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CUSP FORMS OF WEIGHT ONE, QUARTIC RECIPROCITY

AND ELLIPTIC CURVES

NOBURO ISHII

§ 1. Introduction

Let m be a non-square positive integer. Let K be the Galois extension
over the rational number field Q generated by V^-l and Vm. Then its
Galois group over Q is the dihedral group D4 of order 8 and has the unique
two-dimensional irreducible complex representation ψ. In view of the
theory of Hecke-Weil-Langlands, we know that ψ defines a cusp form of
weight one (cf. Serre [6]). This cusp form is denoted by θ(τ, K). The
present paper consists of two parts. In the first part (§ 2 and § 3), we
shall study the number theoretic properties of θ(τ9 K) deduced from K.
We show firstly that 0(τ, JK") has three expressions by definite or indefinite
theta series. We may consider these expressions of θ(τ, K) as the identities
between cusp forms of weight one. This point of view gives a number
theoretic explanation for the identities between cusp forms ([3]). Further
we show that the Fourier coefficients of the cusp form #(r, K) determine
the decomposition law of the extension K/Q and especially the quartic
residuacity of m. These results are obtained from that K has three
quadratic subfields over which iΓ is abelian. In particular, for the case
m is prime, we write down the above expressions of θ(τ, K) explicitly by
determining the class group corresponding to K in each quadratic subfield.
We deduce from this a special case of quartic reciprocity law. In this
part we also establish the "higher reciprocity law" of the defining equation
of K.

Let E be the elliptic curve defined by the equation: y2—χ3+4rnx. Then
K is generated over Q by certain torsion points of E. The purpose of
the second part is to study the property of θ{τ, K) related to E through
K. Let #(r, E) denote the inverse Mellin transform of the L-function
of E. Then #(τ, E) is a cusp form of weight two (cf. Shimura [8]). In
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118 NOBURO ISHI1

Section 4, we shall show, under certain assumption on m, the following
congruence:

θ(τ9 K)ΞΞ$(T,E) mod 4.

We remark that this result provides an answer for the problem proposed
by Koike (cf. Koike [4]).

The author would like to express his hearty gratitude to Professor
T. Hiramatsu for encouraging him to consider these problems and Dr. Y.
Mimura for very helpful discussions.

§ 2. Quartic residuacity and cusp forms of weight one

Let m be a non-square positive integer such that m has the following
decomposition in prime numbers p:

(1) m = Π p ί ( p ) , 0 ^ β ( p ) ^ 3 .
P

Let K = Q(Λ/^Ί, fym) be the field generated by v ^ Ί and Λ/TΠ over the
rational number field Q. Then if is a Galois extension over Q of degree
8 and its Galois group G = G{KjQ) is isomorphic to the dihedral group
D4 of order 8. Let σ and p be the two generators of G defined by

Vm, σ(^/^Λ)m) =

Then the following Diagram 1 of subfields of K is obtained:

^ ^ Γ ) (σ\ σp>

Diagram 1.

To jthe field K we shall define a cusp form θ(τ, K) of weight one.
Let ψ be the two-dimensional complex irreducible representation of G
defined by
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CUSP FORMS OF WEIGHT ONE 119

Then the representation detψ of G defined by (detψ)(g) = άegψ(g) induces

a Dirichlet character ε such that

ε(ή) = (-llή).

Denote the Artin L-function associated with ψ by

L(s,KlQ,ψ) = Σa(ή)n-s.

Then L(s, KjQ, ψ) has the Euler product:

( 2 ) L(s9 KIQ, ψ) = Π (1 - a(p)p-s)'ί Π (1 - <P)P'S + *<J>)p-uYι >

where N denotes the conductor of ψ. Now we define the function θ(τ, K)

by

oo

θ(τ, K) = Σ a(ri)qn , q = exp(2τrV — ί^).
7 1 = 1

It follows from the well-known theory of Hecke-Weil-Langlands that

θ(τ, K) is a cusp form (new form) of weight one with character ε on the

Hecke group Γ0(Ny\

We are going to give explicit form of θ(τ, K). At first we explain

the notation used below. Let Ω and A be fields such that Ω is abelian

over A. Then F(ΩjA) (resp. f(ΩjA)) denotes the conductor (resp. the finite

part of conductor) of Ω over A. Let M be one of the quadratic fields

appeared in Diagram 1. Then ΘM denotes the ring of integers of M and

NM/Q denotes the norm of M over Q. Let α be an integral ideal of M.

