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LIMITS OF LARGE METAPOPULATIONS WITH
PATCH-DEPENDENT EXTINCTION PROBABILITIES
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Abstract

We propose a model for the presence/absence of a population in a collection of habitat
patches. This model assumes that colonisation and extinction of the patches occur
as distinct phases. Importantly, the local extinction probabilities are allowed to vary
between patches. This permits an investigation of the effect of habitat degradation on the
persistence of the population. The limiting behaviour of the model is examined as the
number of habitat patches increases to ∞. This is done in the case where the number of
patches and the initial number of occupied patches increase at the same rate, and for the
case where the initial number of occupied patches remains fixed.
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1. Introduction

Many species exist as a collection of local populations occupying spatially distinct patches.
Ecologists refer to such collections of populations as metapopulations (see [13] for a review).
Metapopulations are constantly changing due to the processes of extinction and colonisation
occurring at each patch. For ecologists, the primary concern is the persistence of the metapop-
ulation since, in the absence of an external source of migrants, there is a significant risk that
the metapopulation will become extinct. This concern for the survival of the metapopulation
as a whole is heightened by the presence of habitat destruction and degradation.

Metapopulation models provide the ecologist with tools for better understanding metapop-
ulation dynamics and the effects of habit changes. While a number of metapopulation models
have been proposed, perhaps the most widely applied models belong to the class of stochastic
patch occupancy models (SPOMs). Hanski and Ovaskainen [14] provided a review of the SPOM
literature up to 2003. The characterising feature of a SPOM is that only the presence/absence
of a population at each patch is modelled. The size and age structure of each patch’s population
are ignored. Employing the Markov assumption, a SPOM can be mathematically described as
a Markov chain whose state space comprises 2n states for a metapopulation of n patches.

SPOMs vary greatly in detail and realism. At one extreme, a simple SPOM might assume
that all patches are identical and permit the movement of individuals from one patch to any other.
Metapopulations of this type can often be modelled using the stochastic logistic model [22].
Owing to its simplicity, researchers have been able to derive a number of important properties
of the model, such as the quasistationary distribution [17] and time until extinction [2]. At the
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Metapopulations with patch-dependent extinction 1173

other extreme, a SPOM might explicitly include a number of features of the environment, such
as connectivity of patches, distances between patches, and the size and quality of patches (see
[21] for an application to a tree frog metapopulation). The complexity of these models typically
means that their properties need to be studied using simulation [16]. However, some analytical
progress has been made for a spatial Levins metapopulation model on a random landscape in
[8] and [18].

The model studied in this paper lies between these two extremes. We assume a simplified
colonisation process where the probability of an unoccupied patch being colonised depends
only on the number of occupied patches in the metapopulation. The connectivity and distance
between patches are ignored. However, we permit heterogeneity among patches by allowing
the probability of local population extinction to be patch dependent. In this way, we are able
to incorporate habitat quality in the model which will assist our understanding of the effect of
habitat degradation on metapopulation survival.

For each n, let {Xnt }Tt=1 be a discrete time-homogeneous Markov chain, where

Xnt = (Xn1,t , . . . , X
n
n,t ) with Xni,t =

{
1 if patch i is occupied at time t ,

0 otherwise.

We assume that colonisation and extinction occur in two distinct phases and that these two
phases alternate as in the models studied in [5] and [15]. During the colonisation phase, a patch
that is unoccupied at time t will become occupied with probability f (n−1 ∑

j X
n
j,t ), where

f : [0, 1] �→ [0, 1]. Letting X̃nt = (X̃n1,t , . . . , X̃
n
n,t ) denote the state of the metapopulation after

colonisation at time t , we may express the colonisation phase as

X̃ni,t ∼ Xni,t + B

(
1 −Xni,t , f

(
n−1

n∑
j=1

Xnj,t

))
, (1.1)

where B denotes a binomial distribution. It seems biologically reasonable to expect that an
increase in the number of occupied patches will lead to an increase in the probability of an
unoccupied patch becoming occupied during colonisation. Furthermore, typical colonisation
functions, such as those used in [15], have the property that the colonisation probability increases
by less with each additional occupied patch. In other words, the colonisation function is typically
concave. Finally, it is assumed that f ′(0) > 0. This excludes the case where f (x) = 0 for all
x ∈ [0, 1]. We group these conditions on f as hypothesis (A):

(A) The colonisation function f : [0, 1] �→ [0, 1] is an increasing, concave function such that
f ′(0) > 0.

