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ABSTRACT. Observations of surging glaciers indicate that 
the flow regime is one dominated by extensional flow. The 
stress state has substantial longitudinal deviatoric stress. This 
regime is very different from the conventional model for 
glacier dynamics which is dominated by shearing flow. In 
addition, the initiation of surging often involves a 
compression front which travels down the glacier. The com­
pression front seems to divide an up-stream region of high 
drag at the base of the glacier from one of low drag which 
allows the rapid sliding. We develop a framework for the 
mechanics of glaciers undergoing surging. Relevant issues 
are the extensional and compressional flows, high 
longitudinal deviatoric stress, and the stress state near the 
basal discontinuity. We find that some of the down-slope 
component of glacier weight is borne by longitudinal stress 
in the rapidly sliding region. This stress thrusts against the 
slowly moving parts of the glacier. We hypothesize that this 
effect causes the rapidly sliding part to spread and causes 
the compression front to travel down the glacier. A 
criterion for spreading of the rapidly sliding part is 
developed. The mechanics outlined above are used to 
develop a highly idealized model for glacier surging. We 
propose that regions of low drag are relatively common 
features of glaciers. The surge initiates when conditions are 
met which allow the surge nucleus to spread. The rapidly 
sliding region of low drag spreads to a large part of the 
glacier. Surging ends when the low-drag conditions 
terminate. Because of the changed state of the glacier, surge 
nuclei are now stable against spreading. Several years of 
rebuilding must occur before nuclei are once more unstable. 
Calculations are performed for the evolution of the shape of 
Medvezhy Glacier during the surge of 1963. We find a 
remarkable similarity between the data and our 
computations. 

RESUME. Sur le mecanisme des avances catastrophiques. 
L'observation des avances catastrophiques de glacier (surge) 
montre que l'ecoulement est essentiellement extensif, les 
contraintes deviatrices longitudinales etant importantes. I1 
s'agit d'un regIme tres different de celui du modeIe 
conventionnel de glacier, domine par le cisaillement. En 
outre le declenchement du surge entraine· souvent un front 
de compression qui descend le glacier. Le front de 
compression semble separer la partie amont du glacier 011 le 
frottement est important, de la partie aval oil une faible 
valeur du frottement permet un glissement rapide. On 
developpe le cadre de la mecanique des surges. Les points 
principaux sont les ecoulements intensifs et compressifs les 
fortes contraintes deviatrices longitudinales et l'etat de 
contrainte pres de la discontinuite basale. Nous trouvons 
qu'une part de la composante du poids vers l'aval vient de 
la contrainte longitudinale dans les regions de glissement 
rapide. Cette contrainte s'exerce contre les parties a faible 
mouvement du glacier. Nous faisons l'hypothese que cet 
effet cause une progression de la partie glissement 
rapidement et est a l'origine d'un front de compression qui 
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descend le glacier. Un critere de progression de glissement 
rapide est developpe. Les mecanismes decrits ci-dessus sont 
utilises pour developper un modele tres idealise de glacier a 
surge. Nous proposons que des regions a faible frottement 
sont des caracteristiques habitue lIes de glaciers. Les surges 
debutent quand sont reunies des conditions qui permettent 
au noyau de surge de s'exercer. La region de glissement 
rapide a faible frottement s'etend a une bonne part du 
glacier. La surge se termine quand les conditions de faible 
frottement disparaissent. Par suite de l'etat modifie du 
glacier, les noyaux de surge sont alors stables par rapport a 
leur developpement. Plusieurs annees de reconstitution sont 
necessaires avant que les noyaux soient une fois de plus 
instables. Des calculs sont effectues pour l'evolution de la 
forme du Medvezhy Glacier au cours de sa surge de 1963. 
Nous obtenons une remarquable similitude entre les donnees 
et nos calculs. 

ZUSAMMENFASSUNG. Ober den Mechanismus 
ausbrechender Gletscher. Beobachtungen an ausbrechenden 
Gletschern lassen erkennen, dass ihr Fliesszustand von 
extensionalem Fluss bestimmt wird. Der Spannungszustand ist 
durch wesentlichen ablenkenden Druck in Uingsrichtung 
gekennzeichnet. Dieser Zustand ist sehr verschieden vom 
gewOhnlichen Modell der Gletscherdynamik, das vom Scher­
f1uss beherrscht wird. Ausserdem tritt mit dem Beginn eines 
Ausbruchs oft eine Kompressionsfront auf, die gletscher­
abwlirts wandert. Diese Front scheint ein stromaufwlirts 
gelegenes Gebiet mit hoher Hemmung am Gletscherbett von 
einem solchen mit geringer Hemmung zu trennen, das die 
schnelle Gleitbewegung zullisst. Es wird ein Rahmen fUr die 
Mechanik ausbrechender Gletscher entwickelt. Massgebliche 
Momente sind der extensionale und kompressive Fluss, hohe 
ablenkende Spannung in der Llingsrichtung und der 
Spannungszustand nahe der Diskontinuitlit am Untergrund. 
Es ergibt sich, dass ein Teil der hangabwlirts gerichteten 
Komponente des Gletschergewichts vom Ll1ngsdruck im 
schnell gleitenden Gebiet aufgenommen wird. Dieser Druck 
wirkt gegen die langsam bewegten Teile des Gletschers. Es 
wird angenommen, dass hierdurch der schnell gleitende Teil 
zur Ausbreitung und die Kompressionsfront zur Wanderung 
gletscherabwl1rts veranlasst wird. Flir die Ausbreitung des 
schnell gleitenden Teils wird ein Kriterium entwickelt. Die 
beschriebene Mechanik wird zur Entwicklung eines stark 
idealisierten Modells flir Gletscherausbrliche herangezogen. 
Man kann annehmen, dass Gebiete mit geringer Hemmung 
relativ hliufig am Gletscher auftreten. Der Ausbruch 
beginnt, wenn Verhl1ltnisse eintreten, die eine Ausbreitung 
des Ausbruchskerns erlauben. Das Gebiet schnelIen Gleitens 
bei geringer Hemmung erfasst einen Grossteil des Gletschers. 
Der Ausbruch endet, wenn die Bedingungen flir geringe 
Hemmung nicht mehr aegeben sind. Infolge des 
verlinderten Gletscherzustandea sind die Ausbruchskerne dann 
unemfindlich gegen Ausbreitung. Mehrere lahre des 
Wiederaufbaus sind nOtig, bevor die Kerne wieder instabil 
werden kOnnen. Flir die Entwicklung der Gestalt des 
Medvezhy Glacier wlihrend seines Ausbruchs von 1963 
wurden Berechnungen angestelIt. Es zeigt sich eine 
bemerkenswerte Ahnlichkeit zwischen den Beobachtungsdaten 
und unseren Berechnungen. 
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INTRODUCTION 

A glacier surge is a relatively rapid non-seasonal ex­
tension of a glacier down its valley. Not all glaciers surge, 
but those which do can remain in a quiescent phase for 
many years with only seasonal fluctuations. Then, the 
motion of the ice mass accelerates over a few years in 
addition to there being the usual annual changes. Finally, in 
the year of a surge, there is a rapid stretching of the 
glacier which can cause the snout to move several 
kilo meters down the valley. Some discussion of surging 
glaciers can be found in Raymond (1980) and Paterson 
(1981). A description of the 1983 surge of Variegated 
Glacier has been given by Kamb and others (1985). In that 
case it was observed that the surging motion commenced in 
January 1982 in the upper part of the glacier. Preceded by 
a compression front, this segment extended down the ice 
mass and in spring 1983 the lower part was moving rapidly. 
By July 1983, this motion had subsided and the newly ex­
tended glacier seems to have returned to its quiescent state. 
Data for this and a previous surge of Variegated Glacier, 
and for other surging glaciers, are listed in Table I, which 
was adapted from a similar table in Raymond (1980). Only 
in two cases was the maximum velocity measured on a 
daily basis and an annual rate is given for the others. 

Many models for glacier surge have been proposed and 
a summary can be found in Raymond (1980). Further pro­
posals can be found in papers by Kamb and others (1985), 
based on observations of Variegated Glacier, and Clarke and 
others (1984) for Trapridge Glacier. A full description of 
the mechanics of ice motion is often lacking in these 
models. In this paper we attempt to establish a reliable 
foundation for the understanding of the mechanics of 
glacier surging. In addition, we analyze an idealized surge 
model which contains features present in the 1983 surge of 
Variegated Glacier (Kamb and others, 1985), the 1982 surge 
of Trapridge Glacier (Clarke and others, 1984), and the 
1963 surge of Medvezhy Glacier (Dol gush in and Osipova, 
1975). 