If M is imaginary (resp. real), then HM(ά) denotes the group of ray classes

(resp. narrow ray classes) modulo a of M. Furthermore PM(ά) denotes the

subgroup of HM(a) generated by principal classes (resp. principal classes

represented by totally positive elements). If 6 is an ideal prime to α, then

[ft] denotes the class of HM(a) represented by 6. If & is an element of M

and (6) is the principal ideal generated by b, then [b] denotes [(6)]. Finally

let CM(K) (resp. CM(L)) denote the subgroup of HM(f(K/M)) corresponding

to the field K (resp. L).

Let -ψ and M be as above. Then the restriction of ψ to the abelian

group G(K/M) decomposes into two distinct linear representations ξM and

ξf

M of G(KjM). Via Artin reciprocity law, we can identify ξM and ξ'M with

1) See Serre [6], for example.
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120 NOBURO ISHII

characters oϊ HM{f(KjM)) trivial on CM(K). We denote these characters

by the same notation. If cM and c'M are the finite part of conductors of

ξM and ξf

M respectively, then cM is conjugate to cf

M over Q. Let f̂  (resp.

ξ'M) be the primitive character of ξM (resp. ξ'M) and L(s, ζM) (resp. L(s, |^))

the Hecke L-function associated with ξM (resp. | ^ ) . Then it is well-known

that

( 3) L(s, KIQ, ψ) = L(s, ξM) = L(s, &).•>

Let CM(K) and CM{L) be the images of CU(K) and CM(L) by the canonical

homomorphism of HM(f(K/M)) to HM(cM) respectively. Then, as shown in

[3],

L(s, ςM) = ^Σ, XM(a)NM/Q(a)-°,

where

1 if [a] e CM(K),

1 otherwise.

Applying the inverse Mellin transformation on the both sides of (3), we

obtain

( 4 ) θ(τ,K)= Σ ^M(a)qN^a).

Therefore θ(τ, K) has three expressions according to quadratic fields F, E

and k. To determine CM{K) and CM(L), it is necessary to know the

conductors of K\M and L\M. Let JΓ, Se and & be fields such that

X Z) if D ^ and [if : e^] = 2. Assume Jf is abelian over J^. Then

/(Jf7^O is determined by /(JΓ/if) and the different D(if/^) of if over J*~.

Thus we have

LEMMA 1. For a prime ideal Sβ of if, let /($) (resp. ^(^β)) denotes the

ψexponent of f($Tl&) (resp. D(^l^)\ Put

Then

?) See [3].
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CUSP FORMS OF WEIGHT ONE 121

Proof. This is deduced from the proof of Lemma 1 in [3].

It follows from [L : M] = 2 that f{LjM) = D(L/M)\ And D(L/ilί) is

deduced from the following equalities:

= D(FjQ)D(ElQ)D(klQ)

D(LIQ) = D(LIM)D(MIQ).

In view of Lemma 1, to obtain F(K/M) it is sufficient to determine

Write

m - 2e(2)m1, 0 ^ e(2) ^ 3 , (mu 2) = 1.

Let

Hi = Π P , ^2 = Π P
Plwii p|mi

e(p): even e(p): odd

Furthermore put n — n^n2. Then the conductor F(K/L) is as follows.

e(2)

mi mod 8

F(JSC/L)

1, 3

j 4n

0

1 5

2n

3, 7

4n

2

1, 5

An

3

2rc

7

Table 1.

In the next Table 2, we give F(K/M), F(LjM) and c^ in only the cases

needed below, thus, the cases where m are prime numbers p >̂ 5.

pmod8

1
5

3
7

F{KjE) F(L/E)

1 o / 1 1

\ oV —p 4

V — p
2V^p

8V—p

F(K/fc)

P
j 2p

F(L//c) ck

' ! i
4p p 4p

Table 2.

