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Abstract

Two potential obstacles stand between the observation of a statistical correlation and the design (and
deployment) of an effective intervention, omitted variable bias and reverse causality. Whereas the former
has received ample attention, comparably scant focus has been devoted to the latter in the methodological
literature. Many existing methods for reverse causality testing commence by postulating a structural
model that may suffer from widely recognized issues such as the difficulty of properly setting temporal
lags, which are critical to model validity. In this article, we draw upon advances in machine learning,
specifically the recently established link between causal direction and the effectiveness of semi-supervised
learning algorithms, to develop a novel method for reverse causality testing that circumvents many of the
assumptions required by traditional methods. Mathematical analysis and simulation studies were carried
out to demonstrate the effectiveness of our method. We also performed tests over a real-world dataset to
show how our method may be used to identify causal relationships in practice.
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1. Introduction

A fundamental purpose of research in psychology—and many other disciplines in social sciences for
that matter—is to understand causal relationships between variables. In particular, it is both theoretically
and practically important to distinguish between the mere observation of associations (between
variables) and cases where causality can be inferred. When controlled randomized experiments are
impractical, how to properly do so has garnered considerable attention in multiple disciplines (e.g.,
Pearl, 1998) including psychology (Rogosa, 1980). The practical significance of this inquiry becomes
apparent considering the pivotal role that causal inference plays in formulating effective intervention
strategies. For example, research has consistently shown that individuals who occupy central positions
in their social networks (i.e., centrality) tend to receive more favorable assessment of charisma from their
connections (Balkundi et al., 2011). Yet, the mere identification of this correlation1 does not permit the
conclusion that enhancing an individual’s social-network centrality would be an effective intervention
for boosting their charisma. As a case in point, whereas some scholars view charisma as an outcome

1Throughout this article, we use “correlation” in the broader sense to refer to any (i.e., linear or nonlinear) co-variation (of
two or more variables, constructs, etc.) that manifests in an observed dataset.
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of social-network patterns (Pastor et al., 2002), others contend that charisma is what attracts followers
and allows an individual to occupy a central position in the first place (Shils, 1965), suggesting that the
aforementioned intervention might be less effective.

Two potential obstacles stand between (a) the observation of a robust correlation between two
constructs X and Y, like the centrality-charisma correlation, and (b) the effectiveness of deploying an
intervention on X to change Y, like an attempt to boost centrality in order to increase charisma (Bollen,
1989, p. 41). The first is omitted variable bias (Mauro, 1990), meaning that an unobserved confounder
induces the co-variation of both X and Y. For example, individuals high on extraversion may excel on
both social-network centrality and charisma. The other is reverse causality (Leszczensky & Wolbring,
2022), meaning that the causal influence flows in the reverse direction (i.e., Y→X) from what is required
by the intended intervention—e.g., charisma influences centrality but not the other way around. There
is a substantial body of methodological research on assessing the magnitude of omitted variable bias in
a relationship (e.g., Busenbark et al., 2022; Cinelli & Hazlett, 2020; Harring et al., 2017; Mauro, 1990).
Yet comparatively little attention has been directed toward testing for reverse causality (Leszczensky &
Wolbring, 2022). Admittedly, the issue may not be applicable in situations where a clear causal direction
is obvious (e.g., cancer → age is implausible). Nonetheless, for psychological constructs, concerns on
reverse causality are prevalent, especially when theoretical arguments could be made for both directions.
The focus of this work is to develop a method for testing reverse causality in observational data, with an
emphasis on panel data.

To empirically investigate the issue of reverse causality in observational data, some existing methods,
like cross-lagged panel models (CLPM; Hamaker et al., 2015), commence by presuming a reciprocal
relationship, before postulating a structural model based on the assumption and empirically estimating
the model to assess the magnitude in both directions while considering auto-regressive effects. Some
other methods infer the direction of causality by exploiting certain distributional and/or functional
features assumed of the underlying data-generating process, such as non-normality in a linear model
(e.g., Shimizu et al., 2006; von Eye & DeShon, 2012), statistical independence between input variables
and additive noise (e.g., Hoyer et al., 2008; Rosenström et al., 2023), etc. These methods pose two
unsolved issues. First, from a theoretical perspective, given that many psychological theories (and theo-
ries in other fields) stipulate unidirectional (instead of reciprocal) relationships, there exists substantial
theoretical interest in testing the direction of causality rather than assuming it away with the adoption of
a reciprocal model like CLPM. For example, the structural advantage theory of social networks (Brass,
1984; Burt, 1992) posits a unidirectional effect of one’s social network characteristics (e.g., centrality)
on individual behaviors (e.g., charismatic leadership). Given the robust correlation reported in the
literature for centrality and charisma (e.g., Balkundi et al., 2011), a well-powered empirical study that
shows the absence of a reverse effect (i.e., charisma /→ centrality) would provide strong evidential value
for supporting the structural advantage theory. Second, from a methodological perspective, formulating
an appropriate model—or accurately specifying its distributional/functional features (e.g., whether it is
linear)—can be particularly challenging when dealing with panel data (Hamaker, 2024; Lucas, 2023).
For example, the validity of many existing panel models (or even the notion of Granger causality itself) is
known to break down when the sampling frequency is improperly specified (Shojaie & Fox, 2022; Vaisey
& Miles, 2017), when there are confounders that are unaccounted for (e.g., Hamaker et al., 2015), etc.

A promising avenue for addressing these issues of existing methods arises from causal learning
(Peters et al., 2017), a branch of machine learning that injects causal inference into the design of
learning algorithms. Central to this approach is a fundamental question: if we were to train a machine
learning model that predicts Y from X (based on a limited number of training data points ⟨X,Y⟩), could
knowledge about the probability distribution of X (i.e., P(X)) help us improve the predictive accuracy
of the trained model? Schölkopf et al. (2012) show that the answer is positive if and only if the causal
direction flows from Y to X. This suggests that, by demonstrating a machine learning model’s ability
to capitalize on P(X) for enhancing predictive accuracy toward Y, we would identify the existence of
reverse causality. Even more importantly, this proposition would hold irrespective of the functional
form of the X–Y relationship.
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Whereas Schölkopf et al. (2012) establish the dependence between causal direction and the pre-
dictive accuracy of semi-supervised learning algorithms, they leverage this finding to understand why
semi-supervised learning works over some datasets but not others, instead of developing a concrete
method for testing reverse causality. In the current research, we address this gap by developing a novel
method for testing reverse causality over panel data. The contribution of our work is two-fold. First,
our method for reverse causality testing allows researchers to rigorously test their causal theories by
addressing two issues that researchers face. On the one hand, our method allows researchers to directly
test unidirectional relationships, instead of assuming these relationships are reciprocal in nature. On
the other hand, our method does not require the specification of distributional or functional features
such as the sampling frequency or the shape of the proposed relationship. By demonstrating the
effectiveness of our method using simulation studies and a case study, we show its applicability for
psychology researchers in theory building and testing. Second, our work pioneers the integration of
advancements in causal learning into the methodological arsenal of psychology for causal inference.
We present conceptual arguments and mathematical formalization that link reverse causality testing
with the predictive accuracy of semi-supervised learning (Van Engelen & Hoos, 2020). In doing so,
we enrich the understanding of how machine learning could contribute to the psychological methods
literature (e.g., Sterner et al., 2023; Wilcox et al., 2023; Zimmer & Debelak, 2023) and open up future
avenues of inquiry at the intersection of psychological research and computer science.

2. Literature review

In this section, we briefly review the existing literature on reverse causality testing and the machine
learning method we propose to use (i.e., semi-supervised learning).

2.1. Reverse causality testing
Compared with the rich and growing literature on omitted variable bias—in psychology (Harring et al.,
2017), sociology (Halaby, 2004) and economics (Wüthrich & Zhu, 2023)—researchers across disciplines
have made relatively limited progress on the testing of reverse causality over panel data. As summarized
by Leszczensky & Wolbring (2022), a common approach is to specify causal direction in a panel model by
applying temporal lags on variables that represent the “cause” after partialing out auto-regressive effects.
For example, a causal direction of X → Y would be reflected by setting a lagged (e.g., previous-wave)
value of X and the contemporary value of Y as independent and dependent variables, respectively, in
the panel model, suggesting that X has a causal, lagged, effect on Y. A variety of panel models follow
this idea (Orth et al., 2021), such as lagged first-difference (LFD) models (Vaisey & Miles, 2017), CLPM
(Hamaker et al., 2015), etc.

As these existing panel models rely on temporal lags to identify the causal direction, how to specify
the amount of this temporal lag becomes a prominent question. Theoretically deriving the “correct”
temporal lag is obviously even more challenging than discerning the causal direction, suggesting the
need for methods to be robust to misspecified temporal lags. Unfortunately, Vaisey & Miles (2017)
show that panel models such as LFDs can be highly sensitive to the misspecification of temporal lags.
Leszczensky & Wolbring (2022, Figure 2) also demonstrate that, when a contemporaneous effect is mis-
characterized as lagged in a CLPM, the model can produce highly biased estimates. More fundamentally,
the very notion of Granger causality, which underpins all panel models, is known to break down with a
mis-specified temporal lag (Shojaie & Fox, 2022).