FlolV regime 
Our attempt to create a foundation for the mechanics 

of glacier surging is based on an assessment of the glacier 
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flow regime which develops during a surge. As discussed by 
Kamb and others (1985), and others (summarized by 
Raymond (1980», surging involves substantial longitudinal 
compression and extension of the ice in the glacier. We 
have deduced from the published data that the longitudinal 
deviatoric stresses involved in this compression and extension 
of the ice are comparable to or substantially greater than 
the conventional estimate for the basal shear stress in the 
same glacier. McMeeking and Johnson (1985) have analyzed 
in some detail two-dimensional glacier mechanics when such 
conditions prevail and, independently, Shoemaker and 
Morland (1984) have modeled one particular flow regime 
where longitudinal deviatoric stresses are significant. These 
two papers show that the conventional treatment of glacier 
mechanics (see, for example, Hutter, [c1983J) is 
inappropriate for the flow regime that develops during 
surging. This is so because the conventional analysis is only 
valid where the longitudinal deviatoric stress is very small 
compared to the basal shear stress. This shows that a model 
for the stresses and flow regime during surging must be 
chosen with some care so that a proper foundation for the 
mechanics of surging can be utilized. 

As a justification for the comments in the previous 
paragraph, we consider now the flow regime of some 
glaciers during surging. In Table I, we have calculated a 
strain-rate for each case of surging except for Variegated 
Glacier (1983). This calculation was done by taking the 
maximum velocity of the snout and dividing it by the 
length of the surging part of the glacier. This must be a 
lower bound to the maximum strain-rates that actually arise 
because the maximum velocity of the snout may occur due 
to stretching of a smaller length than the whole surging 
segment. In the case of Variegated Glacier (1983), Kamb 
and others (1985) have measured a local compressive strain­
rate which we have quoted in Table I. Next, we have 
estimated the longitudinal stress required to produce the 
surging strain-rates by referring to data presented by Frost 
and Ashby (1983). The estimates for stress taken to be 
twice the deviatoric stress s xx should be valid near the 
upper surface where neither shear stress nor normal pressure 
will be very significant. Finally, we have calculated an 
estimate for the basal shear stress under the usual 
assumption that the down-slope component of weight is 

TABLE I. SOME SURGING GLACIERS 

(From Raymond, 1980; Paterson, 1981) 

Glacier L ength Surge Average Maximum veloc- Longitudinal Required Basal shtar 
length slope ity in surge strain-rate stress" stress 

(2sxx) (pghsin a) 

km km a· km/year s- 1 MN/ m2 MN/ m2 

Klutlan 55 40 1.3 >3 .2 0.25 x 10-8 0.2 0.04 

Wa1sh 89 86 >5.6 0.21 x 10-8 0 .2 0.03 

Muldrow 49 46 2.2 6.6 0.45 x 10-8 0.2 0.07 

Variegated 20 19 4.2 >5 0.83 x 10-8 0.2 0.13 

(1964) 

Tyeen 7 7 13.6 >1.5 0.68 x 10-8 0.2 0.42 

Medvezhy 13 6 5 105 mid 2.0 x 10-7 0.7 0.15 

Variegatedt 20 19 4.2 50 mid -2.3 x 10-5 -3.0 0.13 

( 1983) 

• Required stress is 0xx - 0yy to cause longitudinal strain-rate. 

H = 1.5 x 10-6 (m2/ MN)s S-1 = 1.5 x 10-15 (kParS S-1. 

t Basal shear stress estimated from h = 200 m. 

t Local compressive strain-rate shown (Kamb and others, 1985). 
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supported by shear stress at the base. For this, we have 
used the average slope given by Raymond (1980) and a 
depth of 200 m. The key point here, which can be seen in 
Table I, is that the longitudinal stress is usually somewhat 
larger than the conventional estimate for basal shear stress. 
In one case, (Variegated Glacier, 1983), the longitudinal 
stress locally is an order of magnitude greater than the 
shear stress. As a result, we must consider the analysis of 
glacier mecha.nics for situations where longitudinal stress is 
comparable to or larger than the basal shear stress if we 
are to understand glacial surging. As noted, the analysis of 
this situation has been discussed in separate papers by 
McMeeking and 10hnson (1985), and Shoemaker and 
Morland (1984). 

The role of longitudinal stress during surging has been 
recognized by others such as Budd (1975). Starting with an 
equation which relates longitudinal stress gradients to the 
basal shear stress and the glacier weight, he postulated a 
dynamical model for surging due to variations in the basal 
shear stress. The model involves global averages of the 
basal shear stress and the physics is not entirely clear, 
although surges are generated. In addition, L1iboutry (1968) 
and others have discussed surging due to sliding laws like 
(a) in Figure 1 and longitudinal stress plays a part, but the 
details of a mathematical model are not brought out. 
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U b. basal sliding velocity 

Fig. 1. Sliding law - relationship between basal shear 
stress and basal velocity. 

Compression front 
Another feature which has been observed in some 

glacier surges is that a compression front moves down the 
glacier. This was observed by Kam b and others (1985 ) for 
the 1983 Variegated Glacier surge and by Dolgushin and 
Osipova (1975) for Medvezhy Glacier in 1963, in the form 
of a bulge. Kamb and others stated that below the front in 
Variegated Glacier the ice was almost stagnant and above it 
the flow was rapid. There were very high compressive 
strain-rates just behind the bulge and a corresponding 
thickening of the glacier. In the rapidly moving segment 
of the ice, 95% of the surface velocity was due to sliding 
and the remaining 5% was due to shear flow. Kamb and 
others attributed the rapid sliding to highly lubricated 
conditions at the base. They measured basal bore-hole water 
levels there which fluctuated around the ice-overburden 
value and concluded that the ice is supported mainly by a 
hydraulic system. They deduced that this gives rise to a 
very low level of drag at the base of the glacier. 

The propagating compression front seems to be a dis­
continuity in the sliding conditions at the base of the 
glacier. Ahead of the front, the base of the ice is either 
stuck or sliding very slowly over the foundation. Behind the 
front, the base of the ice is relatively free of shear drag 
and moving rapidly compared to the ice beyond the front . 
The difference in velocities gives rise to a compressive 
region adjacent to the slowly moving ice. 
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We are not in a position to say why there should be 
nearly stuck portions and more freely sliding portions of 
the glacier. Kamb and others (1985) proposed that, as the 
surge front propagates down Variegated Glacier, the basal 
hydraulic system is disrupted and alters from one which 
causes high drag at the base to one which causes low drag. 
They thought that the surge front causes the closure of 
drainage tunnels and that this would flood the base of the 
glacier. Kamb and others suggested that the tunnel closure 
would be due to the surging mass up-stream from the 
front. 

If the mechanism suggested by Kamb and others (1985) 
for Variegated Glacier is correct, we would view its opera­
tion as follows. The surge front separates the high-drag 
region from a low-drag region. In the low-drag region the 
down-slope component of weight of the overlying ice 
exceeds the drag on the sole. As a consequence. some of 
the down-slope weight is supported by the longitudinal 
stress. This is the only way that the large compression and 
extension rates can be developed. The stress thrusts upon 
the region of the glacier subject to high drag and as a 
result some of the weight of the surging mass is being 
supported by the slowly moving segment of the glacier. This 
force is transmitted to the base as a shear stress within 
about one glacier thickness from the basal discontinuity. The 
shear stress at the base in this transition region wiII be 
much larger than elsewhere, giving rise to a shear-stress 
concentration. 

This stress concentration will cause viscous flow of the 
ice to be more rapid there than elsewhere. We suggest that 
the enhanced stresses at the discontinuity wiII allow the 
tunnel closure in a rapid fashion as suggested by Kamb and 
others (1985). Certainly, the high stresses will perturb the 
equilibrium of the basal water tunnel system. The non-linear 
interaction in the creep response between the enhanced 
shearing flow and the stresses generated by the overburden 
pressure around the tunnels would seem to suggest the 
tunnels would tend to shrink by creep. They may close 
entirely but, in any case, some water would be squeezed 
out. 

The ice dynamics of a model for this kind of 
transItion at the surge front would determine the rate at 
which the tunnels close. This, in turn, would determine the 
rate at which the surge front would propagate down the 
glacier. However, we believe that the processes involved in 
the transition would be controled by the stress field 
developed around the shear-stress discontinuity at the base. 
Thus the events can be characterized by the stress concen­
tration at the discontinuity. That, in turn, can be 
determined neglecting the details of tunnel closure or any 
other relatively small-scale process involved in the transition. 
As a consequence, we concern ourselves only with the gross 
details of the stress field near the discontinuity with the 
understanding that these gross features of the stress field 
would control the fine details in a small region near the 
actual discontinuity. The fine details would in turn 
determine the propagation rate. 

