate the
initial factors of different signs regarding infection rate, vaccin-
ation details, and so forth. However, in DSS algorithm, it extracts
the behaviour regarding the severity level that finds an effective
optimal solution based on the exploration and exploitation
phases. While integrating with the ESN, the DSS optimizes
the weights by validating the interior issues, and the aim is
achieved by identifying the optimal configuration weight by
diminishing the prediction error. Initially, the weight functions
are randomly assigned in the ESN, and in training process, the
DSS is employed that explores the search space of possible weight
configurations. The DSS model is very efficient in the process of
weight updation and by integrating with ESN the performance is
evaluated.

3.1. Data collection phase

On a global scale, some institutions and research teams provide
many significant open-data resources against COVID-19. In our
study, COVID-19 dataset comes from the Center for Systems
Science and Engineering (CSSE) at Johns Hopkins University
[21]. Daily data of cumulative confirmed cases from nine con-
sidered countries are used for modelling and forecasting. These
nine countries, respectively, are the United Kingdom, Canada,
Australia, Italy, China, France, Japan, Spain, and the United States.
Our sample dataset contains cumulative confirmed cases samples
of 881 days from 22 January 2020 to 20 June 2022, and Figure 2
depicts these data samples where the number of American con-
firmed cases is the largest in every countries.

3.2. Data preprocessing phase

To maintain the echo states of the reservoir, inputs of the network
need to be squashed into a range of �1,1½ � [22]. Consequently, the
transformed time series based on the min–max normalization
method is described as follows:

yscale tð Þ¼
y tð Þ� min

i¼1,2,⋯,T train

y ið Þ

max
i¼1,2,⋯,T train

y ið Þ� min
i¼1,2,⋯,T train

y ið Þ
� �

× scale
, (1)

where scale is the scaling factor, and needs to be satisfied
scale≥ 1? It is worth noting that data squashing is determined
based on the training data, while the test data are assumed to be
unknown. If scale is set as scale¼ 1, because what we predict is
the number of daily cumulative cases, namely y tþ1ð Þ≥ y tð Þ for
any time step t, this means that outputs of the network (namely
inputs) must be greater than one in the test period. This situation
may affect the prediction accuracy. Therefore, in principle, it can
be inferred that scale cannot be less than the growth rate of the
interval of the number of forecast days to ensure that the input and
output of the self-driven ESN are both �1,1½ � during the training
and test period. If what we predict is just at an inflection point or
in a period of dramatic changes, the growth rate of future time
series will bemuch larger than that of training data. Therefore, it is
difficult to determine the value of the scale.

In our simulation experiments, the data scaling factor scale is
set as scale¼ 20 for the cumulative confirmed cases forecasting.

3.3. Self-driven forecasting phase

The objective is to provide simple deep-learning approach for
modelling, predicting, and evaluating COVID-19 epidemic. The
data self-driven ESN model is constructed for forecasting the
evolution of the COVID-19 time series. Based on the standard
ESN, the data self-driven forecast model is developed to forecast
the temporal evolution of COVID-19 epidemic.

The proposed ESN-DSS model is used to predict the diseases
that are influenced in covid-19 by training the insights and inform
the health conditions. The time series forecasting extract the non-
linear data by associating the approaches. The weight functions are
optimized that accurately identified COVID-19 time series fore-
casting prediction process. The parameters are tuned to enhance
the flexibility of prediction process and optimized the algorithm
effectively.

3.3.1. The ESN model
ESN is a highly efficient computational framework based on RNN
and has a significant ability for nonlinear time series forecasting. A
standard ESN architecture consists of three distinct parts, namely
the input layer, dynamical reservoir, and output layer, as shown in
Figure 3, where dashed arrows indicate optional connections. The
input layer includes K input units, the dynamical reservoir includes
N internal network units (namely reservoir neurons) and the output
layer includes L output units.