F(K/F)

AVp OOJ002

4Vp co1oo2

F(L/F)

4oo 1 oo 2

co 1 oo 2

CF

AVJ

Avy

In the above Table 2, p2 denotes a prime ideal of F dividing 2 and oô

(i = 1, 2) denote infinite places of F. From this we know that CM(L) =

CM{L) and CM(K) = CM(K) except the case p Ξ l mod 8 and M = F.

Assume that m is a prime p congruent to 5 mod 8. Denote by θ(τ, M)

the right side of (4). In (I) through (III) below, we shall determine θ(τ, M)

explicitly for M = E, k and F respectively. In the following we write

simply ΉM and PM in place of HM(f(K/M)) and PM(f(KIM)) respectively.
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122 NOBURO ISHI1

Further for a prime ideal $β of M denote by r(ψ) a generator of the group

(0WΦ)x. A n d > for a n integral ideal a dividing f(K/M), denote by K(a) the

kernel of the canonical homomorphism of PM to PM(ά)

(I) The case M = E(= Q(V-p)). Put ψ = (V^Γp). Let ω and Λ be

integers of £ satisfying the following properties:

ω = V—p mod 2 , J7 = 1 mod 2, Λ e Z+

ω = l mod Sβ [λ = r(ψ) mod φ .

Then it is easy to see

*((2)) =

Since F(K/E) = 2φ and F(LjE) = 1, we see

This implies

[P, : P , Π C^IQ] = 2, C,(Jf) ? M, [λ].

From this, noting that [Λ]2 e CE(K), we have

PE ΓΊ C ί(liΓ)=<[ω] W>.

It follows from the genus theory that the class number h(E) of E is even

and that the number of square classes in HE/PE equals to jh(E). Let

di (ί = 1, , JA(JB)) be integral ideals of E such that [αj2 represent all

square classes in HE/PE. Since G(KIE) is a Klein four group, [αj2 € CE{K)
and the following coset decompositions are obtained:

CE(L) = C , ( ί ) + CE(K)[ω],

CE{K) = Σ [α,]-2(PE Π

If a is an integral ideal of E prime to 2$β and [a] e CE(L), then there

exist unique at and an element a + b\l — p of α such that

α = α,~2(α + bV— p),

(α,p) = l ,

a ^ b mod 2 .

Furthermore

[α] e CE(K) φ ^ (α/p)(- I)6 = 1.
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Hence we obtain
HE)/2

θ(t, E ) = f Σ { Σ ( - malp)qίa2+pb°)/Ai2},
ί = l αΐδmod]

α+δ ^^"eα^

where At = NE/Q{ai).

(II) The case M = k(= Q(Vr=Γl)). Let p = ψψ be the decomposition
in prime ideals of p in k. Choose integral elements η and λ of k satisfying
the congruent relations:

_ _ (7 = 1 mod 2
= V — 1 mod 2

79 = 1 m o d ?B

Let / be the conjugate of λ over Q. Then it is easy to see Pk = <[̂ ], [^], [η])
and K((p)) = <[r/]). It follows from the values of conductors in Table 2
that

[Pk : C4(L)] = [Ck(L) : Ck(K)] = 2

Since G(Kjk) is cyclic of order 4, we know

C,(L) e [A]2, Ck(K) g [A]2.

Further the commutativity (resp. non-commutativity) of G(L/Q) (resp.
G(K/Q)) implies that

Ck(L) 9 [Λ]-1. m (resp.

Therefore

Thus for integral ideals α of k prime to 2p, we obtain

[a] e Ck(L) <=Φ a has a generator x + V —ly such that

(x2 + y/p) = 1 , I Ξ 1 J Ξ O mod 2 :

Furthermore

[α] e Ck(K) φ=» (x + Sy/P)(^2 + //P)4 = 1,

where s is an integer such that s2 = — lmodp.
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Hence

θ(τ, k) = i Σ (x + sj>/p)(x2

where the summation is over all pairs of integers (x, y) such that x = 1,
y = 0 mod 2 and (x2 + f/p) = 1.

