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HEMIVARIATIONAL INEQUALITIES WITH THE
POTENTIAL CROSSING THE FIRST EIGENVALUE

SOPHIA T H . KYRITSI AND NIKOLAOS S. PAPAGEORGIOU

In this paper we study a nonlinear hemivariational inequality involving the p-
Laplacian. Our approach is variational and uses a recent nonsmooth Linking Theo-
rem, due to Kourogenis and Papageorgiou (2000). The use of the Linking Theorem
instead of the Mountain Pass Theorem allows us to assume an asymptotic behaviour
of the generalised potential function which goes beyond the principal eigenvalue of
the negative p-Laplacian with Dirichlet boundary conditions.

1. INTRODUCTION

Let Z be a bounded domain with a CllQ, 0 < a < 1, boundary F. We consider the
following nonlinear hemivariational inequality:

-div(||D:r(z)||p~2.Da;(z)) €dj(z,x(z)) almost everywhere on Z

where 2 < p < oo, j : Z x R —> R is a function measurable in z € Z and locally
Lipschitz in x € M and dj(z,x) denotes the subdifferential in the sense of Clarke (gen-
eralised subdifferential, see Section 2). Recently nonlinear hemivariational inequalities
were studied by Gasinski and Papageorgiou [9, 10, 11, 12, 13] using nonsmooth critical
point theory and producing mountain pass type critical points for the nonsmooth locally
Lipschitz energy functional. The results involved asymptotic conditions at ±oo restricted
by the first eigenvalue of the negative p-Laplacian with Dirichlet boundary conditions,
that is, of ( -A p , Wo

llP(Z)) with -Apx = -div(||Da;||P-2£)a;). In this paper we consider
asymptotic behaviour which goes beyond the first eigenvalue. This means that we have to
abandon the use of the mountain pass theorem and look for critical points of the linking
type. In this direction we use the recent general linking type theorem due to Kourogenis
and Papageorgiou [18]. For semilinear hemivariational inequalities (that is, p — 2) go-
ing beyond the first eigenvalue to higher ones, presents no problem since we have a full
knowledge of the spectrum of (—A, HQ {Z)). In fact results in this direction were obtained
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by Goeleven, Motreanu and Panagiotopoulos [14, 15] and Gasinski and Papageorgiou
[12]. However for p > 2 (quasilinear problems) we encounter serious difficulties whose
sources are the lack of full-knowledge of the spectrum of ( -A p , WQ'P(Z)) and the lack
of Rayleigh quotients (that is, variational expressions) for the higher eigenvalues, which
makes it difficult to construct links for the quasilinear case.

Hemivariational inequalities arise in physical problems when we deal with nonconvex,
nonsmooth energy functionals. Such functions appear in mechanics and engineering if
one wants to consider more realistic mechanical laws of nonmonotone and multivalued
nature. For concrete applications we refer to the books of Naniewicz and Panagiotopoulos
[22] and Panagiotopoulos [23].

In the next section for the convenience of the reader, we recall the basic definitions
and facts from the nonsmooth critical point theory as this was originally formulated by
Chang [5] and recently extended by Kourogenis and Papageorgiou [18] and outline the
spectral properties of ( - A p , WQIP(Z)).

2. PRELIMINARIES

Let X be a Banach space and X* its topological dual. A function / : X —> R is
said to be locally Lipschitz, if for every x £ X there exists a neighbourhood U of x

and a constant k depending on U such that \f(z) - f(y)\ ^ k\\z — y\\ for all z,y € U.

It is well-known from convex analysis that a proper convex and lower semicontinuous
function g : X —> M. = K U {+00} is locally Lipschitz in the interior of its effective
domain dom<7 = {x e X : g(x) < +00}. By analogy with the directional derivative of
a convex function, for a locally Lipschitz function / : X —> K we define the generalised
directional derivative at x G X in the direction h € X, by

tor M r f{x' + th)-f{x')
f (x; h) = lim sup — — - ^ - L .

no

It is easy to check that h —> f°(x;h) is a sublinear, continuous function. So by
the Hahn-Banach Theorem f°(x; •) is the support function of a nonempty, convex and
w*-compact set

df(x) = {x* € X' : (x*,h) $ f°{x; h) for all h G X).