For the standard ESN with leaky-integrator [23], reservoir
neuron states are updated according to:

r tþ1ð Þ¼ 1�αð Þr tð Þþαf Winu tþ1ð ÞþWr tð ÞþWbacky tð Þð Þ,
(2)

where f ¼ f 1, f 2,…, f N
� �

is the activation function of the reservoir
neuronal vector comprising scalar functions f 1, f 2,…, f N typically
hyperbolic tangent function tanhð Þ. r tð Þ¼ r1 tð Þ,r2 tð Þ,…,rN tð Þð Þ
is a real-valued vector of reservoir neuron states at a time step t.
Input units at the time step t are u tð Þ¼ u1 tð Þ,u2 tð Þ, :…,uK tð Þð Þ

Figure 2. Actual COVID-19 time series of daily cumulative confirmed cases from
22 January 2020 to 20 June 2023, in nine different countries.

4 Weiye Wang, Qing Li and Junsong Wang

https://doi.org/10.1017/S0950268824000992 Published online by Cambridge University Press

https://doi.org/10.1017/S0950268824000992


output units are y tð Þ¼ y1 tð Þ,y2 tð Þ, :…,yK tð Þ� �
. α is the leakage

rate to control the update speed of reservoir neuron states, and
satisfies 0≤ α≤ 1. W in ,W,Wback are the real-valued connection
weight matrices whose values are randomly generated during
ESN initialization. Win is a N ×K connectionmatrix that connects
K inputs to N reservoir neurons, W is a N ×N connection
matrix that connects N reservoir neurons, and Wback is an N × L
feedback connection matrix that projects back N reservoir

neurons from L outputs, where the feedback connection is
optional but not necessary as displayed by the yellow dashed arrow
in Figure 3.

Different from general RNNs, ESNs, W in , W , Wback do not
need to be trained, but are randomly determined during ESN
initialization. In the subsequent training and testing process, their
values remain invariant. For ESN to possess an echo state, the
spectral radius of the matrix W generally needs to be satisfied

Figure 4. Flowchart representation of the proposed ESN-DSS-based self-driven forecast model for COVID-19.

Figure 3. A standard ESN architecture.
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ρ Wð Þ < 1. However, if ESN has the weight matrix W ρ Wð Þ≥ 1, the
echo state characteristic may also hold [18].

The key to the ESN model is the computation of the output
weight matrix Wout . In the training period, the dynamical

reservoir starts with an arbitrary network state r(0) and then is
updated according to Equation (2). If the length of the training
samples is expressed T train we will collect the reservoir state
vectors r tð Þt¼ 1,2, :…,T train . To dismiss the influences of the
initial reservoir state, the state vectors of the initial T initial steps
are discarded owing to the state forgetting the property of the
ESN. We will obtain a KþNþLð Þ × T train �T initialð Þ reservoir
state matrix R by concatenating the input, neuron state, and
output vector.

R¼
u T initial þ1ð Þ u T initial þ2ð Þ ⋯ u T trainð Þ
r T initial þ1ð Þ r T initial þ2ð Þ ⋯ r T trainð Þ
y T initialð Þ y T initial þ1ð Þ ⋯ y T train �1ð Þ

264
375: (3)

Minimizing the mean square error (MSE) between the predicted
output and the actual output Wout will be solved as described in
Equations (4) and (5).

Figure 5. The comparison results of actual and predicted confirmed cases during the training and testing period for nine countries.

Table 1. Parameter settings

Parameters Ranges

Leakage rate α¼ 0:3

Ridge regression coefficient β¼ 1× 10�8

The spectral radius of the matrix W ρ Wð Þ¼ 0:95

Average individual runs 50

Maximum number of iterations 100

Learning rate 0.1
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MSEtrain ¼ 1
T train �T initial

� � XT train

t¼T initialþ1

by tð Þ� y tð Þð Þ2

¼ 1
T train �T initial

� � XT train

t¼T initialþ1

Wout u tð Þ,r tð Þ,y t�1ð Þð Þð

� y tð ÞÞ2,
(4)

Wout ¼ argmin MSEtrainð Þ: (5)

The way of minimizing MSE uses only the linear regression algo-
rithms for the training, therefore, the matrix for solving Wout is
expressed as follows:

Wout ¼YRT RRTþβI
� ��1

: (6)

Y ¼ y T initial þ1ð Þy T initial þ2ð Þ::…y T trainð Þ½ � is L× T train�ð T initialÞ
the actual output matrix in the training period. RT is the transpose of
R. β is the ridge regression coefficient to solve over-fitting problems
that may occur during training. I is KþNþL the order identity
matrix. The output weightmatrix Wout can be calculated according to
Equation (6).