(Ill) The case M = F(= Q(fp)). Let Sβ = (/p) and ω = J(l + Vp).
For α: e ΘF, take an element #* of 0^ such that

I a* is totally positive,

#* = a mod 4 ,

α* = 1 mod ̂  .

Let f e ̂  such that ξ induces an element of order 3 in the group (ΦFl4)x.
Let 2 be a positive integer such that λ = 1 mod 4 and Λ = r(5β) mod ψ.
Put ^ = 1 + 2ω. Then it is easy to see

?*], fo*], [3*],
<[,*], [3*],

Taking account of the values of conductors, we have

[PF : Cr(L) Π PA = [CF(L) Π PF : CF(K) Π

C,(L) 3 iΓ((4)), 73 ίΓ((2)); C,(X)

If [η*Y is the conjugate class of [27*], then

Since ^(L) is closed under the conjugation, thus ^(L) ' = CF(L), and
CF(L) 73 PF, we know

Therefore

(5) C , ( L ) n P , = ([f*],[3*

The non-commutativity of G(K/Q) shows that Cp(iΓ) 0 [3*].
This implies

(6) CΛK) n PF = <[ξ*],[s*UΦ.

Let Λ(F) be the narrow class number of F. By the genus theory, h(F)
is odd. Let B€ (i = 1, , h(F)) be integral ideals such that [BJ represent
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all classes of HFjPF. Then we have the coset decompositions:

C,(L)=C,(JΓ) + C,(*)[3*],

Let μ be a totally positive element of ΘF prime to 4$β. If μ Ξ 1 mod 2, then

we can put μ = u + vV p, u ~ v + 1 mod 2. Further in view of (5) and

(6), we obtain

M e CF(L) φ-> [μ] e <[3*], W> <=Φ u = 0 mod 2, (p, u) = 1;

IM € C^(X) <=Φ ( M / P ) ( - 1) ( W + V - 1 ) / 2 = 1, i; = 0 mod 2 .

J£ μ^ Imod2, then we can put μ = j(s + tVp), s: odd. Choose a = 1

or 2 such that μf *α = 1 mod 2. Put μξ*a = u+ vV~p, u ΞΞ v + I mod 2.

Since 2V ί 7 β(£*)=lmod4, we have

NF/Q(μ) = u2 — v2 mod 4 .

Therefore

v = 0 mod 2 <=φ NF/Q(μ) = 1 mod 4.

Further if u = 0 mod 2, then

i(w + i; - 1) ΞΞ i(s + 1) mod 2.

Noting s = 2wmod/?, it follows from (7) that

[μ] e CF(L) <=Φ> u: even <=Φ NF/Q(μ) = 1 mod 4

Furthermore

[μ] 6 C,(X) Φ=» («/p)(- l)<"—»/2 = 1 <=φ ( φ ) ( - ly-)/* = 1.

To obtain θ(τ, F), we must consider the effect of units of F. Let

.E+ = {εeΦF\ε: totally positive units},

Eo = {ε e E+\ε ~ 1 mod f(K/F)}.

Put e = [£;+ : £J0] and B, = NF/<βύ- Then

ί(r, F) = e"1

where the summation with respect to μx (resp. μ2) is over all representatives

https://doi.org/10.1017/S0027763000021413 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000021413


126 NOBURO ISHII

mod Eo of the set of totally positive elements of b2 such that

μx — s + 2Wp s, teZ and s = 1 mod 2 (resp. μ2 = J(s + t^ p); s, teZ,

s = 1 mod 2 and NF/Q(μ2) = 1 mod 4).

Let ^ be a prime number. Then we have

(_ l/^) = (p/£) == 1 φ=φ ̂  splits completely in L

a{£) = ± 2

Furthermore

^ splits completely in if <=> α(^) = 2.

(See Corollary 2 of Section 3 in the present paper).

Consequently we have

THEOREM 1. Let p = 5 mod 8 and keep the notation as above. Then

( i ) θ(τ, K) is a new form of weight one, with character ε(ri) = (— l]ή)

on the group Γ0(16p2);

(ii) For a prime number ί such that (— \\£) = (pj£) = 1,

(iii) θ(τ,K) has the following three expressions:

h(E)/2

θ(τ;κ) = l Σ Σ (-
ί = l a&b mod2

a+b J^peai%

+ Σ

Especially from the second expression of 0(τ, K) in (iii), we obtain a

reciprocity law of quartic residue:

COROLLARY 1. Let £ be a prime number such that (— \\£) = (p/^) = 1.