During the extinction phase, an occupied patch will become unoccupied with probability
ei > 0, independently of the other patches. The probability of patch extinction may be affected
by a number of variables, including patch size, prevalence of disease, and availability of food.
Together, these variables describe the quality of the patch which will be measured by the
probability of extinction. Denoting the patch survival probability by si = 1 − ei , we may
express the extinction phase as

Xni,t+1 ∼ B(X̃ni,t , si). (1.2)

Although we assume that the metapopulation is observed only after the extinction phase, there
is no compelling reason for this assumption. The results could have also been derived for
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observations taken after the colonisation phase. Finally, we note that the above model has
much in common with the chain-binomial models used to model epidemics [3], [10], [12].

The aim of this paper is to study this process when the number of patches in the metapop-
ulation increases to ∞. In Section 2 we show that the proportion of occupied patches in the
metapopulation converges to the solution of a system of difference equations. The fixed points
of the difference equation are identified and conditions under which these fixed points are stable
are given. In Section 3 we study the behaviour of the metapopulation when only a small number
of patches are occupied initially. We show that as the number of habitat patches increases to
∞, the set of occupied patches can be viewed as a point process on [0, 1) with the locations
being given by the corresponding patch survival probabilities. We then proceed to calculate
the probability of the metapopulation going extinct. We conclude with a brief discussion of the
impact of habitat degradation on the survival of the metapopulation and the possible extension
of the model and analysis to the continuous-time setting.

2. Deterministic limit

Given the complexity of the model, we shall study the behaviour of the metapopulation
through asymptotic analysis. In this section we focus on the proportion of occupied patches
in the metapopulation and establish convergence to a deterministic quantity. This approach to
studying Markov chains has a broad literature. Darling and Norris [11] provided a recent survey
of the literature and also determined some simple conditions under which a continuous-time
Markov chain may be approximated by the solution to a differential equation. For our model,
we show that on finite-time intervals the proportion of occupied patches converges as n → ∞
to the solution to a system of difference equations. Let σ denote a probability measure on
[0, 1), and let s̄k denote the kth moment of σ , that is,

s̄k =
∫ 1

0
λkσ (dλ).

Since σ is supported on [0, 1), s̄k exists for all k = 0, 1, 2, . . . .

Theorem 2.1. Suppose that there exist a probability measure σ and deterministic sequence
{d(0, k)} such that

n−1
n∑
i=1

ski
p−→ s̄k and n−1

n∑
i=1

ski X
n
i,0

p−→ d(0, k)

for all k = 0, 1, . . . , T , where ‘
p−→’ denotes convergence in probability. There exists a

deterministic triangular array d(t, k) such that, for all t = 0, 1, . . . , T and k = 0, 1, . . . , T −t ,

n−1
n∑
i=1

ski X
n
i,t

p−→ d(t, k),

where
d(t + 1, k) = d(t, k + 1)+ f (d(t, 0))(s̄k+1 − d(t, k + 1)). (2.1)

Typically, we are only interested in d(t, 0), which is the asymptotic proportion of occupied
patches. However, we may still interpret the ratio d(t, k)/d(t, 0), k ≥ 1, as the kth moment of
the conditional distribution of the patch survival probability given that the corresponding patch
is occupied. From these moments, the conditional distribution could then be reconstructed.
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When s̄k = s̄k1 for all k, that is, the patch survival probabilities are all equal, then it is possible
to simplify (2.1). We can show by induction that d(t, k) = s̄k1xt and

xt+1 = s̄1(xt + f (xt )(1 − xt )). (2.2)

If f (x) = cx for some c ∈ (0, 1) then the resulting recursion can be viewed as a discrete-time
approximation to the classical Levins model [13, p. 74]. It can be shown that if c ≤ (1 − s̄1)/s̄1
then 0 is the stable fixed point of (2.2), and if c > (1 − s̄1)/s̄1 then

xeq = 1 − 1 − s̄1

cs̄1

is the stable fixed point of (2.2) [6]. Fixed points and their stability are important because they
indicate if the metapopulation will tend to persist and at what level. We now consider the fixed
points of (2.1) and their stability.

Theorem 2.2. Assume that the colonisation function satisfies hypothesis (A). The fixed points
of the recursion (2.1) are given by

d(k) =
∫ 1

0

f (ψ)λk+1

1 − λ+ f (ψ)λ
σ(dλ),

where ψ solves

R(ψ) =
∫ 1

0

f (ψ)λ

1 − λ+ f (ψ)λ
σ(dλ) = ψ. (2.3)

If f (0) > 0 then there exists a unique ψ > 0 satisfying (2.3). If f (0) = 0 and

f ′(0)
∫ 1

0

λ

1 − λ
σ(dλ) ≤ 1, (2.4)

then ψ = 0 is the unique solution to (2.3). Otherwise, (2.3) has two solutions, of which one is
ψ = 0.