Basal condition discontinuity 
With the above understanding, we are in a position to 

consider the mechanics of a basal shear discontinuity 
w.hatev~r the reason for its existence. For example, the 
diSCUSSion above refers to Variegated Glacier which is a 
temperate glacier. Clark and others (1984) have discovered 
that there is a discontinuity at the base of Trapridge 
Glacier. This discontinuity is stationary and marks a 
transition from ice which is at the melting temperature in 
the upper part of the glacier and ice further down the ice 
stream which is frozen to the underlying stratum. It would 
appear that the frozen segment does not allow any basal 
sliding while the glacier is Quiescent. However, the temper­
ate segment slides and as a result a bulge builds up against 
the frozen dam. A possible surge mechanism is the failure 
of the frozen base due to the stress concentration or 
singularity at the discontinuity. This would occur probably 
when the stress reaches a critical level. Once the frozen 
base is ruptured near the discontinuity, part of the weight 
of the sliding ice would be thrust on to the next segment 
of frozen base. This, in turn, is likely to rupture and as a 
result a surge front would propagate down the glacier. 
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Sliding more freely, the glacier would extend. As before, 
the stresses around the discontinuity would control the 
detailed rupture process. For the purposes of modeling, we 
can consider the overall stresses and characterize failure in 
terms of some critical stress level. 

The picture is complicated in the case of Trapridge 
Glacier, because it is known to rest on deformable debris 
(Clarke and others, 1984). The sliding part of the glacier 
may be moving relative to the debris or the deformation of 
the debris may be causing the motion. Presumably, the 
segment which is stuck over lies debris which is frozen. The 
frozen segment of the base would fail either by the glacier 
shearing away from the debris or by the frozen debris 
failing or breaking away from unfrozen debris underneath. 
The propagation of the slip surface accompanying the 
failure in each possibility would still be controled, we 
think, by tlie stress singularity or concentration at the now 
propagating stuck-sliding discontinuity. The modeling of this 
case of a temperate-sub-polar interface as in Trapridge 
Glacier can be taken care of by the same overall model as 
would be relevant to the purely temperate case of 
Variegated Glacier. We will discuss only an isothermal 
glacier model with the understanding that the sliding dis­
continuity at the base incorporated into our model may 
actually be a feature of non-isothermal conditions as in 
Trapridge Glacier. The model is meant to describe the 
general surge features of both an isothermal and a non­
isothermal glacier, although certain detailed phenomena 
which distinguish these two cases are omitted . In particular, 
the treatment of ice rheology will be deficient as to the 
effects of temperature variations in the glacier, but we do 
not believe that plays a major role in controlling surging. 

Hydrology 
Basal hydrology is a significant feature of glacier 

behavior and in some cases of surging such as Variegated 
Glacier (Kamb and others, 1985). We will not treat the 
hydrology in our model, but it should be understood that 
water may be at the root of features that we describe in a 
phenomenological way. Thus the transition from nearly 
stuck to low-drag conditions at the base may be due to 
differences in the way that water invades the sole of the 
ice. One example of this would be the model of Kamb and 
others (1985) for the closure of drainage tunnels and the 
redistribution of water at the base into disconnected cavities. 
We will not attempt to characterize the drag at the base by 
modeling such features as described by Kamb and others. 
Instead, we will use sliding laws with features that would 
seem to have the right character for a variety of possible 
phenomena, including those driven by hydrological effects. 
Similarly, we are unable to characterize features of a purely 
hydrological nature but which may play essential parts in 
the surge cycle. For example, if the stuck-sliding 
discontinuity is acting as a dam to basal water or as a 
severe constriction as envisaged by Kamb and others (1985), 
then the restrained water would be released when the dis­
continuity nears the snout. As it is likely that this sort of 
phenomenon is responsible for the termination of surging in 
some cases, it is clearly important. However, we can only 
model this behavior in our approach by asserting that 
surging ceases at some point. Furthermore, the conditions 
for termination of a surge may be due to anyone of a 
number of reasons such as that given above. One possibility 
is that the supply of melt water dries up seasonally and 
lubrication is lost. Another is that the glacier stretches and 
thins to such an extent that the driving force for the fast 
sliding falls below the critical level for sustenance and a 
return to slow sliding or nearly stuck conditions occurs. Due 
to our neglect of such issues, our surging model is quite 
incomplete but nevertheless brings out several salient 
features of the mechanics. 

Basal sliding law 
Hydrological, thermal, and basal deformation effects 

such as those mentioned above will be modeled in a sliding 
law chosen to display characteristics of many of the 
phenomena discussed above. These laws have shapes shown 
in Figure I where the shear drag on the base is plotted 
against the basal sliding velocity. Lliboutry (1968) suggested 
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that surging arose as a result of double-valued relationships 
between sliding velocity and drag of the kind marked (a) in 
Figure I. Lliboutry based his law on an analysis of sliding 
with cavitation. 

In addition to the above possibility, we propose that 
the suggestion by Kamb and others (1985) that there is a 
disruption of the basal drainage system near the surge front 
would lead to a sliding law like that marked (b) in Figure 
I. Our thoughts are that the large stresses associated with 
sliding at velocity u~ are sufficient to close drainage tunnels 
and this leads to a drop in the drag and a corresponding 
increase in the sliding velocity. As long as the new drainage 
system is stable, the low-drag conditions will prevail. As 
mentioned previously, loss of basal water would lead to a 
return to high-drag conditions. 

Another possibility, perhaps relevant to a partially 
frozen base, is that the maximum marked I in Figure I is 
the stress at which the base fails. Perhaps this would occur 
without any prior sliding (i.e. u~ - 0) and thereafter the 
failed base is capable of sustainmg relatively low stresses 
while slip endures. The failure involved may occur in the 
ice, at the ice-base interface, or actually in the base in the 
case where the underlying stratum is deformable debris. To 
justify our assertion that a base of deformable debris may 
fail with the characteristics of curve (b) in Figure I , we 
note the work of Roscoe (1970) on the failure of dense 
sand and similar granular materials such as glacial till. 

We feel that sliding laws of the type shown in Figure 
I can be justified for a number of possible phenomena, 
although we have not attempted to characterize fully any 
particular case. Of course, the relevant behavior must be 
identified from field work before any particular case can be 
invoked. However, we have attempted to show that several 
possibilities fall within the purview of the sliding laws 
shown in Figure I . There may be effects neglected in the 
sliding behavior and not present in the laws we consider, 
but we believe that the idealizations we have made retain 
the nature of the behavior relevant to several known 
surging glaciers. The absence of explicit thermal or hydro­
logical effects from the models for surging is an idealization 
and a simplification helpful for the analysis. However, we 
will proceed with the understanding that the parameters of 
our sliding law may vary due to thermal or hydrological 
effects. 

If we have omitted anything essential in the sliding 
law, then our surging model is invalid. It is more likely 
that we have simply omitted non- surging fluctuations which 
occur on a regular predictable basis, perhaps seasonal. Then 
all that occurs due to the fluctuations is that the critical 
condition' to be met happens at one time of the year or 
cycle but cannot be met at other times of the year or 
cycle. 

The overall concept is that slowly moving segments of 
the glacier are those sliding with a velocity up to u& (Fig. 
I). This slow motion can occur up to drag levels whIch are 
high and approach T m' Rapidly sliding parts of the glacier 
are those moving faster at the base than u~. The drag 
involved would fall below T m at least for speeds greater 
than ub by only a limited amount. Our study of the 
mechanICS involved in glacier surging has led us to believe 
that the initiation of surging is bound up with the 
transition from speeds below u~ to those greater than ul>. 
In passing, we note that we believe that phenomena bound 
up with sliding laws of the type shown in Figure I are 
essential for surging. If the sliding law is monotonic and 
never becomes otherwise but experiences seasonal 
fluctuations, then the motion of the glacier will be 
unsteady. As discussed by Fowler (1982), kinematic waves 
will be generated on the glacier, but it seems unlikely that 
any unstable surging behavior can result. 

We have outlined how the down-slope component of 
the weight of the rapidly sliding region would thrust on to 
the more slowly moving segment, raising the basal shear 
stresses there. We envisage that these high stresses cause 
the mechanisms of transition to operate and so the rapidly 
sliding region would extend into previously slowly moving 
segments of the glacier. The peak drag T (see Fig. I) 
would determine the thrust required 'or transition 
mechanisms to operate and so that would specify the 
conditions under which the sliding region would spread. Of 
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Fig. 2. Schematic of a non-sliding glacier with a rapidly 
sliding segment AB. 

course, this parameter would vary from point to point in 
the glacier. In addition, we would expect that there would 
be seasonal fluctuations due to melt-water flow or other 
effects. 

Consider there to be a segment AB of the glacier in 
Figure 2. In this segment, the local peak drag T m would be 
exceeded by the down-slope component of the weight of 
the ice overhead. As a result, the down-slope component of 
the weight of AB would no longer be borne completely by 
the basal shear stress and the excess would have to be 
taken up by the longitudinal stress. Simultaneously, the 
segment would commence rapid sliding (the governing 
equations require large velocities when the longitudinal stress 
is significant; (see McMeeking and lohnson (1985». In turn, 
the longitudinal stress would thrust on to neigh boring parts 
of the glacier outside AB and would tend to increase the 
shear stress at the base there. If the resulting basal shear 
stress is below the local T m' then the segment AB would be 
stable. If the shear stress at the base of the neigh boring 
segments tends to exceed the local T m' then the region of 
rapid sliding would spread. This would involve a traveling 
compression front as discussed by Kamb and others (1985) 
and Paterson (1981), or a traveling tensile front . As the 
sliding region spreads, increased weight would be thrust on 
to the slowly sliding parts, and so spreading would tend to 
continue. 

x 

The phenomenon of spreading would occur whether a 
law like (a) or (b) in Figure 1 were involved. In case (a) at 
a later stage, some of the rapidly sliding ice could be doing 
so with the down-slope weight borne by shear stresses at 
the base, that is, to the right of point 2 in Figure 1. This 
corresponds to what is called "continuously fast" sliding 
(Raymond, 1980). On the other hand, if the law is like (b) , 
some down-slope weight would always be supported by 
longitudinal stresses in the rapidly sliding region. 