Beyond panel models, other existing methods for reverse causality testing rely on certain distribu-
tional/functional features assumed of the underlying data-generating process. Some—like Direction
Dependence Analysis (DDA; Li & Wiedermann, 2020; Pornprasertmanit & Little, 2012; von Eye &
DeShon, 2012; Wiedermann & Li, 2018) and Linear Non-Gaussian Acyclic Models (LiNGAM; Shimizu
et al., 2006)—exploit the non-normality of data distributions in a linear model to infer causal direction.
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In the case of DDA, for example, the causal direction may be inferred by comparing the degrees of
departure2 from normality across different variables. For longitudinal data, extensions of these methods
(e.g., Bauer et al., 2016; Geiger et al., 2015; Hyvärinen et al., 2010) leverage the non-normality of noise
to identify causal direction in multivariate time series. Additionally, methods like Rosenström et al.’s
(2023) directional analysis approach, additive noise models (Hoyer et al., 2008; Peters et al., 2014) and
(more generally) post-nonlinear models (Zhang & Hyvärinen, 2009) infer causal direction by assuming
statistical independence between the input variables and an additive noise component within linear or
nonlinear models. Yet, like panel models’ reliance on properly specified temporal lags, these methods
also hinge on accurately defining certain distributional or functional features of the relationship between
variables—knowledge that may not be available a priori.

These issues of existing methods raise an important question: Can we test for reverse causality without
constraining the functional form of the data-generating process? Doing so would not only circumvent
the complexities of specifying the temporal lag, but also relax the linearity or additive noise assumptions
that permeate existing methods. We seek to answer this question in the current work by integrating
recent advances in machine learning and the broader causal inference literature.

2.2. Semi-supervised learning
The objective of semi-supervised learning is to approximate the function f that links independent
variables X to a dependent variable Y such that Y = f (X). This is done by learning from two datasets
containing i.i.d. samples. The first dataset, typically known as labeled set, provides ⟨xi,yi⟩ (i.e., paired
X–Y values) for n1 data points. The second dataset provides only the values of X, but not Y, for other
n2 data points, and is therefore known as the unlabeled set. In machine learning, it is generally assumed
that n1 is much smaller than n2, due mainly to the high cost of acquiring Y in practice. For example, a
task for which semi-supervised learning has shown remarkable success is image classification (Xie et al.,
2020). With this task, X is an image and Y is its category (e.g., landscape, portrait). It is virtually cost-less
to collect millions of images from the web, but considerably more expensive to hire human workers to
properly label the collected images. In this case, we may opt to manually label only a few observations
of X, leading to the assumption that n1≪ n2.

The limited size of the labeled set means that, if we were to launch a canonical supervised learning
algorithm (e.g., OLS or logistic regression), which can only learn from the labeled set, we would not
be able to obtain an accurate prediction of Y. The uniqueness of semi-supervised learning lies in its
ability to leverage the n2 unlabeled, X-only, data points to significantly improve the predictive accuracy
of the learned f̂ . To this end, numerous methods have been proposed for semi-supervised learning
(Van Engelen & Hoos, 2020). A famous example, which we will further elaborate later in the article,
is self-training (e.g., Sohn et al., 2020), which can be readily integrated with many supervised learning
algorithms such as logistic regression. With self-training, we start by running a supervised learning
algorithm (e.g., logistic regression) over the n1 labeled data points to generate an approximation of f,
denoted by f̂1, which predicts Y based on an input X. Then, we apply f̂1 over each of the n2 unlabeled
data points to predict its pseudo-label (i.e., an estimate of Y). Note that when a machine learning
model is used for prediction, it may generate not only a point-estimate (e.g., binary prediction in
logistic regression) but also a confidence level associated with the estimate (e.g., log-odds in logistic
regression). Leveraging this, we select from the n2 pseudo-labels those with confidence above a pre-
determined threshold, add their X values paired with pseudo-labels (i.e.,) ⟨xi, f̂1(xi)⟩ to the labeled set,
before running the supervised learning algorithm again to update our approximation of f. This process
can continue iteratively until no more pseudo-labels can be added.

Whereas the efficacy of semi-supervised learning has long been established (Van Engelen & Hoos,
2020), there has been limited research probing why unlabeled data, which lack any information about
Y, can bolster our understanding of the X–Y relationship. To this end, Buja et al. (2019) establish

2Such degrees of departure are typically quantified using higher-order central moments, such as skewness and kurtosis.

https://doi.org/10.1017/psy.2025.13 Published online by Cambridge University Press

https://doi.org/10.1017/psy.2025.13


Psychometrika 5

that the distribution of a variable X may convey rich information about the X–Y relationship when
the relationship is not strictly linear. For the high-dimensional case where X comprises multiple
variables, Niyogi (2013) attributes the success of semi-supervised learning to the concept of manifold
regularization (Belkin et al., 2006). At its core, Niyogi (2013) posits that almost all machine learning
algorithms predicate their predictions on a smoothness assumption: if two data points are similar in X,
then they also tend to be analogous in Y. Unfortunately, defining “similar” in the context of multi-
dimensional X is challenging—and requires structural insights into the multivariate distribution of
X—because common similarity measures like Euclidean distance are known to become meaningless
in high-dimensional spaces (Aggarwal et al., 2001). By providing a more refined depiction of the multi-
dimensional distribution of X, unlabeled data allow us to more accurately estimate the similarity of two
data points in X, thereby enhancing our predictive precision for Y (Niyogi, 2013).

While this line of research sheds light on the mechanics of semi-supervised learning, it does not
address why semi-supervised learning achieves high predictive accuracy with certain datasets but
performs poorly with others (Schölkopf et al., 2012). The missing piece—the key to understanding
the conditions under which semi-supervised learning succeeds—lies in the causal effects driving the
generation of the observed data, as we will elaborate in the next section.

3. Linking causality with semi-supervised learning

In this section, we draw upon insights from causal learning (Peters et al., 2017)—specifically Janzing
& Schölkopf ’s (2015) mathematical characterisation of Schölkopf et al.’s (2012) seminal finding on the
working condition for semi-supervised learning—to elucidate how the predictive accuracy of semi-
supervised learning over panel data may reveal the existence of reverse causality in the underlying
data-generating process. Our explanation unfolds in three steps. First, we offer conceptual arguments
through an illustrative example. Following this, we delve into mathematical formalization, analyzing a
special case where the data-generating process features linear, cross-lagged, effects. Finally, we expand
our discussions to justify the reasoning behind a test that can be applied to any arbitrary data-generating
process. The specific computational algorithms for semi-supervised learning will be described in the
next section.

3.1. Conceptual illustration
In what follows, we offer an intuitive explanation for the key insight of Schölkopf et al. (2012) through
two observations: (1) P(X) is useless for predicting Y if X→Y , and (2) if Y→X, P(X) (when combined
with a small labeled set) may lead to an accurate prediction model toward Y. The first is obvious: When
X → Y fully characterizes the X–Y relationship, we can represent their relationship as a stochastic
function f such as Y = f (X). Changing f clearly has no impact on P(X). Consequently, knowledge
of P(X) reveals no information about f, making it useless for the prediction of Y (Janzing & Schölkopf,
2010).

For the second observation, consider a simple example of Y→X depicted in Figure 1, where Y ∈ {0,1}
is binary and X = αY +ε with ε ∼N(0,σ2). In this case, altering the causal mechanism (i.e., α) obviously
modifies P(X). From the perspective of machine learning, this means that P(X) now encapsulates
certain cues regarding α, offering the potential for building an accurate prediction model toward Y.
As can be seen from Figure 1, for this specific example, knowledge of P(X) alone permits an exact
inference3 of α, which is all that is required to build a Bayes-optimal predictior of Y.

3While outside the scope of this article, this exact inference also works when Y is not binary but follows other distributions
such as Poisson (due to Linnik’s theorem; Linnik, 1957). Interested readers could refer to the rich literature of random variable
decomposition (Lukacs, 1970) and the more recent literature of additive noise model (Hoyer et al., 2008; Peters et al., 2014)
which are both intimately related to the unique identification of P(Y ∣X) (and thereby α and σ) given P(X).
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Figure 1. Illustrative example for Y → X.

Note: Both panels depict the probability density function of P(X)when X = αY + ε, where Y follows Bernoulli distribution with p = 0.5

and ε ∼ N(0,1). Note that, in either case, P(X) follows a Gaussian mixture distribution with two equal-weight components, which are

illustrated in red dashed lines. The mean difference between the two Gaussian components is always equal to α, suggesting that the

functional relationship between X and Y can be precisely inferred from P(X).

More generally, Schölkopf et al. (2012) contend that P(X) is “independent” of f if reverse causality
does not exist (i.e., Y /→ X). However, this independence may no longer hold when Y → X. This
notion of “independence” can be formalized mathematically in at least three distinct ways: (1) through
Kolmogorov complexity (Janzing & Schölkopf, 2010), (2) by examining the uncorrelatedness between
p and the derivative of f (Janzing & Schölkopf, 2015), and (3) through the uncorrelatedness between p
and the logarithm of the derivative of f (Daniusis et al., 2010). Whereas the mathematical formulation
of Schölkopf et al.’s (2012) insight necessarily varies with this underlying notion of independence—e.g.,
see Janzing and Schölkopf (2015, Lemma 1) for one variation—the two observations discussed before
hold true regardless of this specific mathematical formulation.