This set df (x) is called the "generalised subdifferential" of / at x 6 X. If / , g :

X -> E are both locally Lipschitz functions, then d(f + g)(x) C df{x) + dg(x) and
d(Xf){x) = Xdf(x) for all A g R . Moreover, if / : X -> R is convex, then as we already
mentioned / is locally Lipschitz and the generalised subdifferential coincides with the
subdifferential in the sense of convex analysis (see Hu and Papageorgiou [16]). Also,
if / is strictly differentiable (in particular if / is continuously Gateaux differentiable at
x e X), then df(x) = {/'(*)}.
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Let / : X —> R be a locally Lipschitz function. A point i G X i s said to be a "critical
point" of / if 0 € df(x). It is easy to see that if x G X is a local extremum of / , then
0 £ df(x). It is well-known that in smooth critical point theory, a compactness condition,
known as the "Palais-Smale condition" plays a prominent role. A weaker form of this
condition was proposed by Cerami [4], and Bartolo, Benci and Fortunato [3] showed
that Cerami's weaker condition suffices to have a deformation lemma and through it
obtain minimax theorems for locating critical points. Kourogenis and Papageorgiou [18]
gave a nonsmooth version of Cerami's condition. Namely a locally Lipschitz functional
/ : X —> K satisfies the "nonsmooth C-condition", if every sequence {xn}n^i C X

such that { / ( z n ) } n > 1 is bounded and (l + ||a;n||)m(a;n) -» 0, has a strongly convergent
subsequence. Here m(x) = inf{| |i*| | : x* G df(x)}. Using this compactness type
condition, Kourogenis and Papageorgiou [18] proved a nonsmooth deformation lemma
and then with its help obtained among other things a "Linking Theorem". For easy
reference we recall that theorem. First a definition:

D E F I N I T I O N . Let Cj C C and D be subsets of X. We say that Ci and D "link" in

X, if

(a) d D D = 0 and

(b) for every i? G C(C,X) with tf|Cl =identity, we have t?(C) n D ^ 0.

Kourogenis and Papageorgiou [18], proved the following "Linking Theorem":

THEOREM 1 . If X is a reflexive Banach space, C\ C C and D nonempty subsets of

X with D closed, d and D link in X, T = {i? G C(C, X) : r?|c, = identity}, <f>: X -4 R

is locally Lipschitz and satisfies the nonsmooth C-condition, c — inf sup^($(c)) and
tfer ec

inf <j>, then c ^ inf 4> s,nd c is a critical value of <f>, that is, there exists a critical
Ci D D

point x € X of <f> such that <f>{x) — c. Moreover, if c = inf 0, then there exists x 6 D

such that x e Kc= {x € X :Q e dcf>(x), <f>{x) = c}.

About the spectrum of (—Ap, WQ'P(Z)) we know the following (see Anane [1],
Lindqvist [21]).

Consider the following nonlinear eigenvalue problem.

/ -div{\\Dx(zW~2Dx(z)) = x\x(z)\P~2x{z) almost everywhere on Z )
{ x\r = 0. J "

The least A € R for which (2) has a nontrivial solution is called the first (principal)
eigenvalue Ai of ( - A p , WQ'P(Z)). The first eigenvalue Ai is positive, isolated and simple
(that is, the associated eigenfunctions are constant multiples of each other). Moreover,
for Ai we have a variational characterisation via the Rayleigh quotient, that is,