Idealization of the sliding law 
Since we believe that the processes in a developing 

surge are bound up with behavior near the peak drag in 
laws like those shown in Figure I, we will concern 
ourselves with mode ling the sliding law around point I in 
Figure I. At sliding speeds less than u~ , the down-slope 
component of the weight of the glacier is supported by the 
basal drag and the basal sliding speeds are relatively low. A 
substantial part of the ice flux is due to shearing flow. We 
will model this situation as one in which there is a no-slip 
condition at the base of the glacier. This modeling is 
possible because the no-slip condition gives rise to an ice 
flux solely due to shearing flow and a leading order basal 
shear stress which supports all of the down-slope 
component of glacier weight. 

At sliding speeds greater than u~ in Figure I, the 
down-slope component of glacier weight will generally 
exceed the basal drag and most of the ice flux will be due 
to the basal velocity with very little due to shearing. We 
will model this situation as one of constant drag T s at any 
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sliding speed. This will give rise to an ice flux dominated 
by the basal velocity and some of the down-slope compon­
ent of weight will be shifted from the basal drag to the 
longitudinal stress. This model of either no-slip or constant 
drag at the base will give rise to a very abrupt 
discontinuity at the surge front rather than a gradual one 
which would actually arise for laws like those shown in 
Figure 1. The nature of processes occurring at the gradual 
discontinuity will be preserved in the modeling and analysis 
of the abrupt discontinuity. At the gradual discontinuity 
there will be the large stresses of a stress concentration. At 
the abrupt discontinuity there will be the large stresses of a 
stress singularity. The kinematics of the transition in the 
abrupt discontinuity will be similar to the kinematics of the 
gradual transition. 

It follows that the mechanics of such abrupt 
discontinuities are relevant to surging. The analysis of flow 
at such a boundary discontinuity has been considered by 
Hutter and Olunloyo (1980) but in the context of 
Newtonian viscosity. The tranSItion involved was from 
no-slip to shear-free conditions. They found that a 
singularity in stress arises at the discontinuity as must be 
the case. In fact, the stress at such a discontinuity in any 
creeping solid or fluid must be singular. Rice and 
Rosengren (1968) and Hutchinson (1968[b]) (together denoted 
HRR) have analyzed such singularities for power-law 
materials including the special case of linear viscosity. 
Although the HRR analysis does not consider gravity-driven 
flows , we will show below that the analysis of the singular 
part of the stress near the discontinuity is the same whether 
the flow is gravity driven or not. The basic conclusion to 
be drawn is that there will be very large stresses developed 
at the discontinuity. 

The infinite stresses will, of course, exceed any finite 
peak drag T m of the more realistic sliding laws shown in 
Figure I. Our point of view is that the actual stresses near 
the surge front arising from laws like those in Figure I can 
be considered to be a perturbation on the singularity 
solution we have outlined. That is, the processes of 
transition from high drag to low drag would take place in 
a relatively small zone near the discontinuity and would 
smooth out the singularity. However, away from the 
transition zone, the stresses would be relatively unperturbed 
from those of the singularity solution and as a result 
characterized by parameters of that solution. These outer 
stresses in turn would determine the behavior in the 
transition zone, meaning that the overall transition would be 
characterized by the singularity solution. A critical value of 
a parameter which characterizes the singular solution would 
then control the process. This parameter which will be 
discussed in more detail later will be referred to as J . A 
somewhat similar situation is accepted as a rationale for the 
validity of non-linear fracture mechanics in structural 
analysis. We propose adopting the same approach here and 
so we will consider in our modeling and analysis only the 
abrupt transition and the resulting singularity. 

The abrupt transition is used here as a model for the 
gradual transition arising from laws like those shown in 
Figure I. Since we believe that the transition as described 
by Kamb and others (1985) for Variegated Glacier would 
give rise to a law like (b) in Figure I, the abrupt 
discontinuity is therefore an approximate model for that 
case. However, the abrupt discontinuity and the resulting 
singularity may be more precise when used as a model for 
the frozen-unfrozen divide in glaciers such as Trapridge 
Glacier (Clarke and others, 1984). An abrupt discontinuity 
of this type would give rise to a singular stress. In a 
relatively small region around the discontinuity, non-linear 
behavior of the ice, perhaps due to internal damage, would 
be activated. This would have the effect of eliminating the 
singularity. However, the effects would be present only very 
close to the discontinuity. The stresses farther afield would 
still be those of the singularity which would characterize all 
aspects of the discontinuity. Thus, the singularity model is 
one that we view as being relevant to basal discontinuities 
of a variety of types and we will use the model in the rest 
of the paper without reference to the character of the dis­
continuity. 

We believe that it is the stress concentration at the 
surge front which causes the discontinuity to move down 
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the glacier. The high stresses activate the process of 
transition at the discontinuity. The tunnel-closing mechanism 
suggested by Kamb and others for Variegated Glacier would 
be one example of a process of transition. For the case of 
Trapridge Glacier, we think that the frozen base must be 
ruptured somehow for the discontinuity to move and the 
processes of transition would be the rupturing mechanism. If 
the stress concentration is not sufficiently high or the high 
stresses are not spread over a large enough region, then the 
transition processes would not reach their critical extent and 
the discontinuity would not move. If, however, the stresses 
are high enough and spread out over a sufficiently large 
volume of ice, then the transition processes would change 
into those of lower drag. This would move the region of 
stress concentration and start to cause transition in the 
neigh boring part of the glacier having high drag or a stuck 
base. If the critical conditions for transition can continue to 
be met, then the discontinuity will continue to move. Since 
we will be modeling the discontinuity as abrupt, the critical 
conditions will be phrased in terms of the parameter J 
which characterizes the singular stresses there. When J 
reaches a critical level, the discontinuity will move. 

The effect would be like that which causes a slip sur­
face or shear crack to propagate through over-consolidated 
clay and leads to the failure of embankments. A model for 
this, including the role of stress concentration or singularity 
in extending the failure, has been proposed by Palmer and 
Rice (1973). We will use certain aspects of their model and, 
in doing so, develop a framework for the mechanics of the 
propagating surge front . 

Surging model 
We are now in a position to give an overview of our 

surging model. From observations of Variegated Glacier by 
Kamb and others (1985), we see that the upper segment of 
the glacier was sliding rapidly for a couple of years before 
the surge year. This may have occurred because the critical 
stress for slow sliding in a law like those shown in Figure 
I was exceeded. The fast-sliding, low-drag region may have 
been confined originally to a small segment which later 
spread. It is possible that rapid sliding may occur locally in 
small sections of the glacier every season or it may be a 
permanent feature in certain areas. Our viewpoint is that it 
is very possible that such surging nuclei are common in 
many glaciers for a variety of reasons. In most years they 
are stabilized against growth by the prevailing state of the 
glacier. It should be remembered that, after a surge, the 
glacier is in a process of rebuilding and what may be stable 
one year may not be so in following years. Certainly, in 
Trapridge Glacier, the sliding region is present permanently 
in the temperate segment (Clark and others, 1984) and the 
discontinuity at the temperate-sub-polar interface is stable 
for many years. 

Rebuilding proceeds and eventually the critical 
conditions are met for the propagation of the discontinuity. 
The discontinuity may move slowly at first and then 
accelerate, as seems to be the case in Variegated Glacier 
(Kamb and others, 1985). Such time effects may be due to 
the natural response of the viscous flow of the ice or may 
be due to temporal influences of the hydrology. We do not 
take these effects into consideration but concern ourselves 
with the question of whether the pre-existing surge nuclei 
can be stable . When they start to propagate, we show that 
in common situations and according to our assumptions, the 
rapid-sliding region will tend to grow and capture the 
whole glacier. 

Thus a surge is initiated and will continue until the 
rapid sliding is terminated. This may be due to the loss of 
lubricating ground water , as seems to be the case in 
Variegated Glacier (Kamb and others, 1985), or it may be 
because the glacier thins to such an extent that the driving 
shear stress is insufficient to sustain the state of sliding. 
This would correspond to the basal shear stress falling 
below the minimum or the asymptote beyond point I in 
Figure I . The glacier would now return to its quiescent 
state and rebuilding would commence. Now, any surge 
nucleus would be stable for several years. This would be so 
because the stresses generated at the discontinuity involved 
would be below the critical level due to the new shape of 
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the glacier. Thus, a full-scale new surge would not be 
initiated for several more years. 