3.3.2. DSS optimization
For various crumbs, the unsatisfied doves are shifted to the spots
whereas the spots with the highest crumbs are occupied by the fed
doves. To accelerate the training mechanism, two effective weight
initialization approaches are employed for initializing the weight
vector and constructing the feature maps [24].

Initial search strategy. In this article, to simplify the arithmetic
evaluation and to avoid the boundaries of the velocity, an initial
search strategy is integrated and it is given as follows:

ckl sþ1ð Þ¼ ckl sð Þþ h1j j cqkl sð Þ
� �þ h2j j zhl sð Þ� ckl sð Þ

� �
(7)

The valid values with every metric are in the minimal hyper-
rectangle and it is represented by n1,v1½ �, ::…, nm,vM½ �. The upper
and lower bounds are denoted by va,na . To squeeze the two-
dimensional hyper-rectangles into the two-dimensional planes,
the basic concept of initialization is employed. Hence, the two-
dimensional net is used to cover the solution spaces. The weight
vectors with the four neurons of the network are evaluated and it is
given as follows:

y
1,1

¼ n1,n2, :…,nMð ÞR (8)
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Figure 6. The changes of APE of prediction confirmed cases with time during the testing period for nine countries.
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yA,Z ¼ v1,v2:…,vMð ÞR (9)

y1,Z ¼ n1,n2, :…,n⌊M=2⌋,v⌊M=2⌋þ1, ::…,vM
� �R

(10)

yA,1 ¼ v1,v2, ::…,v⌊M=2⌋,m⌊M=2⌋þ1, ::…,nM
� �R

(11)

A large number of crumbs with the use of the maximal criterion at
the epoch e is evaluated and expressed as follows:

f ei ¼ΑRGMAX h yei
� �� �

, for i¼ 1, :…,0 (12)

The updated satiety degree of the dove is expressed as follows:

Sei ¼ βSe�1
l þ f

h yið Þ�h yf h

� 	� 	
, for i¼ 1, :…,0 (13)

Most satisfying doves are selected by the high satiety degree with the
use of maximal criterion

f es ¼ARGMAX
1≤ i≤O

Sei
� �

, for i¼ 1,…,0 (14)

The updated position vectors of every dove are obtained by employ-
ing the maximum criteria

yeþ1
i

¼ ye
i
þηαei yef s � ye

i

� 	
(15)

where

αei ¼
Sezs �Sei
Sezs

 !
1�

ye
i
�xef s




 



MAXDISTANCE

0@ 1A (16)

MAXDISTANCE :MAX
1≤ i≤O

y
i
� y

l




 


 (17)

From the above equation, the learning rate is denoted by ηwhich is
used in updating the position vector of the dove. The termination
conditions are given as follows:

gfet �U fð Þ
��� ���≤ τore ≤ SETMAXEPOCH (18)

TheDSO algorithm had the complexity order and it is expressed
as follows:

Figure 7. The four testing error histograms of forecasted confirmed cases for nine countries for nine countries.
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Q MM f E
� �

(19)

From the above equation, Mf
� �

denotes the total number of
data points in the dataset, the number of data points in the dataset is
denoted by Q MM f E

� �
, e denotes the total number of epochs and

the total number of doves is indicated by M.

f el ¼ARGMIN h yei
� �� �

, for i¼ 1, ::…,O (20)

Sel ¼
βSe�1

i þ f
h yið Þ�h yf h

� 	� 	
,
if h yf h

� 	
≠ 0

βSg�1
i þ1, if h yf h

� 	
¼ 0

8>><>>:
for i¼ 1,……,O

(21)

To find more food, the doves are moving with a high satiety
degree. Social learning is simulated for updating the position vec-
tors yef s through a high degree of satiety.

3.3.3. ESN-DSS-based self-driven forecast model for COVID-19
In this model, the outputs mimic the inputs. During the training
period, actual training samples as teacher outputs are written back
the input unit to teach the autonomous evolution of complex
COVID-19 temporal information to the dynamical reservoir. In
the test phase, the predictive output result feeds back the input unit
in place of inputs. By replacing the input with the output, the
feedback loop is closed in Figure 4.

For the self-driven ESN, outputs of the network also need to be
kept in �1,1½ � owing to replacing inputs with outputs. COVID-19
time series data are one-dimensional univariate.