^ = Λ2 + y2 zi iίΛ x = 1 mod 2. ΓΛeπ

(p/A = (x + sylp){£lp\.

To avoid diffuseness, for other primes, we shall state only the results

corresponding to (iii) in the next Remarks.

Remark 1. Let p = 2 or 3. Then θ(τ, K) is expressed as follows.
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(p = 2)

θ(τ, K) = |#4(16r)£3(16r) = Σ (— l)V 4 α + 1 ) 2 + 8 δ 2 (via E)
a,b

= !£2(8r>90(32r) = Σ ( - l ) V " + 1 > i + l i v t (via A)

( - 2/s)q-s2-32ί2 (via F ) ,
S>β|ί|

where <50, #2, #3 and -94 are theta series defined by

*o(τ) = Σ (~ l) n e x p ( ; r ^ n 2 r ) , 52(r) - Σ

and ^ + denotes the Hecke indefinite theta series (see [3]).

(P = 3)

l)V 6 α + 1 ) a + m 2 (viaΣ

x,y

β>4|ί|

- 5+(24r, 7 + 2V

Γ3~, ^ , 4Λ/T)

(via F),

where ^(τ) is the Dedekind eta function.

Remark 2. Let P Ξ 3 m o d 4 or p ~ 1 mod8. Keep the notation as

above. Let {α{} (resp. {bt}) be the set of the integral ideals of E (resp. JF)

such that {[α<]2} (resp. {[fij2}) represent all square classes in HE/PE (resp.

HFIPF). Put A, = NE/Q{az) and J5, = NF/<βύ- Then we have the following

expressions of 0(r, if).

(p = 3 mod 4)

θ(τ, K) = hΣ{Σ (

(Ό if p = 7 mod 8,
4- <&(#)

I Σ Σ ( - l) (^/β^)+ 3)/χα/p)g ( α 2 + ί ) δ 2 ) / 4^ i 2 otherwise;
ί l

λ

MF)/2
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where {x + V — lj/ph denotes a cyclic character of (0fc/p)x of order 4 and
the summations are as follows:

Σ- ωt = α + 2bVz:rp ea2

ifa + 2b~ 1 mod 4

Σ : ffl!=2(a + W - p ) 6 α , S Ξ 3 m o d 4

Σ : Λ = * + V ^ X x = 1 mod4, y = 0mod2, (x2 + //p) = 1

Σ (resp. 2]) •* i"i (resp. μ2) runs over all representatives mod Eo of
the set of totally positive elements s + W p e bf such that s ~lf

t = 0 (resp. s ΞΞ 0, ί = 1) mod 2.

(p = 1 mod 8)

Let p2 be a prime ideal of F over 2. Put

E'o = {ueE+\u = l mod #(Vp)}.

Let e' = [£+ : EΌΊ Take 5 6 Z such that s2 = - 1 modp. Then
h(F)/2

θ(τ, K) = \ Σ Σ (-
i = l ω

= i Σ (*
h(F)

= e'~ι Σ
< 1

where the summations are as follows;

2]." ω = α + δ V - p e α , α ^ 6mod2

Σ
Σ (resp. 2]) : i"i (resp. ^2) runs over all representatives modE^ of
μi μi .

the set of totally positive integers such that μ^ — s + tvp (resp.
fh = i(s + Wp)) 6 b and s ~t + 1 mod 2 (resp. s ~1 mod 2 and
s - t -2-0mod4).

§ 3. Higher reciprocity law

Let the notation be as in Section 2. Consider the polynomial f(x)
= xi — m. Then the cusp form θ(τ, K) has close relation to the decompo-
sition law of K/Q and the "higher reciprocity law3)" of f(x). We shall

3) For the higher reciprocity law, see Hiramatsu [2] and Moreno [5].
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explain these properties of θ(τ, K). To this purpose, let us consider the

expression of θ(τ, K) in (4), for M = k. Since ξk is primitive we obtain

Let m = 2emmu (m,, 2) = 1. Put

( 9 ) mί= UP-
p\mx

Then the conductor F(Klk) of K over k is given in the next Table 3.