Models similar to the one outlined above have been 
used previously, such as in the work of Lliboutry (1968). 
Similarly, Kamb and others (1985) have recognized the 
importance of sliding law non-linearities in their assessment 
of the surging of Variegated Glacier. However, we have 
considered the theoretical implications of the rapid sliding, 
the extending-compressing flow, and the discontinuities 
between slow- and fast-sliding regions. These aspects of the 
mechanics we have developed and incorporated into our 
model. 

We now discuss the foundations of the mechanics 
which we believe must be understood for a complete 
mode ling of surges. We will first discuss the stresses and 
velocities in the stuck parts (mode ling slowly moving 
high-drag regions) and the sliding parts (modeling rapidly 
sliding relatively low-drag segments.) Following that we will 
consider the spreading of the sliding region and then a 
model surge, making comparisons with Medvezhy Glacier. 

STRESS AND VELOCITY IN THE GLACIER 

We will consider a glacier composed of an incompress­
ible material obeying Glen's law. It is flowing down a 
valley with a slowly varying bed topography and we will 
use the (x,y ) coordinate system shown in Figure 3. For 

x 
Fig . 3. A segment of the glacier showing the coordinate 

system. 

simplicity, we will consider only plane flow and an average 
bottom slope of tan a which is O{ I), so that the valley is 
steep. A glacier on a gentle slope will behave in a similar 
manner. 

Glen's law can be stated as 

au 
ax 

(I) 

where (JU is the stress, s ~x is the longitudinal deviatoric 
stress such that s xx K 1/ 2\(Jx. - 0yy)' (u,v) are the (x,yl 
components of velocity, and B is a material parameter. B 
should generally be temperature dependent but we will 
consider B to be a constant for simplicity. The equivalent 
stress T is such that T' - 3{s~x + O~y). We will neglect 
inertia. 

The solution of the governing equations of momentum 
balance, flow law, and incompressibility with appropriate 
boundary conditions has been discussed by many authors 
including Fowler (1982), Hutter {1981, 1982, [cI983]}, 
Johnson and McMeeking (1984), and Nye (1969), to mention 
only a few. We will be interested in only the leading order 
terms in the solutions for a part of a glacier which is stuck 
which we consider to model regions of high drag and low 
sliding velocity. In addition, we consider a part which is 
sliding with drag T s to model regions of low drag, rapid 
sliding, and extensional or compressional flow . In general, it 
would be better if T s were a function of position, but we 
have taken it to be uniform for simplicity. 

Non-sliding part 
The leading order estimate of the shear stress in a 

stuck or non-sliding part of a glacier is 
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"xy - pg(ys - y)sin a (2) 

where p is the uniform ice density, g is the gravitational 
constant, and Ys(x) is the y position of the upper surface 
of the ice. The other stresses are 

"xx - "yy - pg(y - ys)cos a. (3) 

The longitudinal deviatoric stress s xx is negligible. As dis­
cussed by Hutter (1981) and others, the first correction to 
Equations (2) and (3) in a regular perturbation scheme 
would have magnitudes 0(6) times the magnitudes in 
Equations (2) and (3), where 6 is roughly the glacier 
thickness divided by the length and therefore small 
compared to unity. The velocity in a non-sliding part is 

(4) 

where h(x) = Ys(x) - Yb(x) is the glacier thickness. The 
velocity component v is 0(6) times the magnitude of u 
because h'(x ), y;(x), and yf,(x) are all 0(6) compared to 
unity. 

In an aside, it should be noted that there is a 
boundary layer near the free surface where s x x is more 
significant than "Xy. This feature has been analyzed by 
Johnson and McMeeking (1984) and its influence on the 
analysis of longitudinal deviatoric stress has been discussed 
further by McMeeking and Johnson (1985). However, the 
layer can be detected only when one seeks higher-order 
corrections to Equations (2), (3) , and (4). 

Sliding part 
The solution for this segment has been studied by 

McMeeking and Johnson (1985). In this part there must be 
the possibility of substantial extensional and compressional 
flows. This will give rise to rapid sliding away from the 
basal slip discontinuity. In addition, the longitudinal stress 
must be large enough that it bears some of the down-slope 
component of the weight. The down-slope component of the 
weight is the component parallel to the base and the 
amount transferred to the longitudinal stress is the 
difference from the basal drag, i.e. pghsin a - T s' In this 
part, the basal drag is not capable of adjusting itself to 
equate with the down-slope component of the weight. It is 
this fact which causes the longitudinal stresses to be large 
and determines the flow regime. 

McMeeking and Johnson (1985) have found that the 
flow in this situation is to leading order a plug flow and 
so the longitudinal stress to leading order is independent of 
y, 

(5) 

In these circumstances, the shear stress can be found by 
integration of the momentum balance subject to the 
condition that the basal value equals the drag Ts' so 

"xy - (Yb - y)(doxx/dx + pgsin a) + Ts' (6) 

As usual, the stress 0yy balances the weight 

"yy - pg(y - ys)cos a (7) 

but the longitudinal stress is an order of magnitude larger 
than . 0 xy and" . The boundary condition at y - y which 
requIres the surPa'ce to be shear- free provides a diflerential 
equation for "xx' 

and we will simplify this by taking Yb constant. Thus 
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r (Ts - A/'hsin a)dx + hA"xx(xA) 
xA 

(9) 

where hA is h at xA as in Figure 2. 
The velocities are such that 

U a u(x,t) , V - (Yb - y)du/dx 

du/dx - (3/8)B~x 

(10) 

(11) 

and u will generally be much larger than the velocity in the 
non-sliding part. The drag acts against the direction of 
sliding. Lastly, the shape of the glacier, i.e. the ice thick­
ness h - Ys - Yb' is determined from mass conservation or, 
equivalently, the kinematic boundary condition on the 
velocity at the surface . We reiterate that, if the stresses are 
not as outlined above, then there can be no large 
compressive flows and as a result no compressive front as 
observed in surges. 

At the intersection of a sliding part and a non-sliding 
part there will be a region straddling the intersection , 
approximately one glacier thickness in length, in which 
neither the solution in the sliding nor in the non-sliding 
part is valid. Strictly, we should solve the governing 
equations there and then match that solution to the sliding 
region solution on one side and the non-sliding region 
solution on the other side. Instead, we will match the two 
sections in an ad hoc way. The leading order velocity in a 
sliding region is generally several orders of magnitude larger 
than the velocity in a stuck part. Consequently, it is 
appropriate to set the velocity in the sliding part equal to 
zero at the join. Matching the velocities at higher orders 
will account for the relatively weak shearing flow in the 
stuck part. We have not performed this higher-order match­
ing but we believe it can be completed successfully. This 
means that in the sliding region 

-Jx u = (3/ 8)8 ~xdx. (12) 

xA 

If the sliding region is contained between two non - sliding 
regions as in Figure 2, then 

o (13) 

from which we can compute " x x(x A) in Equation (9). 
Alternatively, if the sliding region has extended all the way 
to the snout at I then we can take, as an approximation, 
0xx = 0 there. Then 

I 
h(x )o xx(x) = J (pghsin a - T s)dx (14) 

x 

which means that the excess of the down- slope weight over 
T s(l - x) is supported by the longitudinal stress at x . 

Generally, there will be a large longitudinal stress at 
the join between the sliding and non-sliding parts. This 
stress will be transmitted to the bed as a shear stress in the 
stuck part within approximately one glacier thickness from 
the Jom. In fact , the Jom between the sliding and 
non-sliding parts is a singularity for shear stress in the 
stuck region. 

Stresses at the discontinuity 
The singularity at the boundary-condition discontinuity 

is exactly of the type that arises in crack-tip fracture 
mechanics for structural materials (Rice and Rosengren, 
1968; Hutchinson, 1 968[b]). This singularity, known as the 
HRR singularity, dominates the near field and can be 
expressed as 

(15) 

where rand e are polar coordinates from the point of dis­
continuity as shown in Figure 4 and the parameter J to be 
discussed below scales the magnitude of the stress field . The 
function 'Cij has been computed for pure shear with n = 3 
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Fig . 4. Boundary-condition discontinuity with contour r for 
J-integral. 

by Hutchinson (1968[a)). The pure shear crack-tip calcula­
tions of Hutchinson provide the correct near-tip field 
because anti-symmetry and incompressibility lead to 
stationary velocities along the axis of anti-symmetry ahead 
of the crack. Hutchinson (1968[a)) was considering the case 
of non-linear elasticity rather than viscous flow but his 
result can be carried over by interpreting displacements as 
velocities, etc. The parameter J which characterizes the 
stress field near the discontinuity is the J integral defined 
as a generalization of the form used by Palmer and Rice 
(1973) 

J 2f r(W - b .u)dy - n · o ·(au/ ax)ds (16) 

where b is the uniform (gravitational) body force per unit 
volume, 

where E is the strain-rate and 11 is a unit vector on the 
contour r from 0 to E to 0 as shown in Figure 4. When 
the base of the glacier is a straight line, the integral is 
path-independent. 