3.2. Mathematical analysis of cross-lagged effects
To mathematically illustrate the link between causality testing and semi-supervised learning, we use the
CLPM (Hamaker et al., 2015) as an example of the underlying data-generating process. This analysis
aims to emphasize two key observations. First, in the absence of reverse causality (i.e., Y /→ X), no
information about the coefficient representing the X → Y relationship can be inferred from a dataset
containing only X. Second, when reverse causality exists (i.e., Y → X), a standard least squares estimate
for the coefficient representing Y → X can be obtained even without Y in the dataset.

In its simplest form, CLPM assumes a model of structural equations:

(xit −κi) = α(xi,t−1−κi)+β(yi,t−1−ωi)+uit, (1)
(yit −ωi) = δ(yi,t−1−ωi)+γ(xi,t−1−κi)+vit, (2)

where xit and yit are the values of X and Y at time t, respectively; κi and ωi represent the sample-specific
random intercepts for X and Y, respectively; and uit and vit are i.i.d. random impulses. With this model,
the cross-lagged parameter β captures the (within-person) reverse causal effect Y → X.

As the sample-specific random intercepts κi and ωi are extraneous to our ensuing analysis, we assume
that κi =ωi = 0 for all i ∈ [1,n] (where n is the sample size). For the ease of understanding, we also assume
that all coefficients α, β, δ, and γ remain unchanged between time t − 1 and t + 1. These simplifying
assumptions yield the following structural equations:

xit = αxi,t−1+βyi,t−1+uit, (3)
yit = δyi,t−1+γxi,t−1+vit. (4)

The crux of connecting semi-supervised learning with causality testing hinges on the following inquiry:
Can any information about the regression coefficients in Equation 4 (i.e., δ and γ for predicting Y)
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be inferred from observations of X at time t − 1, t, and t + 1 (i.e., x1,t−1, . . . ,xn,t−1; x1t, . . . ,xnt ;
x1,t+1, . . . ,xn,t+1), but no observation of Y, assuming the other coefficients (i.e., α and β) as given?

When β = 0, this is obviously impossible because Equation 3 would only contain an autoregressive
term αxi,t−1 and the remainder uit , meaning that we would have no information about Y from any of
the inputs X, α, and β.

When β ≠ 0, however, knowledge of α and β would allow us to make a probabilistic inference of
yi,t−1 from Equation 3 based on xit and xi,t−1 and, similarly, yit based on xi,t+1 and xit . Substituting
these inferred values of yi,t−1 and yit into Equation 4 would then let us make a probabilistic inference
of the regression coefficients δ and γ. To elucidate the reasoning behind this procedure, we rewrite
Equation 3 as

xi,t+1 = αxit +β(δyi,t−1+γxi,t−1+vit)+ui,t+1, (5)
= αxit +δ(βyi,t−1)+γβxi,t−1+βvit +ui,t+1, (6)
= αxit +δ(xit −αxi,t−1−uit)+γβxi,t−1+βvit +ui,t+1, (7)

which can be further simplified to

(xi,t+1−αxi,t) = δ(xit −αxi,t−1)+γβxi,t−1+ εi, (8)

where εi = βvit +ui,t+1−δuit is a remainder term that aggregates various random impulses and satisfies
E(εi) = E(εixit) = E(εixi,t−1) = 0. Equation 8 can be used to obtain a standard least squares estimate for
δ and γ, i.e.,

[δ̂γ̂] = ([xt −αxt−1,βxt−1]⊺[xt −αxt−1,βxt−1])−1[xt −αxt−1,βxt−1]⊺(xt+1−αxt), (9)

where xj represents the vector of X at time j. The variances of δ̂ and γ̂ are

Var(δ̂) = σ2((xt −αxt−1)⊺(xt −αxt−1)−((xt −αxt−1)⊺xt−1)2(x⊺t−1xt−1)−1)−1, (10)

Var(γ̂) = σ2(β2x⊺t−1xt−1−((xt −αxt−1)⊺xt−1)2((xt −αxt−1)⊺(xt −αxt−1))−1)−1, (11)

where σ2 is the variance of εi. Note from Equation 11 that the variance of γ̂ tends to infinity when β
approaches 0. This substantiates our prior assertion that estimating the coefficient for X → Y (i.e., γ)
from X is only feasible when the coefficient for Y → X (i.e., β) is significant.

Given that δ and γ can be inferred (at least asymptotically) using just three inputs—α, β, and X—
without any information on Y, a natural question is: which among the three inputs carries information
about δ and γ? We can rule out α and β because they are free parameters (independent of δ and γ) per
CLPM. This leaves the only possibility to be that the distribution of X carries certain information about
the X→Y relationship (i.e., δ and γ). Importantly, this information carriage is valid if and only if reverse
causality Y → X is present (i.e., β ≠ 0).

At this juncture, the connection between semi-supervised learning and reverse causality testing
becomes evident. Recall that a semi-supervised learning algorithm aims to learn the X→Y relationship
f (⋅)—i.e., γ in the case of CLPM—using a small labeled set of ⟨X,Y⟩ pairs and a large unlabeled set
consisting solely of X. Clearly, the only information revealed by the unlabeled set is the distribution
of X. When reverse causality does not exist (i.e., β = 0), the distribution of X does not carry any
information about γ. In this case, the unlabeled set is useless for improving the prediction of Y, making
the deployment of a semi-supervised learning algorithm futile. However, when reverse causality exists
(i.e., β ≠ 0), the distribution of X—and therefore the unlabeled set—does carry information about γ (as
shown in Equation 9), making semi-supervised learning potentially fruitful.

For a more specific example, consider the aforementioned self-training method for semi-supervised
learning. When the X–Y relationship is unidirectional flowing from X to Y (i.e., β = 0), expanding the
labeled set with pseudo-labels will not lead to a more accurate prediction of Y for the simple reason that
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even an infinitely large unlabeled set, which perfectly reveals P(X), still contains no information about
the X→ Y relationship. Put simply, we can test reverse causality by comparing the predictive accuracy
pre and post self-training, with an increase in predictive accuracy suggesting the existence of reverse
causality.

3.3. Generalized test
Whereas we developed the connection between semi-supervised learning and reverse causality testing
through the structural model of CLPM, the connection indeed persists regardless of the underlying
data-generating process. To understand why, consider an extension of Equations 3 and 4 to data-
generating processes beyond CLPM. When the X–Y relationship is unidirectional flowing from X to Y,
we have

xit = ft(xi,t−1,uit), (12)
yit = gt(xi,t−1,yi,t−1,vit), (13)

where ft and gt can be any arbitrary stochastic function.
Two key insights emerge from the equations. First, the X → Y relationship is wholly captured by

gt . Second, alterations in gt has no influence on the value (and distribution) of X. Combining these
two insights, it is evident that the distribution of X does not carry any information about the X → Y
relationship unless there exists a reciprocal Y→X relationship. This underscores that the nexus between
semi-supervised learning and reverse causality testing remains intact, independent of assumptions
about the data-generating process.

4. Reverse causality testing using semi-supervised learning

In this section, we develop our novel method for reverse causality testing. As established in the last
section, a semi-supervised learning algorithm can effectively leverage the large unlabeled (i.e., X-only)
data to improve predictive accuracy for Y only when reverse causality Y → X is at play. Building upon
this insight, our method revolves around assessing the predictive accuracy of semi-supervised learning.
In the passages that follow, we outline our methodological design in two steps. First, we describe the
input and output of semi-supervised learning, explaining in detail how the output of semi-supervised
learning is used for reverse causality testing. Then, we delve into the algorithmic design of semi-
supervised learning.

4.1. Input and output of semi-supervised learning
The objective of our method is to detect the presence of reverse causality, i.e., Y→X, given a longitudinal
panel dataset D = {⟨xi1,yi1, . . . ,xim,yim⟩∣i ∈ [1,n]}, where n is the sample size and m is the number of
waves. Our method requires at least three waves (i.e., m≥ 3) for identification. It imposes no assumptions
about the lag, provided that the lag is not so extensive that yi1 exerts no causal effect on xim, as this would
render reverse causality unidentifiable within the given dataset. Our method also makes no assumption
about the functional form of the relationships between X and Y. The sole assumption underlying our
method is the working condition of causal learning, which states that P(X) is independent4 of f if
X → Y fully describes the relationship between X and Y (Schölkopf et al., 2012). Also note that, if the
purpose is to test the existence of X → Y instead, the only revision required is to swap X and Y in the
input data.

4As discussed earlier, see Daniusis et al. (2010) and Janzing & Schölkopf (2010, 2015) for formal definitions.
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4.1.1. Input
Recall from the literature review that a semi-supervised learning algorithm takes as input two datasets,
a small labeled set Dlb, which consists of n1 data points with paired X–Y values, and a large unlabeled
set Dul, which consists of n2 data points (n2≫ n1) with X values only. To properly specify Dlb and Dul
based on the input data D, there are three issues to be addressed.