β(2)

mi mod 8

F(K/k)

1, 3

8mi*

0

1

m i *

5

2ml*

3, 7

4mi*

2

1, 5

4rai*

3

2W!*

7

m i *

Table 3.

Let / be the positive integer such that F(Kjk) = (/). Then the level N

of 0(r, Z) is given by

(10) N=4f2.

Now the decomposition law of KjQ is described by θ(τ, K) as follows.

PROPOSITION 1. Let p be a prime number not dividing f. Denote by

fp the relative degree of the prime ideals of K over p. Then the following

assertions hold;

( i ) If p = 1 mod 4, then

fP = 1 <=> a(p) = 2

/p = 2 φ=φ a(p) = - 2

/P = 4 <=φ α(p) = 0.

(ii) If p = S mod 4, fλen α(p) = 0, fp = 2 or 4. Further

fp = 2

(iii) If p = 2, then fp=lor 2. Further

fp = 1 <=φ α(p) = 1

/p = 2 ^ α ( p ) = - 1 .

Proo/. Let $ be a prime ideal of A over p and f% the relative degree
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of Sβ. Denote by ψ the conjugate ideal of Sβ. Since G(K/k) is cyclic, it

is easy to see

[Sβ] e Cfc(L) (resp. Cft(i<0) <=> Sβ splits completely in L (resp. JBΓ)

<=Φ /*//* = 1 or 2 (resp, /p//φ = 1)

ββ] g Cfc(L) — > ββ] ^ [ψ].

From this, for a prime p such that p = 2 or p = 3 mod 4 we have

Pβ]eCfc(L) and/p//, = l or 2.

Therefore our assertions are deduced immediately from (8). q.e.d.

COROLLARY 2. Letp be a prime number such that (— 1/p) =• (m/p) = 1.

Next we shall treat the higher reciprocity law of f(x). Consider all

irreducible representations of G and they are listed below.

1
1

1

H || - 1

^ 3

ψ

- 1

/V=ϊ 0 \
V o -v=ι)

9

1

- 1

1

- 1

/0 IX

u oy
Table 4.

Let X be the character of ψ. For a prime number p unramified at K

(4=φp|JV), denote by σp the Frobenius substitution of p. Then

( 1 1 ) ΨΊ(*P) = (~ 1/P), Ψ2(^P) = (molp),

where m0 is the square free part of m:

m o = U P -
e(p): odd

For a prime number p, put

S(p) = # {α e Γp|/(σ) = 0 modp}.
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Then we have

PROPOSITION 2. Let p be a prime number not dividing N. Then

S(p) = 1 + a(p) + (mo/p)

= a(p) + a(p2) - ( - mo/p).

Proof. Put H = (py. Then H is the subgroup of G corresponding to

the subfield Q(fym). Let 1^ be the identity character of H and v its

induced character of G. Let d(f) be the discriminant of f(x). Then N

and d(f) have the same prime divisors. Therefore we obtain for pJfN9

v(σp) = S(p).

Computing inner product of v with all irreducible characters of G, we

have

JO iff = 1 , 3 ,

[1 otherwise

(v\l) = 1.

Therefore

It follows from (11) that

S(p) = 1 + (mo/p) + a(p).

In view of (2), we obtain (§ 3.3 of Shimura [7])

On the other hand, by (11) we see

a(p)2 = X(σl) + 2(

Therefore

«(P2) = Z(oJ) + ( - VP) •

Since the correspondence: g-+X(g2) is a class function of G, by computing

inner products with irreducible characters of G, we have

X(σl) = 1 - ( - 1/p) + (mo/p) + ( - mjp).

From this we have
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α(p2) - l + (mJp) + (_ mjp); S(p) = a(p) + α(p2) - ( - mjp).
q.e.d.