(3) A, = min \ 1 ^ ^ : x G

https://doi.org/10.1017/S0004972700019857 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700019857
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The minimum is realised at the normalised eigenfunction U\. Note that if uj
minimises the Rayleigh quotient, then so does |ui| and so it follows that the first
eigenfunction ui does not change sign on Z. In fact since we have assumed Z to
have a C1>a-boundary F, from the regularity theorem of Lieberman [20] we have that
u\ £ Cl'P{Z), 0 < (3 < 1 and Ui(z) ^ 0 for all z 6 Z and so we may assume that
ui(z) > 0 for all z e Z. The Liusternik-Schnirelmann theory, gives in addition to Ai, a
whole strictly increasing sequence {Xk}k^i Q R+ for which problem (2) has a nontrivial
solution. These numbers are defined as follows. Let G = {x e WQ'P(Z) : \\Dx\\p = l}
and let ip : G —* K_ be given by ip{x) = — \\X\\P. We set

(4) Cn = inf sup^(z)
K A K

J —divf | |Dx(z)| |p
 DX{Z)\ G dj(z,x(z)) almost everywhere on Z 1

I x | r = 0 J
where An = {K C G : K is symmetric, closed and j(K) ^ n} , with 7 denoting the
Krasnoselskii Z2-genus (see Struwe [24, p.86]). The sequence {An = ~(1/Cn)}n>1 is
strictly increasing and tends to +00. These numbers are the so-called "Liusternik-
Schnirelmann eigenvalues" (or "variational eigenvalues") of (-&P,WQ'P(Z)). For p — 2
we know that these are all the eigenvalues of (-A,HQ(Z)) but for p > 2 we can-
not say this. Recently Anane and Tsouli [2] proved that if AJ = inf [A > Ai :
A is an eigenvalue of (—Ap, WO'P(Z))], then Aj = A2, that is, the second eigenvalue and
the second Liusternik-Schnirelmann eigenvalue of (—Ap, WQ'P(Z)) coincide. Set

Vk = {z G W^{Z) : -dw(^\Dx{z)\\p~2Dx{z)}

= Ajt|o;(2)|p x(z) almost everywhere on Z>, k ^ 1.

These are symmetric, closed cones, but in general are not subspaces of WQ'P(Z),

n
unless Xk is simple. Also if Wn = (J Vk and Wn — \J Vn, then in contrast to the linear

Jt=l k>n

case (p = 2), for p > 2 in general we do not have the inequalities
\\Dx\\p

p < Xk\\x\\p torx€Wk and \\Dx\\p
p > Xk+l\\x\\p

p forxeWk.

Precisely this negative fact is the source of problems in constructing linkings in the
quasilinear case.

3. AUXILIARY RESULTS

In this section we prove some auxiliary results which will pave the way for the
existence theorem in Section 4. Our hypotheses on the nonsmooth potential function
j(z, x) are the following:

H{j) j : Z x R -» E
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is a function such that

(i) for all x € R, z —> j(;z, x) is measurable;

(ii) for almost al\ z G Z, x —> j(z,x) is locally Lipschitz;

(iii) for almost all z £ Z, all x € R and all u € 9j(z, z), we have

with a i 6 Lr'(Z), cx > 0,

+ o o if p ^ N T r

andi(-,O)GLr'(Z);

(iv) lim [u(z,x)x —pj(z,x)] — -oo uniformly for almost all z £ Z and all

u{z,x) £ dj(z,x);
Til (Z T] T)l (Z Ti

(v) Xi ^ liminf— ' ^ lim s u p — ^ — - < A2 uniformly for almost all z G

Z.

REMARK. A more restricted version of hypothesis H(j)(iv) was employed in the context
of smooth problems by Costa and Magalhaes [7, Theorem 2], where it was also assumed
that lim (pj(z,x))/\x\p = Ai uniformly for almost all z 6 Z. So our work here extends
in many different directions of Costa and Magalhaes [7, Theorem 2].

Note that by virtue of hypothesis H(j)(iii) and the Lebourg mean value theorem (see
Lebourg [19] or Clarke [6, p-41]) we have that for almost all z 6 Z and all x £ R

with a[ e Lr'(Z) and dx > 0. We introduce the energy functional <f> : WQ'P(Z) -> R
denned by (j>(x) = [\\Dx\\^)/p — Jz j(z,x(z))dz. From Hu and Papageorgiou [17, p.313],
we know that J : U{Z) —• R defined by J(x) = fzj(z,x(z))dz is locally Lipschitz,
in particular then since Wg'p(Z) is embedded continuously in Lr(Z),J\wi,P is locally
Lipschitz. So <p is locally Lipschitz.