First, since semi-supervised learning algorithms generally require the prediction target Y to be a
scalar (i.e., a single variable), we need to select (the Y value of) one wave as the prediction target for semi-
supervised learning. Mathematically, any wave except the last one would work because, as discussed
earlier, if Y→X exists with a lagged effect, then the distribution of X in the tth wave carries information
about Y in all previous waves (i.e., 1 to t−1). In other words, semi-supervised learning could effectively
boost the predictive accuracy toward Y for all but the last wave. Since we are interested in minimizing
the number of waves required for identification, a proper choice is to select Y in the first wave, i.e., {yi1},
as the prediction target because otherwise data in the first wave would become useless for identification
(as Y in a latter wave cannot have a causal effect on X in the first wave).

Second, we need to determine the variable composition of X. When Y → X exists, the distribution
of X from the second wave onward is informative for predicting the value of Y from the first wave. We
therefore include ⟨xi2, . . . ,xim⟩ as the predictor vector X.

Third, we also need to determine n1 and n2, the sample sizes for Dlb and Dul, respectively. Recall
that our purpose is to test whether semi-supervised learning can effectively leverage the unlabeled set
Dul to enhance predictive accuracy. Clearly, assuming Y → X exists, the smaller n1 and the larger n2
is, the more likely we would be able to detect the effectiveness of semi-supervised learning. From this
perspective, a natural choice is to make n1 the minimum labeled-sample size required by the semi-
supervised learning algorithm, and to include all other data in the unlabeled set (i.e., n2 = n− n1).
For example, the aforementioned self-training algorithm generally requires n1 ≥ m to avoid an initial
degenerate solution. Hence, we generate the labeled set Dlb and the unlabeled set Dul by first randomly
permuting the order of all data points in D, before setting

Dlb = {⟨xi2, . . . ,xim,yi1⟩∣i ∈ [1,m]}, and (14)
Dul = {⟨xi2, . . . ,xim⟩∣i ∈ [m+1,n]}. (15)

4.1.2. Output
Our method for reverse causality testing focuses on the accuracy of fssl, the output of semi-supervised
learning. To determine whether the unlabeled set Dul is useful for improving the predictive accuracy
of fssl (which is only possible when reverse causality exists), we compare fssl against a baseline model
f0, which is the initial model of semi-supervised learning generated from the small labeled set Dlb only
before accessing the unlabeled set Dul. A smaller error of fssl would serve as evidence against the null
hypothesis of no reverse causality.

Recall from earlier discussions that Dlb and Dub are drawn uniformly at random from the input
data D. Since Dlb and Dub are random samples, comparing the predictive errors of the machine
learning models trained on them—i.e., f0 and fssl, respectively—requires a statistical significance test.
Specifically, we need to determine whether any observed reduction in predictive error of fssl relative to
f0 is statistically significant. To assess this, we repeatedly draw i.i.d. samples of Dlb from D, derive the
corresponding Dub, and compare the predictive error of fssl against f0 for each sample. The statistical
significance of the reduction in predictive error can then be evaluated based on these comparisons.
There are three key issues worth discussing in this design: (1) how to measure the predictive error of a
model, (2) how to assess the statistical significance of the reduction in predictive error, and (3) how to
determine the number of resamples necessary for the test.

First, in terms of measuring the predictive error of a machine learning model, a prevalent practice in
machine learning is to separate the testing dataset from the training data due to concerns of overfitting
(Bishop & Nasrabadi, 2006). It is important to note that overfitting is not a concern in our case because
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the prediction target yi1 for the vast majority of data (i.e., i ∈ [m+1,n]) is hidden from semi-supervised
learning. As such, we can assess the predictive error of fssl (and the baseline f0) directly over the input
dataset D. Further, our method has no specific requirement on the metric for predictive error, as a
reduction of any error metric indicates the existence of reverse causality. For example, when yi1 is binary,
we could use the total number of prediction errors as the metric. The cross-entropy metric (Bishop &
Nasrabadi, 2006) can be used for categorical yi1. When yi1 is continuous, the error metric could be the
mean squared error, mean absolute error, etc.

Second, for comparing the predictive errors of two machine learning models, Demšar (2006)
reviewed three types of statistical tests used in the literature: (1) a parametric test, like the paired t-test
(Dietterich, 1998), (2) a nonparametric test that makes assumptions about the distribution of difference
in predictive accuracy, like the Wilcoxon signed-rank test (Santafe et al., 2015), and (3) a nonparametric
test that only requires predictive accuracy to be comparable (i.e., at least on an ordinal scale), like the
binomial test, also known as the sign test (Salzberg, 1997).

Problems with parametric tests such as the paired t-test have been well documented in the literature
(Dietterich, 1998). As summarized by Demšar (2006), these tests suffer from sensitivity to outliers and
the issue of commensurability between different runs, making it possible for the total failure of semi-
supervised learning on a single sample of Dlb to dominate the test result. Similarly, key assumptions of
the Wilcoxon signed-rank test do not hold in our context. For instance, it assumes that the difference
in predictive accuracy between the two models is symmetrically distributed around a central value, yet
there is no evidence to support this symmetry in our setting. In fact, semi-supervised learning is likely
to amplify the skewness in the labeled set, suggesting that the difference could follow a heavy-tailed
rather than symmetric distribution, violating the assumptions of the Wilcoxon signed-rank test. This
leaves the (exact) binomial test (i.e., sign test) as a suitable alternative, as it requires only that each pair of
predictive accuracy scores be comparable (Salzberg, 1997) and is inherently robust to outliers (Demšar,
2006). In our case, we employ the binomial test (with π0 = 0.5) to compare the number of runs (i.e., Dlb
samples) where fssl outperforms f0 against the number of runs where the reverse is true.

Finally, two key factors influence the determination of the number of resamples required for the test.
First, increasing the number of resamples enhances the statistical power of the test, which is especially
critical given the well-documented limitation of the binomial test in terms of low statistical power
(Demšar, 2006; Rainio et al., 2024; Salzberg, 1997). Second, a larger number of resamples incurs higher
computational costs, as the semi-supervised learning algorithm must be executed for each sampled Dlb
and Dul. This computational burden can be particularly significant for resource-intensive algorithms,
such as those based on deep learning (Goodfellow et al., 2016). To balance these considerations, we
recommend following the default setting proposed by Demšar (2006) and performing 1,000 resamples.
As demonstrated in the simulation studies, this setting offers a practical trade-off between statistical
power and computational efficiency.

4.2. Design of semi-supervised learning algorithm
Numerous algorithms have been proposed for semi-supervised learning (Van Engelen & Hoos, 2020).
We chose to implement the self-training paradigm discussed earlier. This choice is driven by two
primary considerations. First, self-training is highly versatile, as it can be seamlessly integrated with
a wide range of supervised learning algorithms as its base learner (Sohn et al., 2020). Second, the
mathematical analysis of self-training is one of the few that have been thoroughly developed in the
literature (Amini & Gallinari, 2002; Grandvalet & Bengio, 2004), providing a clear connection between
the Bayes risk of its predictions and the foundational working condition of semi-supervised learning
that has been discussed earlier in the article.

In the passages that follow, we describe the mathematical foundation and algorithmic design of
self-training. Note that, our method represents a novel use of self-training for the purpose of reverse
causality testing, and we did not make any change to its canonical algorithmic design. For the ease
of discussion, we start with a simple setting where the prediction target yi1 is binary (i.e., yi1 ∈ {0,1})

https://doi.org/10.1017/psy.2025.13 Published online by Cambridge University Press

https://doi.org/10.1017/psy.2025.13


Psychometrika 11

and the underlying learning algorithm is logistic regression. At the end of this section, we describe a
generalization to continuous variables and any regression algorithm.

4.2.1. Mathematical foundation of self-training
Any algorithm aiming to learn a prediction model that estimates a binary yi1 based on a predictor
vector xi = ⟨xi2, . . . ,xim⟩ can be viewed as learning a function5f (xi) that approximates Pr{yi1 = 1∣xi}.
For example, logistic regression specifies f (xi) as

f (xi) = sigmoid(β1+β2 ⋅xi2+⋯+βm ⋅xim), (16)

where β = ⟨β1, . . . ,βm⟩ are the coefficients to be estimated from training data.
Semi-supervised learning in general, and self-training in particular, starts by estimating β from the

small labeled set Dlb. Specifically, it does so by finding β that maximizes the following log-likelihood
function:

�(f ) = logP(Ylb∣f ,Xlb) (17)

=
m
∑
i=1
(yi1 ⋅ log(f (xi))+(1−yi1) ⋅ log(1− f (xi))), (18)

where Xlb and Ylb represent the predictor (i.e., xi2, . . . ,xim) and prediction target (i.e., yi1) portions of
Dlb, respectively. In the Bayesian framework, these initial coefficient estimates form the maximum a
posteriori (MAP) estimate under the uniform prior. As shown by Seeger (2000), this MAP estimate
does not change if we merely add the unlabeled set Dul into the observed data, because semi-supervised
learning only works under the condition that the distribution of xi reveals information about yi1. In other
words, in order to proceed beyond this initial step and generate the MAP estimate for semi-supervised
learning, we need to encode its working condition into the prior distribution used to calculate the MAP
estimate.