The predicting output of ESN is described as follows:by tþ1ð Þ¼Wout u tþ1ð Þ,r tþ1ð Þ,y tð Þð Þ, (22)

where u tþ1ð Þ,r tþ1ð Þ,y tð Þð Þ is a concatenation vector composed
of the input and neuron state vectors. Wout is a L× KþNþLð Þ
matrix of connections from the inputs, neurons, and previous
outputs to the current outputs, where the inputs and previous

Table 2. The evaluation indices of testing error for confirmed cases forecasting

Country Forecast days RMSE MAE MAPE (%) EV RMSLE

Australia 20 days 94,979 75,966 0.9848 0.8597 0.0121

10 days 31,186 25,629 0.3407 0.9470 0.0041

5 days 14,853 10,364 0.1394 0.9011 0.0020

Canada 20 days 4,381 3,466 0.0886 0.8747 0.0011

10 days 3,136 2,909 0.0746 0.9715 0.0008

5 days 3,384 3,277 0.0841 0.9385 0.0009

China 20 days 6,118 5,233 0.2483 0.6572 0.0029

10 days 3,169 2,452 0.1167 �0.1944 0.0015

5 days 924 725 0.0346 0.5785 0.0004

France 20 days 77,316 56,050 0.1858 0.8877 0.0026

10 days 16,763 14,493 0.0485 0.9674 0.0006

5 days 13,817 13,220 0.0444 0.9851 0.0005

Italy 20 days 22,214 16,484 0.0930 0.9782 0.0013

10 days 11,107 9,273 0.0529 0.9865 0.0006

5 days 6,980 5,492 0.0314 0.9620 0.0004

Japan 20 days 8,956 7,114 0.0786 0.9912 0.0010

10 days 5,116 4,423 0.0495 0.9957 0.0006

5 days 6,478 6,294 0.0707 0.9964 0.0007

Spain 20 days 71,472 63,166 0.5053 0.7406 0.0057

10 days 40,143 36,568 0.2943 0.7704 0.0032

5 days 30,989 28,560 0.2304 0.6739 0.0025

United Kingdom 20 days 162,873 13,442 0.0596 0.9600 0.0007

10 days 17,698 14,370 0.0638 0.8872 0.0008

5 days 22,992 19,394 0.0862 �5,410.37 0.0010

United States 20 days 514,652 462,642 0.5397 0.8538 0.0060

10 days 303,062 279,393 0.3285 0.8632 0.0036

5 days 197,977 193,120 0.2281 0.8772 0.0023
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outputs are optional but not required, as shown by the red dashed
arrows in Figure 3. If the red dashed arrows do not exist, Wout there
is a L×N matrix connecting the reservoir to the outputs.

The initial population of each element is formed by

ckl 0ð Þ¼ cmin,lþukl cmzx,k� cmin,kð Þ (23)

From the above equation, cmzx,k denotes the upper bound,
whereas cmin,k denotes the lower bound of the variable ck . The

random number that is uniformly distributed at a range of 0,1½ � is
represented by ukl. It is regenerated by the above equation when the
element is over the domain which is allowed.

The initial rate of the learning value is fixed at 0.1, whereas the
decrease rate of the learning value is evaluated and given as follows.

η dð Þ¼ η0 × 1� r
R

� 	
¼ 0:1 1� r

100

� 	
(24)

Table 3. Comparative results for confirmed cases forecasting at the same time scale: our self-driven ESN model versus five other prediction models of deep learning