PROPOSITION 2 . If hypotheses H(j) hold, then (j> satisfies the nonsmooth C-

condition.

PROOF: Let {xn}n^\ Q WQ'P(Z) be a sequence such that

<j>(xn) —> £ and (l + ||xn||)m(2;n) —> 0 as n —> oo.

We can find x*n € d(f>(xn) such that ||z*|| = m(xn), n ^ 1. The existence of such an
element follows from the weak compactness of d<j)(xn) and the weak lower semicontinuity
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of the norm. Let A : WQ'P{Z) -> W~l'v(Z) be the nonlinear operator denned by

(A(x),y) = / \\Dx(z)\\p-2(Dx(z),Dy(z))RNdz for all x,y G W^{Z).
Jz

Here and in what follows by (•, •) we denote the duality brackets for the pair
(WQ'P{Z),W-1'"{Z)). We know (see for example Gasinski and Papageorgiou [13]) that
A is monotone, continuous, hence maximal monotone (see Hu and Papageorgiou [16],
p.309). Also if J — J\wl-r(z)i as w e already mentioned J is locally Lipschitz on WQ'P(Z)

and from Chang [5, Theorem 2.2] and Clarke [6, Theorem 2.7.5, p.83] we have that for
all x G WQ'P{Z), dJ(x) C U\Z) and if u G dJ{x), then u{z) G dj(z,x(z)) almost
everywhere on Z. Then for every n ^ 1 we have

x* = A(xn) - un with un G dJ(xn).

From the choice of the sequence {xn}n^i Q WQ'P(Z) we have

\(x*n,xn)-p<t>(xn)+pt\ ^ | | i ; | | | |arB| |+|p0(in)-pe|

< m(xn) (l + ||in||) + p\<t>{xn) - (\ -> 0 as n ->• oo.

Note that if by (•,•)"•' we denote the duality brackets for the pair (Lr(Z),Lr'(Z)),
we have

(x*n,xn) = (A(xn),xn) - (un,xn)rr> - \\Dxn\\
p - I un{z)xn(z)dz.

Jz

So we obtain that

(6) P<f>{xn) - (x*n,xn) = / \un(z)xn(z) -pj(z,x{z))^jdz -)• p^ as n -> oo.

We shall show that {xn}n-^i C WQ'P(Z) is bounded. Suppose that this is not the
case. Then by passing to a subsequence if necessary we may assume that ||xn|| —> oo.
Throughout this proof the norm || • || on the Sobolev space WQ'P(Z) is defined by ||x|| =
||Z?a;||p which by Poincare's inequality is equivalent to the usual Sobolev norm. Let
Vn = ^n/Hznll, n ^ 1. Since \\yn\\ = 1, n > 1, we may assume (at least for a subsequence)
that yn A y in WQ'P(Z), yn -> y in W(Z) (recall that WQ'P(Z) is embedded compactly in
D'(Z)), yn(z) —> y(z) almost everywhere on Z and |yn(z)| ^ k{z) almost everywhere on
Z with k € LP(Z). Because of hypothesis H(j)(v) we can find Ai < 77 < A2 and M > 0
such that for almost all z G Z and all |x| ^ M we have

Also from the growth of j established earlier, we have that for almost all z G Z and
all \x\ < M

\j(z,x)\ </?(*) with/?GLr'(Z).
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Therefore we can say that for almost all z £ Z and all x £ R we have

j(z,x)

For every n ^ 1, we have

z IW

Passing to the limit as n —> oo, we obtain

From this inequality it follows that y ^ 0.

Because of hypothesis H(j)(iv), we can find Mi > 0 such that for almost all z 6 Z,

all \x\ ^ Mi and all u £ dj(z,x) we have

ux-pj(z,x) ^ -1.