In the Bayesian framework, a common method for deriving the prior distribution from a given
constraint (e.g., the working condition for semi-supervised learning) is the principle of maximum
entropy (Jaynes, 1957), which sets the prior distribution as the one that satisfies the given constraint
while having the maximum information entropy (Cover & Thomas, 2006). Grandvalet & Bengio (2004)
followed this principle to prove that, for a semi-supervised learning algorithm that uses both Dlb and
Dul, the MAP estimate for β is the maximizer of the following criterion C(f ),

C(f ) = �(f )−λ ⋅
n
∑

i=m+1
(−f (xi) ⋅ log(f (xi))−(1− f (xi)) ⋅ log(1− f (xi))), (19)

where λ (λ > 0) is the Lagrange multiplier that, roughly speaking, captures the amount of information
about yi1 that can be revealed by the distribution of xi. Amini & Gallinari, 2002 analyzed self-training
with logistic regression as the underlying learning algorithm, and proved that the resulting coefficient
estimates maximizes C(f ) when λ = 1. In other words, semi-supervised learning in general, and self-
training in particular, can be viewed as approximating the MAP estimate of f under the working
condition of semi-supervised learning. Specifically, it does so by finding f that maximizes C(f ) in
Equation 19.

4.2.2. Algorithmic design of self-training
The algorithmic design of self-training can be readily derived from Equation 19. Note that the second
term in the equation is proportional to the sum of

H(f (xi)) = −f (xi) ⋅ log(f (xi))−(1− f (xi)) ⋅ log(1− f (xi)) (20)

5For simplicity in notation, this section uses f to denote the machine learning estimate, replacing the earlier notation f̂ . This
causes no ambiguity, as the ground-truth value of f is not discussed in this section.
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for all data points in the unlabeled set Dul. Recall that f (xi) is the prediction from semi-supervised
learning for Pr{yi1 = 1∣xi}. This makes H(f (xi)) in Equation 20 the entropy (Cover & Thomas, 2006) of
the predicted distribution of yi1 given xi, meaning that it captures the amount of uncertainty in machine
learning predictions. For example, we have H(f (xi)) = 0, its minimum possible value, when semi-
supervised learning is fully confident of its prediction (i.e., f (xi) = 0 or 1). In contrast, when f (xi) = 0.5
(i.e., maximum uncertainty), H(f (xi)) reaches its maximum value6 of 1.

With this understanding, the goal of self-training—i.e., the maximization of C(f )—pertaining to the
unlabeled set is equivalent with minimizing prediction uncertainty (i.e., H(f (xi))) for the unlabeled
data. Self-training does so in an iterative manner. As described earlier, the initial iteration estimates
β from the labeled set Dlb by applying the underlying learning algorithm, which in this case is the
standard logistic regression. The estimated β is then used to compute f (xi), and thereby H(f (xi)), for
all data points in the unlabeled set Dul. The first iteration concludes by adding into the labeled set Dlb
all unlabeled data points with prediction uncertainty below a pre-determined threshold h, using their
predicted labels as if they were real. In other words, the labeled and unlabeled sets are updated as

Dlb ∶=Dlb∪{⟨xi,1f (xi)≥0.5⟩∣xi ∈Dul,H(f (xi)) ≤ h}, (21)
Dul ∶= {xi∣xi ∈Dul,H(f (xi)) > h}, (22)

where 1f (xi)≥0.5 is the predicted label for xi—i.e., an indicator function that returns 1 if f (xi) ≥ 0.5 and 0
otherwise. The updated Dlb and Dul are then entered as input to the next iteration. The iterative process
ends when no new X–Y pair is added to Dlb after an iteration. As can be seen from the description,
self-training minimizes prediction uncertainty among unlabeled data using the idea of pseudo-labels,
i.e., by promoting those with minimal prediction uncertainty to the labeled set, using their predicted
labels as if they were real. These promoted data points, in turn, reduce prediction uncertainty for the
remaining unlabeled data (Amini & Gallinari, 2002), pushing the coefficient estimates closer to their
MAP values that maximize C(f ).

4.2.3. Generalization to continuous variables
Whereas the above description of self-training is based on a binary yi1 and logistic regression being the
underlying learning algorithm, the same iterative process can be adapted to support continuous yi1 and
any underlying learning algorithm. This adaption requires addressing two issues. One is the design of
an appropriate uncertainty measure (i.e., H(f (xi)) in the binary case), and the other is the generation
of pseudo-label (i.e., 1f (xi)≥0.5 in the binary case). The reason why these two issues arise for continuous
variables is because, unlike in the binary case where f (xi), as an estimate of Pr{yi1 = 1∣xi}, inherently
captures uncertainty about the predicted yi1, a point-estimate for a continuous yi1 contains no such
uncertainty information. Therefore, instead of deriving both the uncertainty measure and the pseudo-
label from f (xi) itself, we may have to resort to other information in order to do so in the continuous
case.

A well-known method for addressing both issues in semi-supervised learning is co-training (Blum
& Mitchell, 1998). With this method, instead of generating a single prediction of f (xi) ≈ yi1, we generate
two predictions, f1 and f2, based on two (slightly) different subsets of variables in xi. Then, the difference
between f1 and f2 (i.e., ∣f1 − f2∣) is a natural measure of uncertainty, while the mean of the two (i.e.,
(f1+ f2)/2) can be used as pseudo-label for expanding the labeled set.

More specifically, recall that our method includes in xi a total of m−1 variables ⟨xi2, . . . ,xim⟩, where
m ≥ 3 because we require a minimum of three waves for identification. A natural choice is to associate f1
with the first m−2 variables xF

i = ⟨xi2, . . . ,xi,m−1⟩, and f2 with the last m−2 variables xL
i = ⟨xi3, . . . ,xim⟩.

This way, we allow a divergence of two predictions (to allow the uncertainty estimate) while minimizing
the number of predictors withheld from either. With this design, the updates of labeled and unlabeled

6Without loss of generality, we follow the convention in computer science to assume a base of 2 for all log operations, so as
to measure entropy in binary bits.
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Table 1. Pseudocode for reverse causality testing with continuous variables

Algorithm 1: Reverse Causality Testing Using Self-Training
Data: A longitudinal dataset D = {⟨xi1,yi1, . . . ,xim,yim⟩∣i ∈ [1,n]}
Input: Uncertainty threshold h; Number of iterations r; A base supervised learner Γ that outputs f̂ ∶ X→ Y from an

input labeled dataset

Result: p-value from binomial exact test (with π0 = 0.5)

1 c← 0;

2 for r iterations do
3 Randomly permute the order of all n data points in D;

4 Dlb ←{⟨xi2, . . . ,xim,yi1⟩∣i ∈ [1,m]};

5 Dul ←{⟨xi2, . . . ,xim⟩∣i ∈ [m+1,n]};

6 f0 ← Γ(Dlb);
7 repeat
8 Remove the (m−1)-th column (i.e., x

⋅m) from Dlb to form D1
lb = {⟨x

F
i ,yi1⟩};

9 Remove the first column (i.e., x
⋅2) from Dlb to form D2

lb = {⟨x
L
i ,yi1⟩};

10 f1 ← Γ(D1
lb); f2 ← Γ(D2

lb);
11 Dlb ← Dlb ∪{⟨xi,(f1(xF

i )+ f2(xL
i ))/2⟩∣xi ∈ Dul,∣f1(xF

i )− f2(xL
i )∣ ≤ h};

12 Dul ←{xi∣xi ∈ Dul,∣f1(xF
i )− f2(xL

i )∣ > h};

13 until Dlb and Dub remain unchanged;

14 fssl ← Γ(Dlb);
15 if fssl has a smaller mean squared error over D than f0 then
16 c← c+1;

17 end
18 end
19 return∑r

i=c (
r
i) ⋅0.5

i ⋅0.5r−i

set in each iteration become

Dlb ∶=Dlb∪{⟨xi,(f1(xF
i )+ f2(xL

i ))/2⟩∣xi ∈Dul,∣f1(xF
i )− f2(xL

i )∣ ≤ h}, (23)

Dul ∶= {xi∣xi ∈Dul,∣f1(xF
i )− f2(xL

i )∣ > h}, (24)

whereas everything else in the iterative process follows directly from the binary case. Clearly, this design
for continuous yi1 is compatible with any underlying learning algorithm for generating f1 and f2, e.g.,
linear regression (Stine, 1985), support vector machines (SVMs; De Brabanter et al., 2010), neural
networks (Heskes, 1996), etc. The pseudocode of our algorithm for continuous variables is available
in Table 1.

4.3. Transparency and openness
The complete code implementation of our algorithm is publicly available at https://github.com/
calearn/revc (Python) and https://github.com/calearn/revc_m (MATLAB).