Country Model RMSE MAE MAPE (%) EV RMSLE

Australia Self-driven ESN 14 11 0.1508 0.9232 0.0019

RNN 39,928 397,443 547 0.279 0.0032

GRU 295,978 293,738 4,042 0.349 0.0017

LSTM 327,123 325,203 4,476 0.383 0.0021

BiLSTM 335,033 333,098 4,584 0.363 0.0022

VAE 18,732 17,186 0.236 0.952 0

China Self-driven ESN 63 52 0.0059 0.7496 0.0007

RNN 1,252,034 1,250,442 1,485 0.095 0.0002

GRU 1,085,698 1,083,975 1,287 0.151 0.0002

LSTM 101,482 1,013,002 1,203 0.163 0.0001

BiLSTM 1,205,955 1,204,413 143 0.156 0.0002

VAE 11,103 107,873 0.128 0.843 0

France Self-driven ESN 8,765 7,954 4.0756 �1.11 0.0461

RNN 1,287,786 1,279,681 6,827 0.224 0.0051

GRU 1,204,139 1,196,438 6,383 0.311 0.0044

LSTM 1,085,008 1,075,795 5,738 0.258 0.0036

BiLSTM 1,168,893 1,160,923 6,193 0.308 0.0041

VAE 3,688,083 3,522,353 188 0.554 0.0004

Italy Self-driven ESN 274 235 0.0995 0.9667 0.0012

RNN 1,070,474 1,062,061 4,519 0.201 0.0022

GRU 113,775 1,130,957 4,813 0.314 0.0025

LSTM 1,054,089 1,046,257 4,452 0.267 0.0021

BiLSTM 1,041,374 1,033,467 4,398 0.269 0.0021

VAE 1,386,225 1,385,829 5,901 0.951 0.0033

Spain Self-driven ESN 1,208 993 0.4084 0.7939 0.0050

RNN 1,683,011 167,719 6,944 0.272 0.0052

GRU 1,795,678 1,791,683 7,419 0.467 0.006

LSTM 1,254,449 1,247,959 5,166 0.396 0.0028

BiLSTM 1,194,711 1,187,629 4,916 0.372 0.0026

VAE 5,315,748 5,288,172 219 0.891 0.0005

United States Self-driven ESN 7,469 5,795 0.2858 0.9964 0.0036

RNN 5,227,287 5,136,497 26,373 0.208 0.0967

GRU 4,369,108 4,240,145 21,697 0.066 0.0635

LSTM 1,129,183 1,123,909 58,008 0 0.7589

BiLSTM 4,330,228 4,194,141 21,451 0.024 0.0621

VAE 4,079,244 3,976,682 204 0.993 0.0004
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From the above equation, denotes the initial learning value, the
iterative number is represented as r.

For the data self-driven ESN-DSS, a modified framework is
utilized [25] to update reservoir neuronal states.

r tþ1ð Þ¼ 1�αð Þr tð Þþα tanh Winu tþ1ð ÞþWr tð Þþv tð Þþdð Þ,
(25)

where activation functions of reservoir states uniformly adopt
hyperbolic tangent functions tanhð Þ for N neurons. In the
training phase, the input of the network u tþ1ð Þ is the actual
training sample output at time step t, not the predicted output,
namely u tþ1ð Þ¼ y tð Þ. In the test process, the input u tþ1ð Þ is
the predicted output of self-driven ESN with respect to the time
step t , namely u tþ1ð Þ¼y tð Þ . The weight matrix of input
connections W in is randomly assigned values based on a uni-
form distribution, with a value range of �1,1½ � . The weight
matrix of neuronal internal connections W is a random sparse

matrix with sparse connectivity of 10% from a uniform distri-
bution. The value range for W is �1,1½ �, and the spectral radius
of W generally satisfies ρ Wð Þ≤ 1. v tð Þ is an N × 1random noise
vector from a uniform distribution over �1 × 10�7,1 × 10�7½ �. d
is an N × 1 bias vector,

d¼ arctanh r∗ð Þ�Wr∗, (26)

where r∗ is an N × 1 random vector from a uniform distribution
over �1,�0:8ð � and 0:8,1½ Þ. The predicting output is modified asby tþ1ð Þ¼Wout u tþ1ð Þ,r tþ1ð Þð Þ: (27)

It is worth noting that u tþ1ð Þ¼ y tð Þ during the training
period, while u tþ1ð Þ¼y tð Þ) in the test phase. The reservoir state
matrix R in the training process is

R¼ y T initialð Þ y T initial þ1ð Þ ⋯ y T train �1ð Þ
r T initial þ1ð Þ r T initial þ2ð Þ ⋯ r T trainð Þ

� 

: (28)

Figure 8. The variation of predictive performance MAPE with increasing scale for confirmed cases forecasting for nine countries.
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After the output weight matrix Wout is obtained according to
Equation (6), the self-driven network is ready for use.