On the other hand from hypothesis H(j)(iii) and the resulting from it growth of j ,

we infer that for almost all z £ Z, all \x\ < Mi and all u G dj(z, x), we have

ux — pj(z, x) ^ % for some rji > 0.

Let C = {z e Z : y(z) ̂  0}. Evidently |C |^ > 0 (| • \N being the Lebesgue measure

on RN) and for almost all z £ C we have |a;n(2)| —> oo. We have

/ (un{z)xn(z) -pj(z,xn(z)))dz

= / (un{z)xn{z) -pj(z,xn(z))jdz+ / \un(z)xn(z) - pj(z,xn{z))jdz

^ / (un(z)xn{z) -pj(z,xn{z))^dz + r)l\C
c\^ -ooasn-^oo

a contradiction to (5). This proves the boundedness of {xn}n^i C WQ'P(Z). Thus we

may assume that xn A x in ̂ ' ' ' ( Z ) and i n -> x in LT(Z) (from the compact embedding

of WQ'P(Z) in Lr(Z)). We have

(x*n, i n - x) = <A(xn), xn - x) - (un, xn - x)rT>.

https://doi.org/10.1017/S0004972700019857 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700019857


388 S.T. Kyritsi and N.S. Papageorgiou [8]

From the choice of the sequence {xn}n^i we have that |(^,a;n - x)\ < m(xn)\\xn -

x\\ -» 0 as n -¥ oo. Also since {un}n^i Q Lr'(Z) is bounded (hypothesis H(j)(iii)), it
follows that {un,xn - x)rr< -> 0 as n -> oo. Therefore lim(A(xn),xn - x) = 0. But as
we already said A is maximal monotone, hence it is generalised pseudomonotone and so

||£>iB||J = (A(xn),xn) -» (A(x),x) = \\Dx\\p
p

(see Hu and Papageorgiou [16, p.365]).

Remark that Dxn 4 Dx in U>(Z,RN) and ||Dxn||p -> ||Ds||p. The space D>{Z,RN)

is uniformly convex, hence it has the Kadec-Klee property (see Hu and Papageorgiou [16,
p.28]) and so Dxn -*• Dx in L?(Z,RN). Therefore we conclude that xn -> x in W]*(Z)

which proves that <j> satisfies the nonsmooth C-conditioH. Q

In the next proposition we prove an anticoercivity property of <j> on Ruj, the
eigenspace of the principal eigenvalue Ai > 0.

PROPOSITION 3 . If hypotheses HQ) bold, then ${tui) -* -oo when \t\ -> +oo.

PROOF: Set k(z, x) = j(zrx) — (Ai/p)|ip*. Evidently for every x € R z -*• k(z,x) is
'measurable, while for almost all z € Z x -> k(z,x) is locally Lipschitz. From Clarke [6,
Proposition 2.3.14, p.48], we know that for x > 0 the function x -> k(z,x)/\x\p is locally
Lipschitz and for almost all z € Z and all x > 0 we have

\*dk{z,x)-p\x\'>-2xk{z,x)Jk{z,x)\ \x\

_ , , p - 1 (xdk(zrx) -

\X\P+1

By virtue of hypothesis H(j)2(iv), given % > 0 we can find Af2 > GP surii' ttttatf fbiv
almost all z € Z, all x > M2 and all u e dj(z,x) we have

ux — pj(z, x) < —rj2,

hence

. / k(z.x)\ Th/A(z,
V |p|p

for almost alii z e Z and all x

Since loszG.2\E with IE1]?/,-=^0). tlie" function x -> A;(z, a;)/|a;|p is locally Lipschitz
on (M2,+oo)i<i isdfflferentiable atreverya? €T('M2,+oo)\L(z) with |L(z)| = 0 (here | • |
denotes the Lebesgue'measure on R). We define

Ho(z,x) = { \ xp Jx v M w

0 if x€L(z)
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So for all z € Z\E and all x € (M2, +oo)\L(z) we have