Theorem 2.3. Assume that the colonisation function satisfies hypothesis (A). If f (0) = 0 and
inequality (2.4) is satisfied, then d(k) ≡ 0 is a stable fixed point of (2.1). Otherwise, the nonzero
solution of (2.3) is a stable fixed point of (2.1).

The first point to note about the above result is that if f is concave then ψ and, hence, d(k)
are continuous functionals of σ . In other words, a small change to the quality of the habitat
will only have a small effect on the persistence level of the metapopulation. Now consider two
metapopulations whose respective patch survival probability distributions are σ and σ ′. Assume
that σ ′ ≥st σ , where ‘≥st’ denotes the usual stochastic ordering. As the integrand in (2.3) is
increasing in λ, it follows that if σ ′ ≥st σ then Rσ ′(ψ) ≥ Rσ (ψ). Hence, the corresponding
nonzero fixed points satisfyψσ ′ ≥ ψσ . This leads to the unsurprising conclusion that a decrease
in the survival probabilities leads to a decrease in the average number of patches occupied in the
metapopulation. However, when comparing two metapopulations, the stochastic ordering of
the survival probabilities is important. Suppose that σ and σ ′ are the patch survival probability
distributions of two metapopulations with respective means s̄1 and s̄′1. If the two distributions
do not satisfy the stochastic ordering then it is possible for the respective solutions to (2.3) to
satisfy ψσ ′ < ψσ , although s̄1 < s̄′1.
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Figure 1: The solution to (2.5), where f (x) = 0.7x is plotted against s̄1 for several values of γ . The
dotted line corresponds to the limit as γ → 0. From left to right, the four solid lines correspond to

γ = 0.1, 1, 2.5, and 5. The dashed line is the limiting case of γ → ∞.

As an example, suppose that σ is the beta distribution with parameters (s̄1γ, (1 − s̄1)γ ).
Assume that the colonisation function is not identically zero. Inequality (2.4) can be expressed
as f ′(0)s̄1γ > (1 − s̄1)γ − 1 and the equilibrium point is given by the solution to

ψ = s̄1f (ψ) 2F1(1, 1 + s̄1γ ; 1 + γ ; 1 − f (ψ)), (2.5)

where 2F1 is Gauss’ hypergeometric function [1, Chapter 15]. From a special case of the
hypergeometric function [1, Equation (15.1.8)], we see that, as γ → 0, ψ → s̄1 for any
colonisation function. In Figure 1 we plot the equilibrium points of a limiting metapopulation
with colonisation function f (x) = 0.7x against s̄1 for several values of γ . From the figure, it
appears that the equilibrium point is decreasing as a function of γ for a given s̄1.

Remark 2.1. The dynamics of the metapopulation when f is not concave can be very sensitive
to the patch survival probabilities. Suppose that σ has distribution function H(λ− λ0), where
H is the unit step function. Define the colonisation function f (x) as

f (x) =
(
x(1 − λ0)

(1 − x)λ0
∧ 1

)
.

This colonisation function is continuous, monotone increasing, and satisfies f (0) = 0. Direct
substitution shows that every ψ ∈ [0, λ0] is an equilibrium point of (2.2). Changes to the
metapopulation which may only have a small effect on patch survival probabilities can have a
catastrophic effect on the survival of the metapopulation as a whole. Let σ ′ have distribution
functionH(λ−λ′

0). If λ′
0 > λ0 then the system (2.1) has a unique nonzero equilibriumψ = λ′

0.
However, if λ′

0 < λ0 then the unique equilibrium point of the system (2.1) is ψ = 0.
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3. Point process approximation

We again examine the limiting behaviour of the Markov chain Xnt ; however, we shall now
assume that Xn0 is fixed for all n. In other words, we begin with a fixed number of occupied
patches and we let the metapopulation increase as n → ∞ by including additional unoccupied
patches. By examining the limiting process we aim to determine conditions under which a
metapopulation that is close to extinction may recover with positive probability. If every patch
had the same patch survival probability, or one of a finite number of possibilities, then we might
expect the number of occupied patches to converge to a (multitype) Galton–Watson process as
n → ∞. The limiting process could be studied using similar techniques to those used in [3].
We adopt a different approach in order to deal with the heterogeneity of the patch survival
probabilities.

In order to address this problem, we treat the collection of patch survival probabilities of
occupied patches at time t as a point process on [0, 1). Let Snt = {si : Xni,t = 1}. The probability
generating functional of Snt is defined by

GSnt (ξ) = E

( ∏
si∈Snt

ξ(si)

)
,

where ξ is a Borel function such that 0 ≤ ξ(x) ≤ 1 for all x ∈ [0, 1) [9, Definition 9.4.IV]. The
probability generating functional uniquely determines the point process [9, Theorem 9.4.V].
As n → ∞, the sequence of point processes Snt converges weakly to a point process St .