The stresses and strain-rates near the discontinuity are 
characterized by the single parameter J. It follows that any 
process of rupture or break-down that takes place very near 
the discontinuity will be controlled by J. We propose that 
the criterion for spread of the sliding region is that J 
equals or exceeds a critical value J c' A similar criterion has 
been proposed for the growth of cracks in creeping metals 
at high temperature (Landes and Begley, 1976). Similarly, 
the deepening of crevasses may be controlled by J and this 
will be discussed separately by McMeeking in future work. 
The path - independence of J will be demonstrated in that 
paper. 

A t the discontinuity, there will be infinite stresses, or 
in reality very high stresses. Such infinite or very high 
stresses alone are not considered to be sufficient to operate 
the transition mechanism and cause the discontinuity to 
move. This can be understood if one considers 
discontinuities being acted upon by very low thrust. The 
stresses will still be infinite or very high near the 
discontinuity but one concludes that the discontinuity is not 
likely to move. Instead, we deduce that it is necessary for 
high stresses to be present over a critically large volume of 
ice for transition to take place. As J increases, the high 
stresses near the singular point will spread over a larger 
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volume of ice and eventually cover a sufficiently large 
volume. Depending on the situation, the processes involved 
may be the rupturing of ice or base (frozen base) or the 
creep closure of tunnels as suggested by Kamb and others 
(1985) for Variegated Glacier. Other mechanisms may 
operate in other cases. Thus, the critical value of J would 
be related to the processes involved and would depend on 
how large a region of large stresses is required for the 
transition to occur and for the discontinuity to move. We 
will use the parameter in a phenomenological manner and 
not attempt to relate the critical value of J to the processes 
involved. 

This conludes our discussion of the foundations for the 
mechanics of surging. Further discussion of the issues of 
mechanics involved can be found in McMeeking and 
Johnson (1985) for the stress analysis and in Hutchinson 
(1968[a), [b)), Rice and Rosengren (1968), and the wealth of 
literature on non-linear fracture mechanics. We will now 
proceed to a description of our model for surging. 

A MODEL SURGE 

Growth of the sliding region 
During most of the time the majority of the glacier 

base will be non-sliding and the shear stress at the base 
according to Equation (2) will be 

Tb - pghsin a . (17) 

As discussed in the introduction, a surge nucleus may be a 
permanent, seasonal, sporadic or incipient feature of certain 
segments of the glacier. We think of a surge nucleus as a 
limited sliding region adjacent to or contained by stuck 
parts. Trapridge Glacier has a permanent nucleus in the 
form of a temperate region (sliding) up-stream from a 
sub-polar region (frozen stuck). Variegated Glacier may 
have a seasonal or sporadic nucleus. Seasonal and sporadic 
nuclei may occur because of annual cycles of melt-water 
flow. Incipient nuclei may be present in the sense that for 
some years conditions to form the nucleus may not be met 
because of the glacier state. Then, after some rebuilding, 
the basal shear stress is sufficiently high locally to cause 
more rapid sliding and a limited surge nucleus is formed. 
We have no stronger evidence for our suggestion of surge 
nuclei. But we would claim that the inhomogeneity of 
glaciers is such that seasonal, sporadic or incipient rapid­
sliding regions are entirely possible. They may be very 
limited, but conditions for the initiation of surging would 
be those that determine whether the nucleus spreads rather 
than those that determine whether they exist in a given 
case. If nuclei are not present, our surge model is without 
validity. That situation would be remedied by considering 
more detailed aspects of what causes low-velocity sliding to 
accelerate at least locally. 

Given the existence of a surge nucleus, we now con­
sider the question of whether it will spread. Consider the 
nucleus to be the segment AB in Figure 2. This region is 
sliding rapidly and the longitudinal stress there is given by 
Equation (9) subject to boundary condition in Equation (13). 
Part of the weight of AB is no longer borne by the basal 
shear stress because the down-slope component exceeds the 
net drag. This excess has now been thrust on to the neigh­
boring non-sliding parts and this will cause the basal shear­
st~ess singularities as discussed previously. The discontinuity 
will move and the sliding region will spread if J at the 
discontinuity exceeds the critical level. 

It is likely that a sliding region like AB would be quite 
short to begin with, i.e. less than one glacier thickness. 
The model would be characterized better if calculations of J 
for short sliding regions were available. Calculating J for 
the edges of sliding regions shorter than or comparable to h 
is quite difficult and would require numerical methods. 
Only when the sliding region has spread to somewhat longer 
than h can a leading order estimate be obtained easily. We 
will assume that such a surge nucleus exists. 

The details of the calculation of J for the 
discontinuities at either end of a sliding region like AB are 
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given in the Appendix. When AB is longer than h, the value 
of J at the discontinuity at B is 

(18) 

to leading order and there will be an equivalent value at A. 

This nucleus will spread if J A or J B equals or exceeds the 
critical value J c and will be stable otherwise. As the region 
spreads, either 0xx(xA ) or 0xx(xB) , or both will increase in 
magnitude where A and B always define the limits of the 
current sliding region. If the critical value Jc is fairly 
uniform in the glacier, the lower extremity B will move 
down to the snout of the glacier at x - I. The upper limit 
A may travel to an ice reservoir or be blocked by some 
basal feature at which Jc is high. A third possibility is that 
the large longitudinal stresses will break off the surging 
part. We consider the final position of the upper limit to 
be at x = o. 

The rate of extension of the sliding region would 
probably be controled by the time necessary to incubate 
damage, e.g. tunnel closing around the boundary-condition 
discontinuity. However, it is clear from Equation (9) that 
the lower discontinuity at B would move down the glacier 
as a compression front as observed in Variegated Glacier by 
Kamb and others (1985). The upper discontinuity would 
move up the glacier as a tensile front . Of course, if the 
surge nucleus is originally near the top of the glacier, then 
the moving tensile front would not exist for long. However, 
a tensile region is explicit in our treatment of the model. If 
the ice is incapable of sustaining the tension that develops, 
then the surging part would break off. The resulting static 
imbalance would lead to unsteady motion of the glacier 
until surging terminates. We have not analyzed this 
possibility, although it may be important. Presumably, the 
drag forces involved would still be sufficiently high to keep 
the velocity of the surging parts to relatively low levels. 

All or parts of the glacier are now sliding rapidly and 
stretching of the ice mass occurs. As discussed previously, 
we introduce into our model a surge termination in a 
phenomenological way. The surge may terminate due to loss 
of lubricating water or because of seasonal changes. The 
termination may occur first near the top and move down 
the glacier, as seems to be the case in Variegated Glacier 
or it may occur simultaneously throughout the glacier. The 
glacier returns to its quiescent state and the surge nucleus is 
once more stable. This will be so if the relevant surge 
nucleus is in a region of the glacier which has thinned 
during surging - generally, in the upper part of the surging 
segment. This can be seen from Equation (18) where the 
thickness enters directly. In addition, the total weight of the 
surge nucleus would be less than before and so the longi­
tudinal stress 0xx at the discontinuity would be lower than 
before. The surge nucleus would be stable until the height 
returns approximately to pre-surging levels due to rebuilding 
of the glacier. Note also that the inverse viscosity parameter 
]j enters Equation (18) making it possible that seasonal 
fluctuations of ice rheology play a role in determining the 
value of J at a discontinuity. 

Evolution 0/ the surging glacier 
The shape change during surging should be calculated 

while the surge fronts move down the glacier and until 
surging terminates. However, for simplicity, we will 
calculate the evolution by assuming that no shape change 
occurs while the surge fronts are moving through the 
glacier. Once a full surge part is established, the shape 
change of stretching and compression, and thinning and 
thickening occurs. This mode ling is deficient, especially for 
Variegated Glacier where a contained surge region moves 
down through the glacier and surging terminates shortly 
after the surge region nears the snout. Our assumptions are 
equivalent to saying that the surge fronts move more 
rapidly than motions controled entirely by ice rheology 
which may be the case in certain glaciers. 