% d

We integrate the above inequality on the interval [v, y] with v < y, v, y 6 (M2, +00)

and obtain

J\0(z,x)dx = J

hence

k(z,x)

v? ^ p\yp

Let y —• +00. Then by virtue of hypothesis H(j)(v) we have that liminf(fc(2,a;)/?/p) > 0.
y-n-00 '

So we obtain that

hence

k{z, v)>— for all v € (M2l +00).
P

For every t > 0 let Kt = {z € Z : i u ^ z ) > M 2 } . Since ui(z) > 0 for all z G Z (see
Section 2), we see that \Kf\N —> 0 as t —> +00. For t > 0 we have

- f j(z,tUl(z))dz
Jz

-
P

|
P

P
^ f

^ - - | ^ ( U + —M%\Kc
t\N + / oi(«)dz + c,Ml\Kc

t\N -> - ^ | Z | y v as t -> +00.
P P JKf P

Therefore l imsup^( tui ) ^ - (%/p) | - ^U- But t]2 > 0 was arbitrary. So we deduce
t->+oo

that 0(tei) -* —00 as t —> +00. Similarly we can show that <j>{tu\) —¥ —00 as t —> —c».
Therefore we conclude that 4>(tui) —t —00 as \t\ —t 00. D

Let V = {x e WO
1J>(Z) : | |Di | | j ; = A 2 | | i | | j } .
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P R O P O S I T I O N 4 . If hypotheses H(j) hold,

then (j>(v) -¥ +oo as \\v\\ -> oo, v € V.

P R O O F : Recall that because of hypothesis H(j)(v) there exist At ^ 77 < A2 and
M > 0 such that for almost all z € Z and all \x\ ^ M we have

pj(z,x) ^ ?7|i|p.

So if v € V, we have

4>(v) = -\\Dv\\'p- f j(z,v(z))dz
P Jz

= -\\Dv\\p- [ j{z,v{z))dz- I j(z,v(z))dz
P J{\v\2M} H\v\<M)

> ^\\Dv\\p
p - ^\\v\\p

p - % for some % > 0,

= - (1 - ^-) \\Dv\\p - % from the definition of V.
p\ A2 /

Since rj < \2, it follows that 4>(y) -¥ +00 as ||v|| -> 00, u 6 V. D

4. EXISTENCE THEOREM

Using the three auxiliary results of Section 3 and theorem 1 (the nonsmooth linking
theorem), in this section we prove the following existence theorem for problem (1):

THEOREM 5 . If hypotheses H(j) hold,
then problem (1) has a solution x € WQ'P(Z).

P R O O F : By virtue of proposition 4, we can find fci > —00 such that

&i = inf[^(t>) : i; G V).

Also because of proposition 3 we can find t" > 0 large enough such that if y = t*u\,

then we have 4>{±y) < k\. Let

G={xeW^p(Z):\\Dx\\p = l}

and

U = {x E G : -rl>(x) = \\x\\p > - c 2 } ,

where c2 < 0 is given by (4). Evidently U is open in C and because

|| ± Ul\\
p
p = (1/AOH ± Du,||J = 1/A! = -C l > - c 2 ,
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we see that ±u\ 6 U. We shall show that in fact ux and — u\ belong to different path-
connected components of U. Suppose that this was not the case. Then we could find
a continuous curve •& in U joining U\ and — ux (that is i?(0) = U\ and d(l) = —U\).

Set H = {i9} U {-i?}. Evidently H C U is compact, symmetric and so i(H) > 1,
that is H G A2. Note that from the definition of U and since H C U, we have that
sup[V>(x) = -||a;||£ : x G H] < c2, a contradiction to (4). Therefore ux and -ux belong
to different path-connected components of U. Let W be the path-connected component
of U with u\ G W. Hence — W is the path-connected component of U with — ux (E — W.