Theorem 3.1. As n → ∞, Snt converges weakly to St . The probability generating functional
of St is given by the recursion

GSt+1(ξ) = GSt

(
(1 − x + xξ) exp

(
−f ′(0)

∫ 1

0
(1 − ξ(λ))λσ(dλ)

))
. (3.1)

The proof of Theorem 3.1 proceeds along the following argument. From (1.1) we might
expect that if the number of occupied patches is fixed and the number of patches in the
metapopulation is allowed to increase to ∞, then the number of newly colonised patches might
converge to a Poisson random variable. As the colonisation probability does not depend on the
patch survival probability, the collection of newly occupied patches after a colonisation phase
might be well approximated by a nonhomogeneous Poisson process on [0,1) with intensity
measure proportional to σ . Also, from (1.2), the extinction phase closely resembles a thinning
operation on the collection of occupied patches with thinning function s.

Extinction of the metapopulation by time t corresponds to the event that St is the empty set.
This probability can be calculated from the probability generating functional in the same way
that the probability of extinction of a branching process can be calculated from the probability
generating function of the offspring. Let ζb(x) = b for all x ∈ [0, 1]. Then

P(St = ∅) = lim
b↓0

GSt (ζb).

Theorem 3.2. The sequence of point processes {St }∞t=0 converges in distribution to the empty
set with probability 1 if inequality (2.4) holds. Otherwise, the sequence of point processes {St }
converges to the empty set with probability

GS0

(
ψ∞(1 − x)

1 − ψ∞x

)
, (3.2)
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where ψ∞ < 1 is the solution to

ψ = exp

(
−f ′(0)

∫ 1

0

(1 − ψ)λ

1 − ψλ
σ(dλ)

)
. (3.3)

When the patch survival probabilities are the same for each patch, we may use (3.2) to
express ψ∞ in terms of the probability of St converging to the empty set. Substituting this
expression of ψ∞ into (3.3) gives the standard branching process result.

Consider again the case where σ is a beta distribution with parameters (s̄1γ, (1 − s̄1)γ ).
With this choice of σ , (3.3) becomes

ψ = exp(−s̄1f ′(0)(1 − ψ) 2F1(1, 1 + s̄1γ ; 1 + γ ;ψ)). (3.4)

Assume that X0 comprises a single occupied habitat patch with survival probability s̄1. Equiv-
alently, S0 comprises a single point at s̄1. If γ → ∞ then the probability of the limiting
metapopulation going extinct is given by the branching process result since σ concentrates
at s̄1. On the other hand, if γ → 0 then, from a special case of the hypergeometric function
[1, Equation (15.1.8)], we see that the probability of the limiting metapopulation going extinct
approaches

(1 − s̄1) exp(−f ′(0)s̄1)
1 − s̄1 exp(−f ′(0)s̄1)

.

Equation (3.4) was solved for ψ taking f ′(0) = 0.7 and the solution was then substituted into
(3.2) to obtain the probability of extinction. In Figure 2 we plot the probability of the limiting
metapopulation going extinct against s̄1 for several values of γ . It appears from this graph that
the extinction probability is increasing in γ for a fixed s̄1.
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Figure 2: The probability of extinction of the limiting metapopulation is plotted against s̄1 for several
values of γ . The dotted line corresponds to the limit as γ → 0. From left to right, the four solid lines

correspond to γ = 0.5, 1, 2.5, and 5. The dashed line is the limiting case of γ → ∞.
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4. Discussion

The results of this paper demonstrate that the persistence of a metapopulation crucially
depends on the quality of the habitat patches. Inequality (2.4) provides the persistence criteria
for a metapopulation with a large number of patches. It is also the condition that a large
metapopulation must satisfy in order to have a positive probability of recovering from near
extinction. The form of the integrand in (2.4) suggests that a patch with a survival probability
of 2

3 contributes twice as much to the survival of the metapopulation as a patch with a survival
probability of 1

2 , and a patch with a survival probability of 9
10 is approximately ten times

as valuable as a patch with a survival probability of 1
2 . The importance of a high quality

habitat was further highlighted in the numerical examples. Although this model has made
many simplifications concerning the colonisation phase, we believe it is still a useful model
for understanding the effects of habitat destruction on the metapopulations survival. Empirical
studies show that, at least for some species, the connectivity of habitat patches has only a small
effect on the colonisation patterns in the metapopulation [19].

