Ground-based photometry for 42 *Kepler*-field RR Lyrae stars

Young-Beom Jeon¹, Chow-Choong Ngeow² and James M. Nemec³

¹Korea Astronomy and Space Science Institute (KASI), Daejeon 305-348, Korea email: ybjeon@kasi.re.kr

 $^2 \, \rm Graduate$ Institution of Astronomy, National Central University, Taiwan email: cngeow@gmail.com

³Department of Physics & Astronomy, Camosun College, Victoria, British Columbia, Canada email: jmn@isr.bc.ca

Abstract. Follow-up (U)BVRI photometric observations have been carried out for 42 RR Lyrae stars in the *Kepler* field. The new magnitude and color information will complement the available extensive high-precision *Kepler* photometry and recent spectroscopic results. The photometric observations were made with the following telescopes: 1-m and 41-cm telescopes of Lulin Observatory (Taiwan), 81-cm telescope of Tenagra Observatory (Arizona, USA), 1-m telescope at the Mt. Lemmon Optical Astronomy Observatory (LOAO, Arizona, USA), 1.8-m and 15-cm telescopes at the Bohyunsan Optical Astronomy Observatory (SOAO, Korea) and 61-cm telescope at the Sobaeksan Optical Astronomy Observatory (SOAO, Korea). The observations span from 2010 to 2013, with ~200 to ~600 data points per light curve. Preliminary results of the Korean observations were presented at the 5th KASC workshop in Hungary. In this work, we analyze all observations. These observations permit the construction of full light curves for these RR Lyrae stars and can be used to derive multi-filter Fourier parameters.

 ${\bf Keywords.}\ {\rm stars:}\ {\rm variable:}\ {\rm RR}\ {\rm Lyrae}$

We obtained ground-based (U)BVRI photometric observations for 42 RR Lyrae stars in the *Kepler* field. Figure 1 shows a phased light curve of KIC 3864443 and the correlation between $\phi_{31}(Kp)$ and $\phi_{31}(V)$ for all Blazhko and non-Blazhko RRab stars. Table 1 presents the total amplitudes, A_{tot} , and ϕ_{31} parameters from Fourier analysis of RRab

Figure 1. A sample phased light curve of KIC 3864443 (left) and the correlation between $\phi_{31}(Kp)$ and $\phi_{31}(V)$ for Blazhko and non-Blazhko RRab stars (right).