4. Experimental results

This section shows the performance evaluation of forecasting epi-
demics using the proposed model. Further, the method is analysed
by several metrics which include the mean absolute error (MAE),
RMSE, explained variance (EV), RMSLE, and mean absolute per-
centage error (MAPE). Then, the output of the proposed model is
compared with all other methods. The outputs are analysed in the
following sections.

4.1. Evaluation indices

In this article, to evaluate the effectiveness and accuracy of the
forecast model based on the data self-driven ESN, five performance
indicators are analysed. The MAE, RMSE, EV, RMSLE, and MAPE
are expressed mathematically as follows, respectively.

RMSE: This is used to evaluate the prediction performance
based on the Euclidean distance that extracted the true values.
The average variations are estimated based on predicted and actual
values.

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn
i¼1

y ið Þ�by ið Þð Þ2
s

, (29)

MAE: It determined the total error arised among different
directions, and the predicted values showed the alternate measure-
ment in prediction process.

MAE ¼ 1
n

Xn
i¼1

y ið Þ�by ið Þj j, (30)

MAPE: It is used to validate the average range of the absolute
function among varied prediction process that extracted the error
and obtained an absolute prediction.

Figure 9. The change of MAPE with increasing the number of reservoir neurons N for confirmed cases forecasting for nine countries.
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MAPE ¼ 100
n

×
Xn
i¼1

y ið Þ�by ið Þ
y ið Þ

���� ����
 !

%, (31)

EV: It measures the total variance range of each independent
variable, and the ratio is validated from the overall gathered data
variables.

EV ¼ 1�
var bY�Y
� 	
var Yð Þ , (32)

RMSLE: It compared the predicted and actual values for evalu-
ating the less penalized function based on real range.

RMSLE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn
i¼1

ln y ið Þð Þ� ln by ið Þð Þð Þ2
s

: (33)

From the above equations, n is the number of samples (days),
y ið Þ is the ith actual values, and y ið Þ is the corresponding predicted
values, and var is the variance of the time series computed by the
function varðÞ of MATLAB. RMSE and MAE are absolute error,
while MAPE and RMSLE are relative error. RMSLE and RMSE are
similar, except that RMSLE is computed at the logarithmic scale,
and thus the data size is ignored. For the best model, the expected
values of RMSE, MAE, MAPE, and RMSLE are zero, and an EV
closer to one indicates more accurate prediction performance.

4.2. Parameter settings

In this study, the sample data that come from the CSSE at Johns
Hopkins University is the number of daily cumulative confirmed
cases of 881 days from 22 January 2020 to 20 June 2022, where the
samples of 861 days from 22 January 2020 to 31May 2022, are used
to train the model to compute the output weight matrix Wout, and
then forecasting the total number of cumulative cases that are
confirmed for the next 20 days from 1 to 20 June 2022, that is,
the number of training and test samples are T train ¼ 861 and
T test ¼ 20 respectively.

COVID-19 time series of daily cumulative confirmed cases is
one-dimensional univariate. Therefore, for our model, the number
of the input and output units is K ¼ L¼ 1. The number of reservoir
neurons is set as N ¼ 800. The reservoir starts with all zero network
states, namely R 0ð Þ¼ 0,0, :…,0ð Þ. According to the state forgetting
property of the reservoir, the effects of the initial reservoir state have
died out after T initial steps so that an initial transient of 100 steps,
namely T initial ¼ 100 , is discarded. Table 1 shows the assigned
parameters.

4.3. Forecast results

In this study, the temporal evolution of daily cumulative confirmed
cases from nine considered countries is predicted, including the
United Kingdom, Canada, Italy, France, Australia, China, the
United States, Spain, and Japan. In the following simulations,
without special mention, all data of testing results are restored
original scale according to the inverse function.

The training and test results of prediction confirmed cases in the
nine countries are given in Figure 5. To observe the test results more
clearly, the sub-graphs of Figure 5 illustrate the magnifying test
results of forecasted confirmed cases based on the testing data of
20 days. Figure 6 represents the evolutions of the absolute percent-
age error (APE) of prediction confirmed cases with time during the

testing period for nine countries. The errors APEs gradually
increase with the increase of forecast days in most countries can
be observed, while there are exceptions, such as Japan and the
United Kingdom whose errors APEs fluctuate, as shown in
Figure 6(f, h). This is because our research belongs to short-term
forecasts. If the number of prediction days increases, the forecast
errors will also increase. Overall, the prediction errors in APEs do
not exceed 2% for all considered countries. The results exhibit good
forecasting performance during the testing period.