Finally, it is natural to consider how this type of model could be handled in a continuous-time
setting. Let Xnt now be a continuous-time homogeneous Markov chain. If Xni,t = 1, that is,
if patch i is occupied at time t , then the population at patch i goes extinct at a rate γi > 0.
Otherwise, if patch Xni,t = 0, that is, if patch i is unoccupied at time t , then it is colonised at a
rate cn−1 ∑n

i=1Xi,t for some c > 0. This is a special case of a more general continuous-time
metapopulation model discussed in [7, Chapter 3]. Note that if γi = γ for all i then the model
essentially reduces to the stochastic logistic model. If the initial number of occupied patches is
allowed to increase at the same rate as the total number of patches, then we might expect that
the average proportion of occupied patches to converge to a deterministic limit. To establish
this limit, we could construct the associated process Yn(t), where

Ynj (t) = n−1
n∑
i=1

γ
j
i X

n
i,t

for all j = 0, 1, 2, . . . . It seems plausible that weak convergence of Yn(t) to the solution of
an infinite system of ordinary differential equations could then be established using arguments
similar to those used in [4]. Alternatively, if the number of occupied patches remains fixed
as n → ∞, then the limiting behaviour of the set �nt := {γi : Xni,t = 1} could be of interest.
Intuitively, we would expect �nt to converge weakly to a spatial birth–death process [20]. Both
of these limits will be investigated in future work.

Appendix A. Proofs of the theorems

A.1. Proof of Theorem 2.1

The proof proceeds by induction on t . By assumption, n−1 ∑n
i=1 s

k
i X

n
i,0

p−→ d(0, k) for

k = 0, . . . , T . Suppose that n−1 ∑n
i=1 s

k
i X

n
i,t

p−→ d(t, k) for all k = 0, . . . , T − t . The state of
the metapopulation after the colonisation phase is

X̃ni,t+1
d= Xni,t + (1 −Xni,t )Zi,

where, conditional on Xnt , the Zi are independent Bernoulli random variables with proba-
bility of success f n−1 ∑n

i=1X
n
i,t . Here ‘

d=’ denotes equality in distribution. We aim to

show that n−1 ∑n
i=1 s

k
i X̃

n
i,t+1 converges in probability to some deterministic value for each
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k = 0, 1, . . . , T − t :

E

(
n−1

n∑
i=1

ski X̃
n
i,t+1

∣∣∣∣ Xnt
)

= n−1
n∑
i=1

ski X
n
i,t + f

(
n−1

n∑
j=1

Xnj,t

)(
n−1

n∑
i=1

ski − n−1
n∑
i=1

ski X
n
i,t

)

p−→ d(t, k)+ f (d(t, 0))(s̄k − d(t, k))

=: d̃(t, k), (A.1)

var

(
n−1

n∑
i=1

ski X̃
n
i,t+1

∣∣∣∣ Xnt
)

= n−2
n∑
i=1

s2k
i (1 −Xni,t )f

(
n−1

n∑
j=1

Xnj,t

)(
1 − f

(
n−1

n∑
j=1

Xnj,t

))

≤ (4n)−1. (A.2)

Since d̃(t, k) is deterministic, convergence in probability of n−1 ∑n
i=1 s

k
i X̃

n
i,t+1 to d̃(t, k)

now follows from (A.1), (A.2), and an application of Chebyshev’s inequality. The state of the
metapopulation after the extinction phase is

Xni,t+1
d= X̃ni,t+1Wi,

where Wi are independent Bernoulli random variables with probability of success si . We now
aim to show that n−1 ∑n

i=1 s
k
i X

n
i,t+1 converges in probability to some deterministic value for

each k = 0, 1, . . . , T − (t + 1):

E

(
n−1

n∑
i=1

ski X
n
i,t+1

∣∣∣∣ X̃nt+1

)
= n−1

n∑
i=1

sk+1
i X̃ni,t+1

p−→ d̃(t, k + 1)

= d(t, k + 1)+ f (d(t, 0))(s̄k+1 − d(t, k + 1)), (A.3)

where (A.3) follows from the convergence in probability of n−1 ∑n
i=1 s

k+1
i X̃ni,t+1 and (A.1),

var

(
n−1

n∑
i=1

ski X
n
i,t+1

∣∣∣∣ X̃nt+1

)
= n−2

n∑
i=1

s2k+1
i (1 − si)X̃

n
i,t+1 ≤ (4n)−1. (A.4)

Again, since d(t, k) is deterministic, convergence in probability of n−1 ∑n
i=1 s

k
i X

n
i,t+1 to d(t+

1, k) follows from (A.3), (A.4), and an application of Chebyshev’s inequality.