Let Spl{/(x)} be the set of all primes p such that f(x) modp factors
into a product of distinct linear polynomials over Fp. Then we have

PROPOSITION 3. (Higher Reciprocity Law of f(x)). Let p be 'a prime
number not dividing N. Then

Proof. This is obvious from Propositions 1 and 2.

§]4. Elliptic curves and cusp forms of weight one

Let the notation be as in preceding sections. Consider the elliptic
curve E over Q defined by

E: y2 = x3 +

Then E has a complex multiplication J such that

(12)

for all points P = (x, y) on E.
Since J 2 = — 1#, the subalgebra 0 generated by J over Z is identified

with the maximal order Θk of k — Q(V — 1). Denote the L-function of £

by
oo

L(s, Z?) = 2 c(ή)n's.
71=1

Let c(£) be the conductor of E. Further put

&(τ, E) = f] c(ή)qn .

Since E has complex multiplications, we know #(r, 22) is a cusp form of
weight 2, with trivial character on the group Γ0(c(E)) (Shimura [8]). In
this section we shall show that the cusp form θ(τ, K) of weight one is
associated with the cusp form #(τ, E) of weight 2 under a congruent
relation. At first we determine the conductor c(E). Since E has complex
multiplications it is easy to see that c(E) takes the form

c(E) = 2x3y ml,
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where x, y e Z and m2 is the product of all prime divisors of m which are

prime to 6. Let e(2) and e(S) be the 2-exponent and 3-exponent of m

respectively. Then by Tate's argorithm in Tate [10], we know y = 0 or 2

according to e(S) = 0 or not. Further x are as follows.

e(2)

mi mod 4 !

x \

ί

1

5

)

3

6

1

8

1

6

3

5

3

8

Table 5.

Let mf be the integer defined by (9). Then we have from this

c(E) = 2xmf.

Therefore it follows from Tables 3 and 5 that the level c(E) of £(τ, E)

equals to the level N of θ(τ, K) up to a power of 2 and that c{E) = N if

e(2) is odd. For a prime number p not dividing c(E), denote by Ep the

reduction of E mod p. Then Ep is again an elliptic curve with complex

multiplications Θk. Let Q = (1 + V — i) be the prime ideal of k dividing

2. Denote by E(n) (resp. Ep(n)) the group of £Γ-division points of E

(resp. Ep). Then

E(2) = {(x, 0)\x3 + 4mx = 0} U {0^},

E(3) = {(x, y)\(x2 - 4mx)(x2 - Am) = 0, / = x* + 4mx} U {0^},

where 0E denotes the identity element of the group structure on E. From

this we obtain

(13) P = (x, y) e E(S) - E(2) x2 - 4m = 0 .

Further K is generated over Q by all £l3-division points of E. Denote by

Np and T(p) the number of Fp-rational points of Ep and ̂ (3) respectively.

Then we have following Proposition.

PROPOSITION 4. Keep the notations as above. Let

μiP) = { ! - ( - 1/P)}{1 + (2/P)}.
Then

( i ) T(j>) = S(p) + ( - mjp) + 3
(ii) iV, = Γ ( p ) + /<(/>) mod 8.

Proof. Let M (resp. -M(re)) be the subset of Fp-rational points of Ep

(resp. Ejin) - Ep(n - 1)). Let
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A = {a 6 Fp\f(a) = 0 modp}.

For PI2/72, by (13) we have a bijection φ of Λ to M(3) defined by

φ(a) = (2α2, 4α3), α e Λ.

Therefore

S(p) = \Λ\ =

Further it is easy to see

Hence

T(p) = |M(3)| + |M(2)| + |Af(l)| = S(p) + ( - mo/p) + 3.

This shows (i). Next we shall prove (ii). The following is easily obtained:

Γ4 if ( - l / p ) = (m/p)4 = l ,

(14) S(p) = 2 if ( - Up) = - 1 and (m/p)4 = 1,

(θ otherwise.

Let P Ξ 3 mod 4. Then it follows from (14) and (i) just proved that

T(p) ΞΞ 4 mod 8 .

On the other hand it is easily obtained

Np=p + 1.

Therefore

NPΞΞ T(p) + μ(p) mod 8.