Figure 7 illustrates the error histograms of forecasted confirmed
cases for nine countries based on the testing data of 5, 10, and
20 days. The blue bar is the mean error of forecasted 20 days,
namely predicting the mean error from 1 to 20 June 2022. The
orange-red bar is the mean error of forecasted 10 days from 1 to
10 June 2022. The mean error of forecasted 5 days is expressed by
the yellow bar, namely, testing means error from 1 to 5 June 2022.
The results indicate that the United States has the largest absolute
error on RMSE and MAE, as shown in Figure 7(a, b) because its
basic real data are the largest, as shown in Figure 1. Australia has a
relatively large relative error on MAPE and RMLSE, as shown in
Figure 7(c, d). Although Australian relative error is the largest, the
largest MAPE does not exceed 1%, as shown in Figure 7(c). The
detailed evaluation indices of error for confirmed cases forecasting
during the testing period are shown in Table 2.

So far, many methods of deep learning are used in forecasting
the time series evolution of the COVID-19 epidemic. For the
forecast results and errors, the comparison of the self-driven ESN
model is carried out with the other deep learning predictionmodels
which include standard RNN, bidirectional LSTM (BiLSTM),
GRU, LSTM, andVAE [15]. Table 3 depicts the comparison results.

In the comparative simulation experiment, the model is trained
and tested to forecast the time evolution of the cases which are
confirmed at the time scale that is the same as the contrastive five
methods. Training samples are the time series of 131 days from
22 January 2020 to 31 May 2020. Then, the number of cumulative
confirmed cases is forecasted for the next 17 days from 1 to 17 June
2020, for six countries, including Australia, China, France, Italy,
Spain, and the United States. Due to few training samples, in our
model, the initial transient is set as T ¼ 40, namely the first 40 steps
of the reservoir state are discarded. Other parameters remain
unchanged. In Table 3, the best prediction results of the different
evaluation indices are marked in bold among the six methods
compared. It is obvious from the comparison results that ourmodel
has better predictive performance compared with other models in
aspect of some performances, including MAE, MAPE, and RMSE,
whereas the prediction accuracy of our model is even five orders of
magnitude better than some models. However, in the aspect of EV
and RMSLE, the performances of our model are sometimes slightly
inferior to those of VAE.

4.4. Influences of model parameters

In this section, the impact of the parameters of the model on
prediction performance is analysed. These parameters include the
data scaling ratio, number of reservoir neurons, leakage rate, and
spectral radius of the connection matrix, W.

Tomaintain the echo states of the network, the COVID-19 time
series need to be squashed into a range �1,1½ � . By training the
model using training data, the time series evolution of the next
20 days is forecasted. In principle, the scaling factor scalecannot be
less than the growth rate of the predictive 20-day interval. However,
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the test data for the next 20 days are assumed to be unknown.
Therefore, it is not easy to evaluate the value of scale.

The value range scale is kept from 1 to 60, and the other
parameters remain unchanged. MAPE of forecast results of the
number of confirmed cases based on the testing data of 5 days
(pink line), 10 days (green line), and 20 days (blue line) are shown
in Figure 8. We can observe that the prediction performance is very
unstable when the value scale is relatively small. This is because the
training data are squashed into a range of �1,1½ �, while relatively
small scale may induce that the inputs and outputs of self-driven
ESN are greater than one during the test phase. This may affect the
echo state of the network to lead to unstable prediction performance.
When the value scale is slightly larger, the optimal or suboptimal
scale exists to optimize predictive performance. For the different
countries, the optimal scale is different, as shown in Figure 12(a).

The impact of network size N is analysed, namely the number of
reservoir neurons, on the testing error. The forecast results are
displayed in Figure 9. We can see that a bigger network size does
not always bring better results. Smaller or bigger network sizes may
lead to under-fitting or over-fitting. For some cases, there is an

optimal network size to improve prediction performance. However,
for the different countries, the optimal network size is different. For
example, the predicted performance does not change much when
the network size continues to increase from 500 for China, as shown
in Figure 9(c), and similar situations are also shown in Figure 9(g, i).
The optimal network size for the different countries is collected in
Figure 12(b).