A.2. Proof of Theorem 2.2

The fixed points of (2.1) solve

d(k) = d(k + 1)+ f (d(0))(s̄k+1 − d(k + 1)). (A.5)

In order to solve (A.5), we solve the linear recursion

d̄(k) = (1 − f (ψ))d̄(k + 1)+ f (ψ)s̄k+1, (A.6)

https://doi.org/10.1239/aap/1293113156 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1293113156


Metapopulations with patch-dependent extinction 1181

subject to d̄(0) = ψ . As the sequence d(t, k) is completely monotone in k, d(k) must also
be completely monotone. We now write d̄(k) = ∫ 1

0 λ
kµ(dλ) for some Borel measure µ.

Substituting this expression into (A.6) gives∫ 1

0
λkµ(dλ) = (1 − f (ψ))

∫ 1

0
λk+1µ(dλ)+ f (ψ)

∫ 1

0
λk+1σ(dλ).

Hence,

µ(dλ) = f (ψ)λ

1 − λ+ f (ψ)λ
σ(dλ).

In order to satisfy the initial condition, ψ must solve (2.3). Since f is monotone increasing and
concave, elementary calculations show that R(ψ) is also monotone increasing and concave.
As R(1) < 1, it follows from the intermediate value theorem that if f (0) > 0 then (2.3) has a
solution. As R(ψ) is concave, this solution is unique. If f (0) = 0 then ψ = 0 is one solution
to (2.3). By similar arguments, another solution will exist if R′(0) > 1. This last condition can
be expressed as inequality (2.4).

A.3. Proof of Theorem 2.3

Case (i): ψ > 0. Let ε(t, k) = d(t, k)− d(k). From (2.1) we have the recursion

ε(t + 1, k) = (1 − f (d(t, 0)))ε(t, k + 1)+ (f (d(t, 0))− f (ψ))(s̄k+1 − d(k + 1)).

Define φt (z) = ∑∞
k=0 |ε(t, k)|zk for all |z| < 1, and let cδ = sup|x−ψ |<δ f ′(x) for some δ > 0

to be determined. As s̄k ≥ d(k) for all k = 0, 1, . . . , we may bound φt (z) by

φt+1(z) ≤ (1 − f (d(t, 0)))
∞∑
k=0

|ε(t, k + 1)|zk

+ |(f (d(t, 0))− f (ψ))|
∞∑
k=0

(s̄k+1 − d(k + 1))zk

≤ (1 − f (ψ)+ cδ|ε(t, 0)|)
∞∑
k=0

|ε(t, k + 1)|zk + cδ|ε(t, 0)|
∞∑
k=0

(s̄k+1 − d(k + 1))zk

≤ 1 − f (ψ)+ cδ|ε(t, 0)|
z

(φt (z)− |ε(t, 0)|)+ cδ|ε(t, 0)|
∞∑
k=0

(s̄k+1 − d(k + 1))zk

≤ 1 − f (ψ)

z
φt (z)+ cδ

z
φ2
t (z)

+ cδ|ε(t, 0)|
( ∞∑
k=0

(s̄k+1 − d(k + 1))zk − 1 − f (ψ)

cδz

)
. (A.7)

We aim to find a z > (1 − f (ψ)) such that the last term in inequality (A.7) is negative:

∞∑
k=0

(s̄k+1 − d(k + 1))zk =
∫ 1

0

λ

1 − λz
σ(dλ)−

∫ 1

0

λ

1 − λz

f (ψ)λ

1 − λ+ f (ψ)λ
σ(dλ)

=
∫ 1

0

λ

1 − λz

1 − λ

1 − λ+ f (ψ)λ
σ(dλ).
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Let z = (1 − f (ψ)). Then
∞∑
k=0

(s̄k+1 − d(k + 1))zk = R′(ψ)
f ′(ψ)

<
1

f ′(ψ)
.

The above inequality follows since R′(ψ) < 1 if ψ > 0. Therefore, when z = (1 − f (ψ)),
∞∑
k=0

(s̄k+1 − d(k + 1))zk − 1 − f (ψ)

f ′(ψ)z
< 0.

Therefore, from continuity, there exist a z∗ > (1 − f (ψ)) and δ > 0 sufficiently small such
that the last term in inequality (A.7) is negative for z = z∗. Hence, from inequality (A.7) we
obtain

φt+1(z
∗) ≤ 1 − f (ψ)

z∗
φt (z

∗)+ cδ

z∗
φ2
t (z

∗).