At this stage in our model a lengthy segment of the 
glacier is sliding rapidly unconstrained at the snout. The 
complete solution during this period requires the solution of 
Equation (8) for the stress 0xx' along with the 
determination of the velocity field and the glacier shape 
from Equation (11) and the equation for mass conservation. 
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For ease of calculation, it appears to be most convenient to 
cast the equation for mass conservation in terms of the 
glacier volume between a postion x and the snout I, 

r A A 

V(x,t) - h( x,t)dx. 

x 

In terms of V, conservation of mass takes the form 

av 

at 
u(x,t)h(x,t) 

(19) 

(20) 

where we have neglected the generally small effect of 
accumulation and ablation during the surge period. Lastly, 
noting that av/ ax = -h, we can write Equation (20) as 

av av 
+ u- =0. at ax 

(21 ) 

For simplicity, we will assume that the bed of the 
glacier has a uniform slope, i.e. yb vanishes, and then the 
four equations for the four unknowns V, h, 0xx' and u 
which fully determine the motion and stress field for the 
surging glacier are 

av av 
+ u- zO 

at ax ' 

/)u 3-
/)x 8B~x' 

av JI ° - = [T S - pghsin ald~ 
xx ax x 

h 
av 
ax 

(22) 

(23) 

(24) 

(25) 

For illustration purposes, consider the case when the 
basal shear stress is such that it supports a fraction k of 
the down-slope component of the glacier weight, i.e. T s = 

kpghsin a . In this case, Equation (24) gives 

(k -I)pgsin aV, (26) 

and therefore 

a( InV) B 
where B = (k - I )pgsin a . 

°xx' 
(27) 

In addition, by dividing Equation (22) by V and then by 
differentiating it with respect to x, we can write Equation 
(22) as 

a [a ] ;j8 ] au 8 - -:-{lnV) + u -::-(lnV) = - - -:-{lnV). 
at ax ax 8x /)x /)x 

(28) 

Now, combining equations (23), (27), and (28), we obtain 
the following equation for the stress 

(29) 

which is a non-linear kinematic wave equation. Using the 
initial particle position X and time as independent variables 
in place of the spatial variable x and time, this equation is 
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generally written as an evolution equation along the 
characteristic curves, i.e. 

on curves given by: 

dx 
- = u where x - X at I - 0. 
dt 

(30) 

(31) 

In this case, the characteristic curves determined from 
Equation (31) are simply the trajectories of the material 
particles x 2 x(X,t) where X is the initial position of a 
material particle. This is equivalent to using a Lagrangian 
formulation as opposed to an Eulerian formulation. 

The solution to Equation (30) for the stress 0xx of a 
material particle in terms of the initial stress field 00 is 

(32) 

[ 
9- rlS 

1-8~t 

where 00 is given in terms of the initial glacier shape by 

(I - k)pgsin aIlo A A 

°xx(X,t = 0) = h(X,O) X h(X,O)dX, (33) 

and 10 is the initial snout posItIon. The stress at a fixed 
point x in space is found from Equation (32) using the 
relation between x and X obtained by integrating Equation 
(31 ) 

r' A A 

X 2 X + 1 U(X,t)dt . 

° 
(34) 

Here u is determined from the stress-1)train-rate relation in 
Equation (23), 

Bu 

Bx 

3-
8~X (35) 

To conveniently use Equation (35), however, we must 
first change variables from x and I to X and t as follows 

Bu 

Bx 
Bu ax au ~ a t A A} - - = - I -- u(x,/)dt 
BX ax ax ax 

Bu ~ It 3- A} = - 1- -~~t 
BX 0 8 x ' 

so that we have from Equation (35) 

~~ 
Bu I ____ -'>.8_0 ______ _ 

BX 3 
(36) 

This can now be integrated to determine u(X,t) which in 
turn can be substituted into Equation (34) to determine the 
position x of a particle which started at a location X at t = 

0. Using Equation (36), we find for Equation (34) 

x = X + 

9-
I r IX -B o~ 
3" ° ° 9- 8 I 9-

[I--~t] [I +-In(I--B~t)] 8 0 3 8 0 

dXdt. 
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By interchanging the order of integration, this can be 
simplified to 

Ix r. I A 'LA 
X = X - ° In~ +'3ln(l -H3(X)T)rX (37) 

where we have used Equation (33) and we define 

I
IO A A 

H(X) = X h(X,O)dX/loh(X,O) - V(X,O)/loh(X,O). 

In Equation (37) T is a dimensionless time given by 

9-
T = 8 B(I - k)loPgsin ajSt. 

Lastly, from Equations (25), (26), and (32) we find the ice 
thickness to be 

[ 
9 - 1/3 

h(X,t) - h(X,O) I -8' ~I 
(38) 

A comparison between theory and observation was 
made using the data given by Dolgushin and Osipova (1975) 
for the surge of Medvezhy Glacier which occurred in 1963. 
From the figures presented by Dolgushin and Osipova, data 
for the shape of the surging glacier were extracted using a 
Hewlett-Packard 7470A plotter and digitizing sight. The 
figures were enlarged to improve the resolution of the data. 
Using the initial configuration of Medvezhy Glacier in 
1963, immediately prior to the surge, we computed the 
evolution of the glacier shape from our model. Results for 
three equal time intervals are shown in Figure 5. In 
addition, in Figure 6 we compared the observed post-surge 
shape to the shape calculated in our model when the 
distance the snout had advanced was coincident with that of 
the actual glacier. The agreement is quite remarkable. Some 
of the discrepancies can be attributed to the fact that we 
have assumed a uniform bed slope which is not quite 
accurate for Medvezhy Glacier and also to the fact that we 
have used a very simple form for the basal shear stress Ts ' 

One feature to note concerning the present solution is 
the singularity in the stress field which occurs at a finite 

3 

en 
en 
Q) Medvezhy Glacier 2r-
c 
~ 
u 

.r:::. 
l-
Q) 
u 

Glacier Bed 

Fig. 5. Calculated surging motion of Medvezhy Glacier 
slarting with the observed initial configuration . Glacier 
profiles are shown for four values of T: 0, -- ; 0.58 , 
.... .- 1.16, - - .- 1.74, - - - .. the glacier-bed axis 
and ice thickness are non-dimensionalized by the initial 
surge length 10 and initial thickness at x ~ 0, respectively . 
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3.---------------------------------, 

Medvezhy Glacier 
theory vs. observation 

....... ---~-~.:... ...... ~:::;~ . ..;.~:.::;. 
" ..... ..,,~ 

~. -"'-----.. -.:'.~.~::::::~.~........ .'\ 
• •• • • • • • •••••••••• • 0j, ., 

OL-____ ~ ______ ~ ____ ~~ ____ -L ______ ~,~ 

o 0.25 0.5 0.75 1.0 1.25 

Glacier Bed 

Fig . 6. Comparison of the final glacier profile between 
theory (- - -) and obsenation ( .. .. ) for the surge of 
Medvezhy Glacier. The initial configuration is also shown 
(--). The glacier-bed axis and ice thickness are 
non-dimensionalized by the initial surge length 10 and 
initial thickness at x • 0, respectively. 

time (see Equation (32». This is a fairly common character­
istic for non-linear equations of the type considered here, 
i.e. Equation (29). Furthermore, note that the velocity field 
is determined from the stress field, and, consequently, it is 
also singular. This can be seen in Figure 7 where we have 
plotted the position of the snout of Medvezhy Glacier 
versus time . The singularity in the stress field occurs at 
T = I/ (Hs)max' and corresponds to the glacier thickness dis­
appearing at some point as can be seen from Equation (38). 
The singularity in the velocity field actually precedes this 
by a small amount and is found to occur at T = (l - e-s)/ 
(Hs) . The singularity occurs partly because of the lack of 
inerti:i effects in our model. The physical significance of 
the approach in time to this singularity might be interpreted 
as follows. Since there is no limiting stress level or velocity, 
the velocity and longitudinal stress of a surging glacier will 
steadily increase and will eventually reach a point in time 
when the basal water system which is responsible for main­
taining the high sliding velocities will be disrupted by the 
large strain-rates present. This will result in a drag greater 
than the down-slope component of the weight and the basal 
velocity will return to a level typical of the non- surge 
period when the glacier is essentially stuck to the bed. A 

1.5 

1.4 
c 
0 ... 1.3 rfJ 
0 
a.. ... 
::l 1.2 0 
c 

(f) 

1.1 

0 
0 0.5 

Medvezhy Glacier 

1.0 

Time (T) 

1.5 2.0 

Fig . 7. The calculated position of the snout as a function of 
time for Medvezhy Glacier. The pOSItion of the snout is 
non-dimensionalized by the initial snout position 10 and 

9-
T - iBf( 1- k}loPgsin al't 

is a dimensionless time. 
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new surge will not commence until the glacier, which has 
been thinned by the surge, has had sufficient time to build 
up once again and re-develop its basal water network. 
Ultimately, the down-slope component of the weight will 
again exceed critical levels in surge nuclei and a new surge 
will be initiated. 