5. Simulation studies

We conducted two simulation studies. The main study evaluates the statistical power of our method in
identifying reverse causality, and a followup study assesses the Type I error rate of our method in the
absence of reverse causality, because existing methods such as the random-intercept CLPM (RI-CLPM;
Hamaker et al., 2015) are known to generate Type I errors.

5.1. Data-generating process
In the main simulation study, we aimed to delineate the primary factors influencing the statistical
power of our method. To achieve this, we employed a straightforward structural model-Equations 1
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and 2—as the data-generating process, establishing a clear ground truth for the causal direction. To
ensure a comprehensive analysis, we created multiple levels for three key parameters in the data-
generating process: the total number of observations N and the cross-lagged parameters β (i.e., Y →X)
and γ (i.e., X→Y). For the sample size N, we created four levels: 100, 250, 500, and 1,000. For the cross-
lagged parameters β and γ, we created six levels for each: 0, 0.1, 0.2, 0.3, 0.4, and 0.5. In total, the design
for the main simulation study consists of 4 (N) × 6 (β) × 6 (γ) = 144 unique conditions.

We adopted a standard parameter setup (e.g., Hamaker et al., 2015) to configure the other fixed
parameters for the data-generating process in the main simulation study. Specifically, we followed
Hamaker et al. (2015) to set the autoregressive parameters for both variables to α = δ = 0.5. All random
impulses uit and vit were generated from a Gaussian distributionN(0,0.52), while the sample-specific
random intercepts were fixed at κi = ωi = 0 for all i ∈ [1, N]. To generate the initial (Wave 1) values of
xi1 and yi1, we deliberately used different distributions7 to emphasize that our method does not rely on
specific distributional assumptions for the input data. For each i ∈ [1, N], xi1 was sampled uniformly at
random from the interval [−3, 3], while yi1 was drawn from a Gaussian distributionN(0, 1).

In the followup simulation study, we followed Lucas (2023), which demonstrates the spurious cross-
lagged effects generated by CLPM, in adopting the widely used Stable Trait Autoregressive Trait and State
(STARTS) model (Kenny & Zautra, 1995) as the underlying data-generating process. We also followed
Lucas (2023) in the parameter setup, specifically by setting (for both X and Y) the stability parameter
as 0.5, the random intercept variance as 1, and variance of autoregressive component as 1. We also
added a measurement error of variance 0.3 to both X and Y. Since the focus of the followup study is on
Type I errors, the cross-lagged parameter for reverse causality (Y →X) was always set to zero, while the
parameter for X→ Y (represented as γ for consistency with the main study) was varied from 0.1 to 0.5.
Like in the main study, we created four levels, 100, 250, 500, and 1,000, for the sample size N. In total,
the design for the followup simulation study consists of 4 (N) × 5 (γ) = 20 unique conditions.

5.2. Algorithmic implementations
Recall from earlier discussions that our method applies to both discrete and continuous Y, and can be
used with any supervised learning algorithm as its base learner. To demonstrate the versatility of our
method, we implemented two variants of it. The first was designed for continuous Y and implemented
in MATLAB R2023b (with statistics and machine learning toolbox). We selected a simple design, i.e.,
OLS regression, as the underlying learning algorithm. We set the number of resamples for binomial test
to be 1,000, leading to a computational overhead of about 20 seconds per simulation run on a laptop
computer with Apple M2 CPU and 8GB RAM. For the number of waves taken as input, we set m= 3 (i.e.,
the first three waves), the minimum value that satisfies the identification requirement of our method
while providing a conservative estimate of its statistical power. For the uncertainty threshold h (i.e., the
maximum difference in prediction between the two models for an unlabeled data point to be added to
the labeled set, see Equation 24), after testing a wide range of threshold values, we found that the output
of our method is insensitive to the threshold setting as long as it is neither too large—so as to allow all
unlabeled data to enter the labeled set at once—nor too small to permit any unlabeled data point into
the labeled set. Due to this finding, we set the threshold to a constant of h = 0.1, which is about 10% of
the standard deviation of the label (i.e., Y).

Since the OLS regression algorithm relies on a linear model and our data-generating process is also
linear, concerns may arise regarding a potential unfair advantage due to their inherent consistency. To
address these concerns, we implemented a variant of our method using a nonlinear learning model.
Specifically, for the underlying base learner in self-training, we employed the SVM (Cortes & Vapnik,
1995) algorithm with a polynomial kernel of degree 3 (i.e., a cubic kernel SVM).

Given the significantly higher computational overhead of SVM, we implemented this variant in
Python using the scikit-learn (Pedregosa et al., 2011) machine learning library. We adhered to the

7We also tested alternative distributions (e.g., Gaussian mixtures) and observed no qualitative differences.
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default settings of scikit-learn’s LIBSVM implementation (Chang & Lin, 2011) for all SVM parame-
ters, including the kernel configuration (i.e., in function sklearn.svm.SVC). For the uncertainty
threshold in the self-training algorithm, we used the built-in options for the criterion parameter
in sklearn.semi_supervised.SelfTrainingClassifier. Apart from the use of SVM
as the base learner, all other design elements were identical to the OLS implementation, except for an
additional input data normalization process required for the SVM implementation. Specifically, Y was
converted to binary values (using median dichotomization), and X was normalized to the range [−1, 1]
(through min-max scaling) to account for SVM’s sensitivity to input feature scaling (Chang & Lin, 2011;
Tax & Duin, 2004).

To accommodate the computational demands of the nonlinear SVM algorithm and the large number
of simulation runs required for the main study, this implementation was executed on Amazon Web
Services (AWS) Batch using Elastic Container Service (ECS) clusters configured with 256 virtual CPUs,
provisioned and scaled automatically using AWS Fargate. With the same number of resamples (1,000) as
the OLS implementation, the SVM variant completed each simulation run in approximately 30 seconds
on the AWS cluster.

5.3. Simulation results
For the main study, Table 2 presents the statistical power achieved by our method under a significance
level of α = .05 for all simulation settings with β > 0. For settings where β = 0 (highlighted in gray),
the table reports the Type I error rates. Each cell in the table is based on 1,000 independent runs of our
method. Note that results for the nonlinear SVM-based implementation are included only for N = 1,000,
as the SVM-based implementation required more than 500 samples to consistently converge to reliable
predictions.

We can draw three key observations from the table. First, regarding Type I error rates (highlighted
rows with β= 0), our method consistently remains below 0.075 across all simulation conditions, aligning
with Bradley’s (1978) liberal robustness criterion. This demonstrates the robustness of our method
against finding spurious reverse causal effects.

Second, note that the top six rows of Table 2, along with the highlighted rows, represent simulation
conditions where X and Y exhibit a unidirectional relationship. The statistical power achieved by our
method in these scenarios highlights its effectiveness in identifying the direction of a unidirectional
effect—a critical use-case for our method when competing theories stipulate different causal directions
between X and Y. For example, Rows 3–6 show that, when β ≥ 0.2, the OLS implementation of our
method achieves statistical power exceeding 0.97 when N ≥ 500, while the SVM implementation
achieves the same when N = 1,000.

Third, the statistical power of our method is influenced by three key factors. One factor is N, the input
sample size. Larger sample sizes significantly improve statistical power. For example, when β = 0.3 and
γ = 0, the OLS implementation achieves a statistical power of only 0.44 with N = 100 but exceeds 0.99
when N ≥ 500. Another factor is β, the cross-lagged parameter representing the strength of the reverse
causal effect. When γ = 0 (i.e., unidirectional effect), larger β values correspond to higher statistical
power. For instance, with N = 250 and γ = 0, the OLS implementation achieves a power of 0.19 at
β = 0.1, increasing to 0.77 at β = 0.3, and exceeding 0.99 for β ≥ 0.4. The SVM implementation exhibits a
similar trend. The final factor is γ, the strength of the causal effect X→ Y . The impact of γ on statistical
power varies depending on other parameters. For example, when β = 0.5 and N = 1,000, a stronger
forward effect of γ = 0.5 can obscure reverse causality, reducing power from 1.00 at γ = 0 to 0.86 at
γ = 0.5. Conversely, when γ and β are smaller yet closer in magnitude (e.g., γ = 0.2, β = 0.2, N = 250), γ
could potentially enhance power, increasing it from 0.30 at γ = 0 to 0.67 at γ = 0.2. This increase can be
attributed to the technical design of the two-step self-training algorithm in our method. Specifically, in
situations where the causal effect X→Y is nonexistent (i.e., γ = 0), the initial step of self-training, which
learns from the labeled set only, is destined to yield highly inaccurate predictions. In such scenarios,
particularly with smaller sample sizes, it becomes challenging for the subsequent step (of learning from
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Table 2. Type I error rate and statistical power of our method in the main