We can conclude that, for sufficiently small φ0(z
∗), φt (z∗) → 0 and, hence, ψ > 0 is a stable

fixed point.
Case (ii): ψ = 0 and inequality (2.4) holds. In this case f (0) = 0, f ′(0) > 0, and d(k) = 0

for all k = 0, 1, 2, . . . . Let φt (1) = ∑∞
k=0 d(t, k). From (2.1) and as f is concave,

φt+1(1) = φt (1)− d(t, 0)+ f (d(t, 0))

( ∞∑
k=0

s̄k+1 − φt (1)+ d(t, 0)

)

≤ φt (1)+ d(t, 0)

(
f ′(0)

∫ 1

0

λ

1 − λ
σ(dλ)− 1

)
+ f (d(t, 0))(d(t, 0)− φt (1)).

As inequality (2.4) holds,

φt+1(1) ≤ φt (1)+ f (d(t, 0))(d(t, 0)− φt (1)). (A.8)

As d(t, 0) < φt (1), it follows from inequality (A.8) that φt (1) is decreasing in t and, hence,
limt→∞ φt (1) exists. Suppose that lim supt→∞ d(t, 0) = d > 0. Then limt→∞ φt (1) =
φ∞ ≥ d. For any ε > 0, there exists a T such that, for infinitely many t ≥ T , d − d(t, 0) < ε

and, for all t ≥ T , φt (1)− φ∞ < ε. Therefore, for some t ≥ T ,

φt+1(1)− φt (1) ≤ f (d(t, 0))(d − φ∞)+ ε,

and so there exists a finite, positive constant C such that φ∞ − d ≤ Cε. As ε is arbitrary, this
inequality can only hold if d = φ∞. Hence, limt→∞ d(t, k) = 0 for all k ≥ 1. Finally, we
need to show that limt→∞ d(t, 0) = 0. We can rewrite recursion (2.1) as

d(t + 1, 0) = δt + f (d(t, 0))s̄1 ≤ δt + f ′(0)s̄1d(t, 0),

where δt is a positive, bounded sequence converging to 0. If we can show that f ′s̄1 < 1 then
it will follow that limt→∞ d(t, 0) = 0, as required. Since inequality (2.4) holds,

f ′(0)s̄1 ≤ f ′(0)
∫ 1

0

λ

1 − λ
σ(dλ) ≤ 1.

If f ′(0)s̄1 = 1 then

f ′(0)
∫ 1

0
λ

(
1

1 − λ
− 1

)
σ(dλ) = 0. (A.9)

Equation (A.9) implies that σ must be supported on {0}, which is a contradiction since s̄1 > 0.
We have now shown that f ′(0)s̄1 < 1 and this completes the proof.

https://doi.org/10.1239/aap/1293113156 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1293113156


Metapopulations with patch-dependent extinction 1183

A.4. Proof of Theorem 3.1

Let S̃nt = {si : X̃ni,t = 1}, where X̃nt denotes the state of the metapopulation after the coloni-
sation phase at time t . We calculate the probability generating functional for Snt+1:

GSnt+1
(ξ) = E

(
E

( ∏
si∈Snt+1

ξ(si)

∣∣∣∣ S̃nt
))

= E

(
E

( ∏
si∈S̃nt

(Ziξ(si)+ 1 − Zi)

∣∣∣∣ S̃nt
))

= E

( ∏
si∈S̃nt

(1 + si(ξ(si)− 1))

)
,

where the Zi are independent Bernoulli random variables with P(Zi = 1) = si . The second
equality follows as the probability of patch i surviving the extinction phase is si and the
extinction events at each patch are independent. Now let η(s) = 1 − s + sξ(s). Then

GSnt+1
(ξ) = E

(
E

( ∏
si∈S̃nt

η(si)

∣∣∣∣ Snt
))

= E

({ ∏
si∈Snt

η(si)

}
E

( ∏
si∈S̃nt \Snt

η(si)

∣∣∣∣ Snt
))

= E

({ ∏
si∈Snt

η(si)

}
E

( ∏
i 
∈Snt

(Wiη(si)+ 1 −Wi)

∣∣∣∣ Snt
))
,

where the Wi are conditionally independent Bernoulli random variables with P(Wi = 1) =
f (mnt /n) and mnt is the number of points in Snt . The probability generating functional of Snt+1
can then be expressed as

GSnt+1
(ξ) = E

({ ∏
si∈Snt

η(si)

}
exp

(∑
i 
∈Snt

log(1 + f

(
mnt

n

)
(η(si)− 1))

))

= E

({ ∏
si∈Snt

η(si)

}
exp

(
f ′(0)m

n
t

n

∑
i 
∈Snt

(η(si)− 1)+ on(1)

))

= E

({ ∏
si∈Snt

η(si)

}
exp

(
f ′(0)m

n
t

n

∑
i

(η(si)− 1)+O

(
mnt

n

)
+ on(1)

))

= E

( ∏
si∈Snt

η(si) exp

(
f ′(0)n−1

∑
i

(η(si)− 1)+O(n−1)

))
.