 Table 1. Fourier parameters for RRab stars

KIC	GCVS	Period day	$\mathbf{A}_{\mathrm{tot}}(B)$ mag	$\phi_{31}(B)$ rad	$\mathbf{A}_{\mathrm{tot}}(V)$ mag	$\phi_{31}(V)$ rad	$\mathbf{A}_{\mathrm{tot}}(R)$ mag	$\phi_{31}(R)$ rad	$\mathbf{A}_{\mathrm{tot}}(I)$ mag	$\phi_{31}(I)$ rad
			0		0		0		0	
Blazhko:	No150 C	0 40005	1 100	4.0.45	0.004	1 501	0 710	1 550	0 554	1.005
3864443	V2178 Cyg	0.48695	1.106	4.245	0.834	4.564	0.712	4.556	0.554	4.905
4484128	V 808 Cyg	0.54780	1.398	4.800	1.115	5.055	0.922	5.254 5.00	0.707	0.021
000000000000000000000000000000000000000	V 783 Cyg	0.6207	1.220	0.100	0.969	5.203	0.783	5.609	0.625	0.973
6183128	V 354 Lyr	0.50109	1.028	4.942 [C 514]	0.821	5.168	0.639	5.496	0.490	5.082
0180029	V445 Lyr	0.51312	0.004	[0.314]	0.529	[0.904]	0.464	[1.100]	0.449	5.030
7207008	WOLLT	0.51178	1.252	4.032	0.997	4.709	0.739	5.149	0.594	5.057
7303343	V 355 Lyr	0.4737	1.417	4.790	1.189	4.894	0.965	4.990	0.756	0.302 5.001
7671081	V450 Lyr	0.50461	1.122	4.519	0.873	4.919	0.736	4.884	0.614	5.381
9001926	V 353 Lyr	0.5568	1.288	4.714	1.004	4.879	0.830	5.202	0.699	0.721 F F 7C
9578833	V 300 Lyr	0.52703	1.344	4.935	1.067	5.090	0.869	0.380	0.662	0.070
9697825	V360 Lyr	0.55758	1.005	4.755	0.760	4.991	0.669	5.114	0.479	5.771
9973033	Wege C	0.51075	1.506	0.240 4.045	1.315	0.107	0.909	0.200	0.732	0.020 5.020
10789273	v 838 Cyg	0.48028	1.045	4.040	1.335	4.784	1.131	4.933	0.875	0.230 [C 400]
11125706		0.01322	0.706	0.302	0.540	0.014	0.452	5.970	0.352	[0.400]
12155928	V1104 Cyg	0.43639	1.603	4.057	1.295	4.689	1.062	4.851	0.891	5.242
Non-Blazi	1KO:	0 60000	1 104	4 000	0.015	4 077	0.750	F 170	0 500	F F00
3/33340	NR Lyr	0.68203	1.124	4.829	0.915	4.977	0.759	0.172	0.588	5.590
3800709	V715 Cyg	0.47071	1.525	4.702	1.220	4.043	1.015	4.929	0.841	0.209 C 170
5299596 C070714	V782 Cyg	0.52364	0.830	0.108 F 477	0.000	5.449	0.539	0.811 C 101	0.451	0.170
6070714	V 784 Cyg	0.53409	1.055	5.477	0.830	0.839	0.616	0.191	0.482	[0.435]
6100702	NO L	0.48815	0.926	0.201	0.714	0.047	0.569	5.841	0.440	[0.337]
0703132	NQLyr	0.58779	1.185	4.811	0.954	4.958	0.770	0.100	0.000	0.028
0930115	FNLyr	0.5274	1.482	4.022	1.220	4.708	0.996	4.807	0.813	5.204
7021124		0.62249	1.489	4.300	1.170	0.109 5 497	0.957	5.078	0.686	0.000
7030713	 V240 I	0.08301	0.944	0.102	0.752	0.407 [0.054]	0.003	0.009 [6.950]	0.475	0.202
7749524	V 349 Lyr	0.30707	1.666	0.215	0.078	[8.034]	0.078	[0.859]	0.001	[7.009]
7088242	V 508 Lyr	0.43049	1.000	4.001	1.327	4.700	1.104	4.932	0.970	5 497
1900343	V1510 Cyg	0.56114	1.490	4.000	1.247	4.905	0.970	5.122	0.759	0.427
0508655	V 340 Lyr V 250 Lyr	0.57085	1.450	4.808	1.105	0.009 4.055	0.945	5.030	0.303	4.410
9508055	V SOU Lyr	0.59424	1.452	4.009	1.109	4.900	1.027	5.130	0.758	5.525
9391303	v 894 Cyg	0.57159	1.077	4.071	1.207	4.901	1.037	5.148	0.824	5.402
9000012		0.55601	1.402	4.011	1.120	5.012	0.945	5 200	0.719	5 4 2 2
0047092		0.53091	1.004	4.002	1.021	5.070	0.652	5.000	0.704	0.402 [6 944]
9947020 10126940	v 2470 Cyg	0.54659	0.000	0.204	0.095	0.400 5 112	0.371	5.900 5.900	0.408	[0.344] 5.649
10130240	V1107 Cyg	0.30378	1.1/0	4.099	0.901	5 1 9 1	0.780	5.667	0.018	6 1 2 0
112020003	AW Dro	0.400//	1.200	5.240	0.947	0.121 5 491	0.732	5.007	0.072	0.139
11002800	Aw Dra	0.00722	1.921	0.240	1.040	0.401	0.040	0.009	0.052	0.040

Notes: [] denotes ϕ_{31} larger than 2π .

stars. RRc stars are expected to behave differently from the RRab stars and require special treatment, so they are not included. We used IRAF/digiphot/phot program to obtain the photometry. The periods in Table 1, as well as T_0 and Kp in Fig. 1, were taken from Nemec *et al.* (2011, 2013). The Fourier analysis was based on Géza Kovács' Fourier decomposition program.

From Table 1 we can calculate the mean differences between ϕ_{31} in BVRI bands and $\phi_{31}(Kp)$ and their standard deviations. They are the following: $\Delta\phi_{31}(B) = \langle \phi_{31}(B) - \phi_{31}(Kp) \rangle = 0.430 \pm 0.107$ rad from 34 stars, $\Delta\phi_{31}(V) = 0.174 \pm 0.085$ rad from 34 stars, $\Delta\phi_{31}(R) = -0.018 \pm 0.053$ rad from 34 stars and $\Delta\phi_{31}(I) = -0.192 \pm 0.063$ rad from 35 stars. Earlier, $\Delta\phi_{31}(V) = 0.151$ rad was derived by Nemec *et al.* (2011) based on only three RR Lyrae stars. These results can help to derive metal abundances using Fourier parameters if $\phi_{31}(B, V, R, I)$ vs. $\phi_{31}(Kp)$ relations will be used to translate the former to the latter and then the [Fe/H] vs. $\phi_{31}(Kp)$ relation of Nemec *et al.* (2013) will be used to derive [Fe/H].

Transformation to standard photometry is currently in progress.

References

Nemec, J. M., Smolec, R., Benkő, J. M., et al. 2011, MNRAS, 417, 1022
 Nemec, J. M., Cohen, J. G., Ripepi, V., et al. 2013, ApJ, 773, 181