simulation study

OLS SVM

β γ N = 100 N = 250 N = 500 N = 1000 N = 1000

0.0 0.0 0.005 0.003 0.037 0.000 0.017

0.1 0.0 0.006 0.188 0.335 0.448 0.518

0.2 0.0 0.091 0.301 0.976 0.972 1.000

0.3 0.0 0.440 0.774 0.998 1.000 1.000

0.4 0.0 0.593 0.999 0.999 1.000 1.000

0.5 0.0 0.820 1.000 1.000 1.000 1.000

0.0 0.1 0.001 0.058 0.002 0.000 0.032

0.1 0.1 0.000 0.018 0.557 0.421 0.542

0.2 0.1 0.092 0.636 0.800 0.719 1.000

0.3 0.1 0.362 0.589 0.988 0.986 1.000

0.4 0.1 0.503 0.994 0.998 1.000 1.000

0.5 0.1 0.856 0.908 1.000 0.999 0.990

0.0 0.2 0.073 0.000 0.013 0.000 0.018

0.1 0.2 0.012 0.073 0.469 0.886 0.546

0.2 0.2 0.202 0.669 0.763 0.982 1.000

0.3 0.2 0.373 0.793 0.833 0.997 1.000

0.4 0.2 0.618 0.990 0.995 1.000 0.986

0.5 0.2 0.731 0.943 0.935 0.992 0.841

0.0 0.3 0.050 0.000 0.071 0.007 0.036

0.1 0.3 0.004 0.179 0.702 0.575 0.487

0.2 0.3 0.157 0.311 0.586 0.816 1.000

0.3 0.3 0.306 0.816 0.999 0.961 0.997

0.4 0.3 0.373 0.855 0.979 0.998 0.909

0.5 0.3 0.309 0.879 0.914 0.975 0.510

0.0 0.4 0.000 0.004 0.001 0.037 0.048

0.1 0.4 0.008 0.052 0.323 0.475 0.456

0.2 0.4 0.277 0.320 0.688 0.933 1.000

0.3 0.4 0.446 0.615 0.896 0.939 0.993

0.4 0.4 0.401 0.726 0.882 0.863 0.725

0.5 0.4 0.475 0.575 0.838 0.792 0.370

0.0 0.5 0.058 0.057 0.040 0.001 0.037

0.1 0.5 0.003 0.018 0.144 0.343 0.504

0.2 0.5 0.255 0.429 0.648 0.740 0.997

0.3 0.5 0.240 0.501 0.931 0.930 0.966

0.4 0.5 0.243 0.486 0.704 0.879 0.668

0.5 0.5 0.590 0.347 0.840 0.856 0.432
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Table 3. Type I error rate of RI-CLPM and our method under STARTS model

γ = 0.1 γ = 0.2 γ = 0.3 γ = 0.4 γ = 0.5

RI-CLPM N = 100 0.055 0.077 0.099 0.139 0.186

N = 250 0.066 0.096 0.174 0.262 0.352

N = 500 0.073 0.148 0.277 0.445 0.614

N = 1000 0.106 0.254 0.478 0.713 0.883

Our Method N = 100 0.001 0.002 0.012 0.006 0.002

N = 250 0.001 0.000 0.004 0.004 0.013

N = 500 0.022 0.055 0.038 0.022 0.018

N = 1000 0.003 0.015 0.012 0.007 0.016

the unlabeled set) to significantly enhance predictive accuracy even in the presence of reverse causality.
Therefore, a larger γ value, which improves the accuracy of the initial step, also tends to boost the
statistical power.

Interestingly, the negative impact of γ on the statistical power of our method appears more pro-
nounced in the SVM implementation compared to the OLS implementation. For example, with
N = 1,000, the OLS implementation maintains a statistical power of at least 0.70 for β ≥ 0.2, regardless
of γ. In contrast, the SVM implementation’s power drops from 1.00 at γ = 0 to 0.43 at γ = 0.5 for β = 0.5.
We attribute this discrepancy to SVM’s sensitivity to feature scaling (Tax & Duin, 2004) and vulnerability
to outliers (Debruyne, 2009), both of which are exacerbated at larger γ.

Table 3 summarizes the results of the follow-up simulation study comparing the Type I error rates
of RI-CLPM and the OLS implementation of our method.8 Following Mulder & Hamaker (2021), RI-
CLPM was implemented using default settings in Mplus.9 The results reveal that RI-CLPM frequently
identifies spurious reverse causal relationships, with Type I error rates reaching 0.88 when N = 1,000
and γ = 0.5. In general, RI-CLPM’s Type I error rate increases with larger N and higher γ. In contrast,
our method maintains a Type I error rate below 0.05 across all conditions, again aligning with Bradley’s
(1978) liberal robustness criterion and demonstrating an advantage of our method over CLPM and its
variants, which are known to find spurious cross-lagged effects (Lucas, 2023).

6. A case study

We applied our method over a real-world panel dataset to demonstrate its value for reverse causality
testing in practice. Specifically, we examined the relationship between work-family conflict (WFC)—i.e.,
“a form of inter-role conflict in which the role pressures from the work and family domains are mutually
incompatible in some respect” (Greenhaus & Beutell, 1985, p. 77)—and job satisfaction (JAS)—i.e., the
“overall evaluative judgement one has about one’s job” (Judge et al., 2017, p. 357). We chose this focal
relationship for two main reasons. First, like many constructs in industrial-organizational psychology,
it is often practically difficult, if not ethically dubious, to manipulate WFC or JAS in a randomized
controlled trial. Second, whereas a robust correlation between WFC and JAS has been widely recognized
(Allen et al., 2020; Amstad et al., 2011), there are ongoing debates about the causal direction between
the two constructs. Some posit a unidirectional effect of WFC negatively affecting JAS (e.g., Allen et al.,
2020; Amstad et al., 2011; Kossek & Ozeki, 1998). Others contend that the causal influence flows in the

8We also ran the SVM implementation and found qualitatively identical results.
9We also implemented RI-CLPM in R with the lavaan package, replicating the setup from Mulder & Hamaker (2021).

Results were consistent with those reported in Table 3.
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opposite direction, as higher JAS leads to greater work-life balance and, correspondingly, lower WFC
(Landolfi et al., 2022). Yet others suggest the existence of reciprocal effects, with WFC and JAS affecting
each other over time (e.g., Demerouti et al., 2004). Given these varied viewpoints, we sought to apply
our method to empirically test the existence of causal effect in either direction.

6.1. Data
We drew from the Swiss Household Panel (SHP Group, 2023; Voorpostel et al., 2023) to examine the
WFC–JAS relationship. The SHP began in 1999 with a nationally representative sample of 5,074 Swiss
Households, introducing supplementary samples in 2004 (addition of 2,537 households), 2013 (addition
of 3,989 households), and 2020 (addition of 4,380 households; Voorpostel et al., 2023). All household
members aged 14 and above are surveyed annually via telephone and written surveys. We mirrored
the timeframe used in prior work on CLPM and analyzed data collected in Waves 6 through 9 (i.e., the
annual surveys between 2004 and 2007; Ozkok et al., 2022). We excluded participants who did not work
or who did not complete a single survey in our timeframe, resulting in N = 7,748. Participants (51.55%
women, 48.45% men) were on average 39.28 (SD = 14.50) years old. On average, participants had 12.98
(SD = 3.20) years of education.

In the case study, WFC was measured by a single item on a 11-point Likert scale (0 = not at all,
10 = very strongly). The item read “How strongly does your work interfere with your private activities
and family obligations more than you would want this to be?” JAS was measured by a six-item measure
created for the SHP on a 11-point Likert scale (0 = not at all satisfied, 10 = completely satisfied). The
lead-in to the items was “Can you indicate your degree of satisfaction for each of the following points?”
Sample items include “your job in general” and “the amount of your work.” The internal consistency for
the four waves was .78, .78, .79, and .79, respectively.

6.2. Results
In terms of algorithmic implementations, we used the same implementations (OLS and SVM) as
the simulation study, and set the number of resamples to 10,000 and 100, respectively. Note that we
intentionally set the number of resamples for the OLS implementation to be much higher than required
in order to support a detailed analysis described later. With either implementation, we first tested the
presence of WFC→ JAS by setting the self-training algorithm to predict WFC from JAS, before testing
the presence of JAS →WFC by setting the self-training algorithm to predict JAS from WFC. For the
OLS implementation, self-training was effective for predicting WFC from JAS in 5,743 out of 10,000
resamples (one-tailed binomial exact test with π0 = 0.5: p < 10−6), and was effective for predicting JAS
from WFC in 5,006 out of 10,000 resamples (one-tailed binomial exact test with π0 = 0.5: p = 0.4562).
For the nonlinear SVM implementation, the results were consistent with the OLS implementation.
Specifically, for the prediction of WFC from JAS, self-training was effective in 67 out of 100 iterations,
leading to a p-value of p < 0.0005. On the flip side, when predicting JAS from WFC, self-training was
effective only in 37 out of 100 runs,10 leading to a p-value of p = 0.9967. In sum, the results suggest that
work-family conflict influences JAS, but not vice versa.

To further inspect why semi-supervised learning succeed in predicting WFC but not JAS, we
examined how its effectiveness depends on the small labeled set, which is the only information source
about Y that semi-supervised learning receives. Recall from the design of self-training that, if the
distribution of X reveals signals about the X–Y relationship, we would expect self-training to be more
effective when the labeled set is a more representative sample of the full dataset. This is because, when
the labeled set is a severely biased sample, say featuring only a single value of Y, then self-training would
stand no chance in becoming effective, as it would not even know what the other values of Y might be.