The final part of the proof proceeds by induction on t . We have assumed that Sn0 is fixed for
all n and, hence, it converges weakly to S0. Assume that SnT converges weakly to ST . The
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probability generating functional of ST+1 is given by

GST+1(ξ) = lim
n→∞GSnT+1

(ξ)

= lim
n→∞ E

( ∏
si∈SnT

η(si) exp

(
f ′(0)n−1

∑
i

(η(si)− 1)+O(n−1)

))

= lim
n→∞GSnT (hn),

where

hn(s) = (1 − s + sξ(s)) exp

(
f ′(0)n−1

∑
i

si(ξ(si)− 1)+O(n−1)

)
.

For any suitable ξ , hn converges pointwise to

(1 − s + sξ(s)) exp

(
f ′(0)

∫ 1

0
(ξ(λ)− 1)λσ(dλ)

)
.

Applying Proposition 11.1.VIII and a variant of Theorem 9.4.V from [9], we can conclude that

GST+1(ξ) = lim
n→∞GSnT (hn) = GST

(
(1 − x + xξ) exp

(
−f ′(0)

∫ 1

0
(1 − ξ(λ))λσ(dλ)

))
,

and, hence, Snt converges weakly to St with probability generating function given by (3.1).

A.5. Proof of Theorem 3.2

Define the functions qt,b(x) by the recurrence relation

qt+1,b(x) = (1 − x + xqt,b(x)) exp

(
−f ′(0)

∫ 1

0
(1 − qt,b(λ))λσ(dλ)

)
, (A.10)

subject to the initial condition q0,b(x) = b. From (A.10) and Theorem 3.1, the probability of
the point process at time t being the empty set is given by limb→0GS0(qt,b). We can show
by induction from (A.10) that qt,b(x) ∈ [0, 1] for all x ∈ [0, 1] provided b ∈ [0, 1] and
that limb→0 qt,b(x) = qt (x) pointwise for all x ∈ [0, 1]. Applying the dominated convergence
theorem, it follows that limb→0GS0(qt,b) = GS0(qt ), where qt denotes qt,0. Since the functions
qt are bounded by 1, again applying the dominated convergence theorem gives

lim
t→∞ P(St = ∅) = lim

t→∞GS0(qt ) = GS0(q∞),

provided qt (x) converges pointwise to q∞(x) for all x ∈ [0, 1]. If q∞(x) = 1 then St will
converge to the empty set with probability 1 since G(1) = 1 for any point process. It remains
to investigate the pointwise convergence of qt (x) as t → ∞.

Define

ψt = exp

(
−f ′(0)

∫ 1

0
(1 − qt (λ))λσ(dλ)

)
. (A.11)

Since

qt+1(x)− qt (x) = ψt−1x(qt (x)− qt−1(x))+ (ψt − ψt−1)(1 − x + xqt (x))
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andq1(x) ≥ 0, it follows thatqt (x) is an increasing sequence in t for allx ∈ [0, 1]. The sequence
{ψt }∞t=0 is an increasing bounded sequence and, hence, its limit exists. Let ψ∞ = limt→∞ ψt ,
and define the function

q∞(x) = ψ∞(1 − x)

1 − ψ∞x
.

Noting that q∞(x) = ψ∞(1 − x + xq∞(x)), we obtain

q∞(x)− qt+1(x) = ψtx(q∞(x)− qt (x))+ (ψ∞ − ψt)(1 − x + xq∞(x)). (A.12)

Since ψt → ψ∞, it follows from (A.12) that limt→∞ qt (x) = q∞(x) for all x ∈ [0, 1]. By
applying the dominate convergence theorem to (A.11), we find that ψ∞ is a solution to the
equation

ψ = exp

(
−f ′(0)

∫ 1

0

(1 − ψ)λ

1 − ψλ
σ(dλ)

)
. (A.13)

LetQ(ψ) denote the right-hand side of (A.13). The functionQ(ψ) is increasing and concave
on [0, 1]. Hence, (A.13) has at most two solutions on [0, 1]. One solution is obviously ψ = 1.
This is the only solution in [0, 1] if Q′(1) ≤ 1. By differentiating Q we see that Q′(1) ≤ 1 is
equivalent to (2.4). Now suppose that Q′(1) > 1. Then a second solution to (A.13) exists in
[0, 1). Denote this solution by ψ∗, and define

q∗(x) = ψ∗(1 − x)

1 − ψ∗x
.

We can replace q∞(x) by q∗(x) in (A.12) and apply induction to show that qt (x) ≤ q∗(x). In
particular, ψt ≤ ψ∗ for all t . Finally, as ψ∞ must solve (A.13), it follows that q∞(x) = q∗(x).
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