The leakage rate α is to control the update speed of the reservoir
neuron states and satisfies 0≤ α≤ 1. The larger the leakage rate is,
the faster the update speed is. The smaller leakage rate means that
the reservoir states at the previous time step have a greater influence
on reservoir status updates at this moment. The influence of the
leakage rate on forecast accuracy is studied, as shown in Figure 10.
The optimal leakage rate is determined, which promotes predictive
performance almost distributes between 0.2 and 0.4 for confirmed
cases forecasting in nine countries, as shown in Figure 12(c). For the
United States, in Figure 10(i), there is an optimal and a suboptimal
value of the leakage rate, and the suboptimal value is close to 0.2.

The influence of the spectral radius of the reservoir neurons
connectionmatrix W on forecast accuracy is analysed. In principle,

Figure 10. The change of MAPE with increasing leakage rate α for confirmed cases forecasting for nine countries.

14 Weiye Wang, Qing Li and Junsong Wang

https://doi.org/10.1017/S0950268824000992 Published online by Cambridge University Press

https://doi.org/10.1017/S0950268824000992


the spectral radius satisfies ρ Wð Þ < 1 to hold the echo state of
networks, but this condition is excessively restrictive. If a network
has a weight matrix Wρ Wð Þ≥ 1, the echo state property can hold
nonetheless if the input not containing the null input [18]. There-
fore, in the simulation experiment, the spectral radius is set over
0,2ð Þ. Figure 11 illustrates the change of the test error MAPE with
the enlargement of the spectral radius. In Figure 11, for most
countries, the optimal spectral radius is closer to one, while pre-
diction performances decrease with increasing the spectral radius
when the spectral radius is greater than one. However, there are
exceptions, as shown in Figure 11(g, i), and the larger the spectral
radius, the better the forecast accuracy. The values of the optimal
spectral radius to optimize prediction performance are shown in
Figure 12(d).

The spectral radius reflects the short-term memory capacity of
the network. The bigger spectral radius means that the short-term
memory capacity of the self-driven ESN is longer, and vice versa.
Figure 11(g, i) illustrates that the LSTM (or more historical infor-
mation) can help the self-driven ESN to better simulate and predict
the future temporal information for Spain and the United State.

In a word, by analysing the impact of the model parameters
(including the data scaling ratio, the number of reservoir neurons
spectral radius of the connection matrix of reservoir neurons) on
prediction performance and leakage rate, these parameters can be
set adaptively as an appropriate value or in an appropriate range to
reduce the prediction error of the self-driven ESN model.

5. Conclusion

The COVID-19 pandemic has negatively affected public health and
economic development all over the world and brought heavy
burdens to healthcare systems in many countries. In our study,
the data self-driven ESN is established to predict the COVID-19
time series. The data self-driven ESNwas created to form the closed
feedback loop by replacing the input with the output. The nine
different countries are selected to forecast the time evolution of
daily cumulative confirmed cases. By comparison with other deep
learning forecasting models at the same time scale, our model
showed excellent prediction performances.Moreover, the influence
of the model parameters on forecast accuracy is analysed, and

Figure 11. The variation of MAPE with increasing spectral radius ρ Wð Þ for confirmed cases forecasting for nine countries.
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found that the forecasting error can be reduced by selecting the
appropriate data scaling ratio, the number of reservoir neurons, the
leakage rate, and the spectral radius of the connection matrix of
reservoir neurons.

To summarize, through the present study, appropriate param-
eters can be adaptively selected to improve the forecast accuracy of
the self-driven ESN model. The results could help governments or
medical institutions to monitor the current situation and to take
opportune precautionary strategies to prevent further spread. Add-
itionally, this study is not only limited to the prediction of the
COVID-19 epidemic but also applicable to other nonlinear time
series prediction problems. It failed to extract the actions taken by
the government that prevent to analyse the total death and cured
cases. It did not validate the result with non-parametric models that
extract the uncertainty issue obtained in the prediction process.
Even though, various achievements have been made, several
enhancements will be made in the future for the betterment of this
work, which includes the development of a novel technique to
detect COVID-19 cases in a short time, thereby accessing the
performance enhancement. Furthermore, it extended to consider
the list of predicted and mortality cases from an individual country
regarding COVID-19 pandemic.
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