10Note that this means the use of unlabeled set actually increased predictive error in the majority (63%) of runs, likely due
to the aforementioned sensitivity of SVM to outliers in the (uninformative) unlabeled set (Debruyne, 2009).
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Figure 2. Relationship between effectiveness of self-training and representativeness of labeled set.

Note: WFC, work-family conflict; JSA, job satisfaction. Source: Swiss Household Panel (SHP).

To inspect how the effectiveness of semi-supervised learning varies with the bias of labeled sample,
we leveraged the 10,000 resample runs executed for the OLS implementation. Specifically, we sorted
all runs according to the distributional distance (as measured by Kolmogorov–Smirnov test statistic;
Daniel, 1990) between the labeled set and the full dataset, before stratifying them into 10 equi-sized bins
(i.e., each containing 1,000 runs) according to the sorted order and calculating the average effectiveness
of semi-supervised learning for each bin as measured by the fraction of runs that improve predictive
accuracy minus the fraction of those that reduce accuracy. As discussed before, if self-training were
ineffective, we would expect the average effectiveness measure to hover around zero for all ten bins. In
contrast, if self-training were effective, we would expect the average effectiveness to be high when the
distributional distance is small, and gradually decrease when the distributional distance becomes larger.

As can be seen from Figure 2, when self-training is used to predict WFC (i.e., to test the presence
of WFC → JAS), there is a clear, negative, correlation between its effectiveness and the distributional
distance. In contrast, such correlation disappears in the prediction of JSA (i.e., testing of JAS→WFC), as
the effectiveness of self-training hovers around zero regardless of the distributional distance. This clearly
shows that, whereas the distribution of JSA reveals valuable signals for predicting WFC—meaning that
WFC may have a causal effect on JAS—the distribution of WFC carries no information for predicting
JAS, suggesting that the causal direction is unlikely to flow from JAS to WFC.

7. General discussion

In this section, we first discuss the research implications of our new method. We then review the
limitations of our method and the future research needed to address them.

7.1. Research implications
For testing reverse causality, the main research implication of our semi-supervised learning based
method is its ability to identify causal directions without presuming distributional or functional features
of the data-generating process. Our method achieves this by leveraging recent advances in machine
learning that directly link the causal direction with the effectiveness of semi-supervised learning.
A unique feature of our method is that it is an umbrella algorithm independent of the underlying
learning algorithm, which can be any algorithm for supervised learning. As such, researchers can freely
choose a learning algorithm that fits the type and scale of their data before using our method for causal
identification.

More broadly, the main research implication of our work is its transfer of insights of causal learning
(Peters et al., 2017), in particular Schölkopf et al.’s (2012) seminal finding that links causal direction
with the effectiveness of semi-supervised learning, into the methodological arsenal of causal inference
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in psychology. Whereas most existing work in causal learning—perhaps owing to the disciplinary focus
of machine learning—leverages this link to explain (Schölkopf et al., 2012) or improve (Kügelgen
et al., 2019) the performance of machine learning algorithms, our contribution is to demonstrate
that the exact same link can be used to develop a concrete method for identifying reverse causality,
addressing long-standing challenges in the analysis of longitudinal data in psychology and other
disciplines.

7.2. Limitations and future directions
7.2.1. Capability of semi-supervised learning
The statistical power of our method depends on the capability of the semi-supervised learning algorithm
in approximating the functional relationship between X and Y. On the one hand, this allows our
method to generalize beyond linearity to allow nonlinear X–Y relationships. On the other hand, it also
brings about the limitation that, if the semi-supervised learning algorithm being used cannot effectively
approximate a nonlinear relationship between X and Y, our method may generate Type II errors.

In the main simulation study in our current work, we employed a linear model (i.e., CLPM) as the
underlying data-generating process. This choice allowed us to concentrate on the overarching design
of our method rather than on fine-tuning the underlying learning algorithm, given that even a simple
algorithm (like OLS) would likely suffice for a linear relationship. Nonetheless, although the theoretical
foundations of our method extend readily to more complex, nonlinear relationships between X and Y,
we did not evaluate the performance of our method in the presence of such relationships. As a natural
next step, future research could provide a comprehensive empirical assessment of the statistical power of
our method across a wider range of data-generating processes, encompassing both linear and nonlinear
scenarios beyond those considered in this study. Additionally, exploring various underlying learning
algorithms and other semi-supervised learning designs will be valuable for capturing the inherent
complexity of nonlinear relationships between X and Y.

In the longer term, recent advancements in machine learning offer two key insights. First, there
are semi-supervised learning algorithms that offer universal approximation (Goodfellow et al., 2016),
meaning that they are theoretically capable of approximating any arbitrary function in a Euclidean space.
Examples include the use of our method (i.e., self-training) with deep neural networks (Hornik et al.,
1989) or variational Gaussian processes (Tran et al., 2016) as the underlying learning algorithm. Second,
unfortunately, one would have to restrict the type of relationship between X and Y in order to translate
such theoretical feasibility into any practical guarantee. To understand why, consider a stylized example
where Y is the encrypted value (i.e., ciphertext) of X based on a secret key. Theoretically, it is feasible
for a machine learning algorithm to eventually learn how to predict Y from X. In practice, doing so
constitutes a brute-force ciphertext-only attack against the encryption algorithm, which is commonly
believed to be practically infeasible (Goldreich, 2004).

7.2.2. Leveraging other advances in machine learning
A central premise of our method is the link between causal direction and the predictive accuracy of
machine learning algorithms. When the causal direction flows only from X to Y (i.e., X → Y), the
distribution of X would reveal no information about the X–Y relationship, rendering semi-supervised
learning ineffective.

Following the same logic, causal direction could also affect the effectiveness of machine learning
algorithms besides semi-supervised learning. For example, a common generalizability issue facing
supervised learning, covariate shift (Sugiyama et al., 2007), arises when a machine learning model
degrades in predictive accuracy because of the distributional differences in predictor variables (i.e., X)
between the training dataset and the dataset actually in need of prediction. As discussed before, it would
be impossible for covariate shift to arise if the causal direction flows only from X to Y because, in
this case, a change of X’s distribution should have no bearing on the X–Y relationship. In machine
learning, Kügelgen et al. (2019) leveraged this property to address the degradation of predictive accuracy
caused by covariate shift. Similarly, future research could examine the use of covariate shift or, more
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broadly, the generalizability of supervised learning models to help identify the causal relationship
between X and Y.

7.2.3. Integration of our method with existing methods
A key feature of our method is robustness to model misspecification, as it imposes no restrictions on the
functional form of the data-generating process (e.g., linearity or the addition of independent noise). This
flexibility minimizes the risk of spurious discoveries, such as the incorrect inference of reverse causality,
caused by inappropriate model specifications or dependency structures. However, a notable limitation
of our method lies in its relatively weak statistical power. For instance, our simulations demonstrate that
it may struggle to detect reverse causality when the sample size is small. As such, our method may be
better suited to larger datasets (e.g., with N > 500).

These characteristics make our method a valuable complement to existing approaches, such as
additive noise models and DDA, which can be sensitive to model misspecifications (e.g., Schultheiss
& Bühlmann, 2024; Thoemmes, 2015). For example, while existing methods may not be ideally suited
for exploratory investigations into causal directions between variables (Wiedermann & von Eye, 2015),
our method can serve this purpose effectively. Researchers could first employ our approach as an
exploratory tool to identify promising relationships. Subsequently, they may leverage existing methods
to conduct confirmatory analyses of those relationships supported by robust theoretical formulations
but not identifiable through our approach (e.g., in cases where neither X→ Y nor Y → X is detected).

Our method can also be seamlessly integrated with panel models such as CLPM and its variants. To
illustrate, applying our method to infer the causal direction between X and Y could result in one of four
possible outcomes: (1) the detection of Y→X but not X→Y , (2) the detection of X→Y but not Y→X,
(3) the detection of both X→Y and Y→X, suggesting reciprocal relationships or the potential existence
of an unobserved confounder, and (4) the detection of neither X → Y nor Y → X. With the first two
outcomes, our model informs the model specification for CLPM, as researchers could choose to remove
the cross-lagged effect inconsistent with the outcome of our method. An important future direction for
research is to study whether causal learning could be used not only for identifying the causal direction
(as in our work) but also for estimating the temporal lag of an effect, which would further improve
the model specification for CLPM. The third outcome could prompt researchers to consider panel
models that allow for certain types of latent confounders—e.g., the RI-CLPM (Hamaker et al., 2015),
which models time-invariant confounders, or Latent Curve Models with Structured Residuals (LCM-
CR; Curran et al., 2014), which models time-varying confounders with patterns such as autoregressive
structures. Finally, as discussed earlier, researchers facing the fourth outcome could consider the use of
existing confirmatory methods, e.g., additive noise models and DDA, to identify the causal direction.

8. Conclusion

In conclusion, our work proposes a novel method that integrates machine learning and reverse causality
testing. Through mathematic analysis, simulation studies, and a case illustration, we demonstrates the
effectiveness of this method. We hope this approach inspires future research to more strongly embrace
the advancements in computer science and machine learning to enrich the methodological toolkit of
psychological sciences.
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