Let p = 1 mod 4. Then by (12), the endomorphism Jp of Ep induced by J

is defined over Fp. Let U be the subgroup of A\itFp(Ep) generated by Jp.

Then U is a cyclic group of order 4 and M becomes a [/-module. Let Pe M

and denote by O(p) the U-orbit of P. Then we have

(15)

Let

M*

\0(P)\ =

= 0 M(n), A

ί 1

2

U

if PeM(ΐ),

if PeM(2),

otherwise.

= ίx 6 Mlorder
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Then M* and M** become [/-modules and M= M* ©M**. From (15)

we know

(16) |M**| ΞΞ I m o d 4 .

Let t be the largest integer such that M* Ξ§ Ep(t). If there exists an

element P of M(3), then it follows from (15) that

This implies that t ^ 3. Therefore

\M*\ = 2 ^ ί = lφ^> T(p) = 2

|M*| = 4 <φ=φ ί = 2 <=> T(p) = 4

|M*| = Omod8 <==> i ^ 3 φ φ ϊ 7 ^) = 8.

Hence by (16).

Np = |Af*| |Λί**| = T(p) mod 8. q.e.d.

Consider the L-function L(s, E) of E. Since E has complex multipli-

cations, the Euler product and p th coefficient c(p) of L(s, E) are as follows

(Tate [9]):

L(s, E)= Π (1 - c{p)p- + p 1 - 2 ' )- 1 ,

\ 0 otherwise.

Furthermore we have

PROPOSITION 5. Le£ p be a prime number such that pJ(c(E). Let T(p)

= {1 + ( - l/p)}{l - (2/p)}. 2%en

c(p) = α(p) + Γ(p) mod 8 .

Proof. Let pG denote the character of the regular representation of

G. Then

Since G is of order 8, for all geG we have

pG(g) Ξ= 0 mod 8 .

In this congruent equation, put g = σp for p)(c(E)f then by (11),

2α(p) + 1 + (roo/p) + ( - mjp) + ( - 1/p) = 0 mod 8.
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On the other hand, Propositions 2 and 4 imply

c(p) = - a(p) - μ(p) + p - 2 - {1 + (mo/p) + ( - mo/p)} mod 8.

Thus

c(p) ΞΞ a(p) - μ(p) + p - 2 + ( - 1/p) mod 8 .

It is easy to see

ϊ(p) =p - 2 - μ(p) + ( - l/p)mod8.

Therefore

c(p) Ξ a(p) + Γ(p) mod 8 . q.e.d.

Note that a(p) = 0 if p|/, c(p) = 0 if p\c(E), and ϊ(p) = Omod 4.

Further it follows from Tables 3 and 5 that c(E)/f is a power of 2.

Therefore we have:

COROLLARY 3. Let p be an odd prime. Then

a(p) = c(p)mod4.

Furthermore, if f is even, then

a(2) = c(2)mod4.

It follows from (2) and (17) that Fourier coefficients a(ή) and c(ή) are

both multiplicative. Therefore we know that a(ri) = c(ή)mod4, if n is

odd and that c(ή) = Omod4 if n is even. Let

Then θfiτ, K) is a cusp form of weight one, with character εf on the group

JΓ0(4JV), where ε' is a character mod 4N induced by ε (Lemma 2 in Shimura

[8]). Consequently we obtain the next Theorem.

THEOREM 2. Keep the notation as above. Then

θ'(τ, K) = S(τ, E) mod 4 .

If f is even, we have further

θ(τ,K) ΞΞ£(Γ, £ ) m o d 4 .

Remark 3. The number of rational points Np is computed as follows.

For p
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_ ί P + l i f p - 3 mod 4,

\p + 1 — π(— 4/n/τr)4 — 7r(— 4m/τf)4 otherwise,

where π and π are prime elements of & = Q(V — ί) such that p ~ π-π and

7Γ = 1 mod (2 + 2V —1) (Davenport and Hasse [1]). From this it is com-

paratively easy to deduce Proposition 4 and Theorem 2. However we

could attain to Theorem 2, without using this result, along the following

process:

c(p) > Np • T(p) > S(p) • a(p).
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