We set E = t*W and F = Eu {-E). Then since A2 = - l / c 2 (see Section 2), we have
\\Dw\\l < A2|Mlp f o r all u; € F and ||£>w||£ = A2||iy||£ for all w € dF and so we infer that
9 F C V. Set C = [-2/, y] = { r £ Wo

llP(^) : r = H~V) + (1 - % > for some A e [0,1]}
d - 9C = {-y,j/} and D = V. We claim that d and D - V link in ^ ' ( Z ) .
To see this first note that because <j>{±y) < k — inf <j>, we have C\ D V = 0. Also if

i?! 6 C(C, WO
1>P(Z)) such that tf^c, = identity, then dx{C) tlV D ^ ( C ) n 5 F ^ 0,

which establishes the linking of C\ and V" is WO
1>P(Z). Now we are in a position to apply

theorem 1 and obtain x € WQ'P(Z) such that $(x) ^ k\ and 0 € d<j>(x). Then we have
Ax - u = 0 in W'^^Z) for some u € 5J(x). So for all •d G Wo

lj>(Z) we have

hence

/ - div(\\Dx\\p~2Dx),A = (u,t?)rr- (by Green's indentity)

and so

-div(\\Dx(z)\\p-2Dx(z)) - u(z) G dj{z,x(z))

almost everywhere on Z with x|r = 0, that is, x G WQ'P(Z) is a solution of (1). D

REMARK. Hemivariational inequalities incorporate as a special case quasilinear elliptic
problems with discontinuities. This is the case when j(z, x) — f* f(z, r)dr with / a mea-
surable function, locally bounded in the second variable. Problems with discontinuities
were examined by Chang [5] (semilinear problems) and by Kourogenis and Papageorgiou
[18] (quasilinear problems).

A simple example of a function j satisfying hypotheses H(j) is the following (for
simplicity we drop the z-dependence):

j(x) = ^-\x\" + k(x)

where

, . _ J ±xlnx if x > 0
k(X)~) Ixl i f x < 0 •
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Note that in this case the resulting hemivariational inequality is at resonance at Ai > 0.
Such problems were studied under different hypotheses by Gasinski and Papageorgiou
[9, 10, 13] (for the semilinear case see also Goeleven, Motreanu and Panagiotopoulos
[15] and Gasinski Papageorgiou [12]).

One of the first classes of problems studied in the context of hemivariational in-
equalities, were semipermeability problems. They arise in heat conduction, flow through
porous media and electrostatics. We consider an open bounded domain Z CM3 refered
to a fixed orthogonal Cartesian coordinate system Oziz2z3 and we formulate the equation
—Apx = f for nonlinear stationary problems (see Diaz [8]). On the C1>Q boundary F
of Z we assume that x equals zero. The function x represents the temperature in heat
conduction problems, whereas in problems of hydraulics the pressure and in problems of
electrostatics the electric potential. We assume that / — / i + / 2 , where f\ is given and f2

is related to x with the relation —fi(z) e dj(z,x(z)) on Z, where j is a locally Lipschitz
(hence in general nonconvex and nonsmooth) energy function and dj denotes the gener-
alised gradient in the sense of Clarke [6] of x -> j(z,x). The relation -f\(z) € dj(z,x(z))

describes, in the language of heat conduction the behaviour of a semipermeable membrane
of finite thickness occupying Z or the behaviour of a temperature controller producing
heat in order to regulate the temperature in Z. So, for example when the temperature
x is less than h, then the heat per unit volume supplied is constant, say a. When x = h

heat is supplied for constant temperature until a desired value b is reached. The sup-
plied heat-temperature relation follows a parabola until the temperature h\ is reached.
Then we have a change of heat from a value —c to — d with the temperature remaining
constant at x — h\ and then the heat supply remains constant whereas the temperature
may increase. We can also think of another temperature-control problem, in which the
temperature is regulated in order to deviate as little as possible from the interval [h\, h2].
In both cases the law of the system is nonmonotone and multivalued (we fill-in the gaps
at the discontinuity points) and the resulting inequality is a hemivariational inequality.
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