From the present analysis, we can estimate the ratio of 
the recovery time (i.e. the time it takes the glacier to be 
rebuilt) to the surge duration time. We assume that the 
recovery time is the time it takes for the inflow at x = 0 
plus the accumulation between x '" 0 and I to equal the 
volume depleted during the surge. The volume depleted by 
the surge is the volume of ice which passed the original 
snout position 10 , From our calculations for Medvezhy 
Glacier. we find this to be equal to Qsho/o where ho is the 
maximum ice thickness and Qs - 0.1911. For simplicity we 
assume that the net accumulation or ablation between x = 0 
and 10 during the recovery period is equal to QAhO/o where 
QA is a constant. In the lower part of the glacier where the 
surge took place we expect spring and summer melting to 
exceed winter snowfall. so that the material carried beyond 
x = 10 by the surge would be melted away rather quickly. 
In any case, the mass balance defining the recovery period 
is 

(39) 

Consequently. the time to replace the volume. i.e. the 
recovery time. is 

(40) 

where an over bar on h5 represents a time average in the 
time in terval t = 0 to !;Jr' 

On the other hand. the surge duration can be estimated 
from our calculation for Medvezhy Glacier. We found that 
the position of the glacier snout coincided with the 
observed position when the time T - 1.74. i.e. 

where !;Js is the surge duration time. Therefore. the ratio 
lltr/ !;Js is found to be 

(41) 

where "'I z [(h/ ho)5] is the time average over the time 
interval t = 0 to lltr. Although it is difficult to use 
Equation (41) directly. it reveals the relevant physical 
parameters which control the surge cycle. Furthermore. we 
can use Equation (41) to estimate the parameter k which is 
a measure of the basal shear stress. For Medvezhy Glacier. 
10 = 6000 m, ho = 200 m, and the observed duration times 
are: !;Jr. = 12 years; llts = 2 months. In addition, from our 
calculatIOns we found Qs z 0.1911 and. if we further 
assume that accumulation is responsible for replacing half of 
the surged volume. i.e. QA z 1/2Qs • and we take '1 .. I , 
then we have the following estimate for k, 

k r. ~] l/S r!!.a) 4/S - r9.4
llt 

It ~ 0.88 . 
s 0 

Recalling the definition of k, this indicates that during the 
surge of Medvezhy Glacier 88% of the down-slope 
component of the weight was being carried by the basal 
shear stress. the remainder being supported by the longi­
tudinal stress. 
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Examining Equation (41) more generally, we see that as 
k .... I (i.e. the basal shear stress supporting all of the 
weight), t.tr / t.ts .... 0 or t.ts ...... , and there is no noticeable 
surge since the motion is occurring so slowly. Furthermore, 
lltr/ t.ts is a maximum and the surge is the most dramatic 
(since t.ts is a minimum) when we have perfect slip, i.e. 
k .... O. 

DISCUSSION 

The surge model discussed in this paper is highly 
idealized. However, it has the virtue of bringing out 
important features and explaining some basic observations of 
surges as discussed by Kamb and others (1985), Paterson 
(1981), and Dolgushin and Osipova (1975). These are that a 
compression front travels down the glacier, that the ice 
velocities during a surge are an order of magnitude larger 
than the non-surging values, and a general description of 
the evolving glacier shape during a surge. 

However, the details are bound to be affected by the 
use of a more realistic sliding law. This would tend to 
smooth out the boundary discontinuity at the base between 
rapidly sliding segments and slowly moving parts. However, 
we believe that the phenomenon of the spreading of this 
discontinuity would be similar to the one we have discussed. 
A more realistic sliding law would also make our J 
criterion more difficult to apply. Again, we think that our 
simplified description captures the essence of the 
phenomena. In addition, the inflected law of type (a) in 
Figure I may lead to a rapidly sliding region in which the 
down-slope weight is supported to leading order by the 
basal shear stress. The basal velocities in this region would 
lie to the right of ub in Figure I. However, this region 
would be adjacent to a section in which the basal velocities 
would lie between u~ and uf, and so the down-slope com­
ponent of weight there would be partly supported by the 
longitudinal stress gradient. This would thrust weight on to 
more slowly moving sections and tend to destabilize them in 
the manner we have discussed. Thus the process of spread­
ing of the rapid-sliding region would take place in a way 
similar to the situation described in our mode!. However, 
the smoother nature of the sliding law would mean that 
spreading would take place more slowly. 

The rapid-sliding region would spread all the way 
down to the snout in a surge in general so that the snout 
can move substantial distances during the surge. The 
question of how far the upper limit of the sliding region 
can move is more difficult . Since more and more stress is 
transferred to the remammg stuck part as the sliding 
segment extends, it seems possible that by our model the 
sliding region could extend eventually all the way up to the 
top of the glacier, to an ice divide or reservoir . This 
seldom occurs in practice, with the surging part usually 
confined to a segment near the snout (Paterson, 1981). The 
answer may lie in the limited tensile strength of the ice. 
This would led to fracture of the ice at the upper end of 
the rapidly sliding region rather than spreading of the 
destabilized part . This fracturing has been observed in 
Medvezhy Glacier (Paterson, 1981). Effectively, all the 
down-slope component of unbalanced weight would be 
thrown on to the lower margin of the sliding region. When 
this breaks th rough to the snout, the unbalanced part of the 
down- slope weight would cause acceleration of the ice mass 
which would continue until the end of surging, if the 
sliding law is like (b) in Figure 2. If the law is like (a) in 
Figure I, the acceleration would continue until all of the 
surging part was sliding at a speed greater than uf, where a 
quasi-static balance can re-occur. 

It is important to note that the general framework of 
the model we have proposed does not require the basal 
shear stress to fall dramatically everywhere in the surging 
part. The weakened segment could be relatively small when 
a surge commences. However, the transfer of the 
down-slope weight from the base in the weakened segment 
to the neighboring parts would cause relatively large forces 
to be applied to the unweakened sections. These large forces 
would develop enormous shear stresses at the base in the 
unweakened segment and could cause it to slide rapidly or 
rupture, even if it is relatively strong. It follows that the 
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surge could be set off by a limited segment in which the 
basal shear stress exceeds a critical value and initiates rapid 
sliding. In years of quiescence, the surge nucleus could exist 
in a stable manner. The surge year is the one in which the 
glacier is finally rebuilt after a previous surging episode to 
the extent that a big enough segment slides rapidly, and 
enough down-slope weight is transferred from the base to 
the neigh boring parts of the glacier to destabilize them. 
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APPENDIX 

CALCULATION OF J AT A DISCONTINUITY 

For simplicity, J will be calculated to leading order at 
the discontinuity B when the glacier has uniform thickness 
h. The contour for this calculation will be FGHKB as shown 
in Figure 8. It is possible to estimate J for a 
non- uniformly thick glacier. The algebra is more extensive 

contribution. On HK the solution is dominated by 
longitudinal stress as outlined in Equations (5)-(11) and so 
we will dispense _with any term lacking (]xx in it. It follows 
that W - (9/32)B~x and 11 • a . (8u/~x) ~ - (]xx 
(8u/8x). Note also that 11 is an order of magnitude less than 
U and for a steep glacier we can always neglect pgcos all 

compared to pgsin cru. As a result of the fact that ds = 

-dy on HK, the leading-order contribution to J from this 
part of the contour is 

J HK 2 n(3/32)B(]~x + pgsin cru)dy. (A-2) 
K 

Since (]xx and u are functions of x alone, Equation (A-2) 
becomes 

(A-3) 

On segment FG, the solution is dominated by shear and 
hydrostatic stress as given in Equations (2) and (3) . 
Consequently, W = (9/2)B~y to leading order there and 
n . (] . (8u/ 8x) = (]xx8u/ 8x .: 0 xy811/8x. This last term is 
smaller in magnitude than B~y on FG and it can be 
dropped immediately. It follows that the contribution from 
FG is 

JFG = 2 r «9/2)B~y - pgsin cru)dy. (A-4) 

F 

However, the stress at FG will be an order of magnitude 
less than the stress (] xx at HK and this applies to the 
velocity u as well (McMeeking and Iohnson, 1985). Thus 
the contribution to J from FG can be neglected in favour 
of that from HK. 

Finally, we consider the contribution from KB . Here, 
dy = 0 and v = 0, so n . (] . (8u/8x) = -Ox (8u/ 8x). We 
note that in our model at the base in the sllding region 
0xy Ts which is uniform. Consequently, 

J KB = 2 J Ts(8u/8x)dx = 2Ts(u(XB) - u(xK» - 2TsU(XK ) · 

KB 
(A-5) 

Taking all the leading-order contributions, we find 

(A-6) 

We can demonstrate that J is independent of the position 
X xK by differentiating to find 

Fig. 8. Contour for the calculation of J at B. 

in that case but the leading-order estimate is the same as 
that for the uniform glacier. 

For the calculation to be simple, it is necessary for the 
segments FG and HK to be well away from B so that the 
appropriate leading-order estimates for stress dominate the 
respective region. Recalling that 

J - 2 J (W - pgsin cru + pgcos av)dy -

FGHKB 
(A-I) 

- 11 • a . (~u/~x)ds, 

we now consider the contributions from the various 
segments of the contour. We will start with GH. On this 
line, dy ~ 0 and the traction n . a = 0, so there is no 

(A-7) 

We substitute using Equation (11) to show that 

(A-8) 
+ pghsin a - Tsl 

which is zero by Equation (8). Thus K can be chosen to lie 
anywhere up to the discontinuity and that is the most 
convenient position. Since u(xB) Z 0, this gives the result 
for J at B 

(A-9) 
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