ON THE SPECTRUM OF THE BIHARMONIC OPERATOR IN A BOUNDED DOMAIN

Pui-Fai Leung and Luen-Chau Li

We obtain an asymptotically sharp lower bound for the sum of the first k eigenvalues of the biharmonic operator.

Let D be a bounded domain in \mathbb{R}^{n} with piecewise smooth boundary ∂D and consider the following two eigenvalue problems:
(I) $\left\{\begin{aligned} \Delta \phi+\lambda \phi & =0 \text { in } D, \\ \phi & =0 \text { on } \partial D ;\end{aligned}\right.$
(II) $\begin{cases}\Delta^{2} \phi-\mu \phi=0 & \text { in } D, \\ \phi=\frac{\partial \phi}{\partial n}=0 & \text { on } \partial D .\end{cases}$

We let

$$
\begin{aligned}
& 0<\lambda_{1}<\lambda_{2} \leq \lambda_{3} \cdots, \\
& 0<\mu_{1} \leq \mu_{2} \leq \mu_{3} \cdots
\end{aligned}
$$

denote the successive eigenvalues of (I) and (II) respectively. We have the well-known asymptotic formulas of Weyl [4]:

$$
\lambda_{k} \sim c_{n}(k / V)^{2 / n}
$$

Received August 1984. The authors are greatly indebted to the paper [2] of Li and Yau for much inspiration.

[^0]$$
u_{k} \sim c_{n}^{2}(k / V)^{4 / n}
$$
where $C_{n}=(2 \pi)^{2} B_{n}^{-2 / n}$ with B_{n} the volume of the unit n-ball and V the volume of D. In [3] (see also [2], p. 310) Polya proved that
$$
\lambda_{k} \geq C_{n}(k / V)^{2 / n}
$$
holds for \mathbb{R}^{n}-covering domains (that is, domains that tile \mathbb{R}^{n}) and conjectured this inequality for arbitrary domains.

Now it follows from the asymptotic formulas that

$$
\begin{aligned}
& \sum_{i=1}^{k} \lambda_{i} \sim \frac{n}{n+2} c_{n} V^{-2 / n_{k}(n+2) / n}, \\
& \sum_{i=1}^{k} \mu_{i} \sim \frac{n}{n+4} c_{n}^{2} V^{-4 / n_{k}(n+4) / n}
\end{aligned}
$$

and recently Li and Yau in [2] proved that

$$
\sum_{i=1}^{k} \lambda_{i} \geq \frac{n}{n+2} c_{n} V^{-2 / n_{k}(n+2) / n}
$$

Since $k \lambda_{k} \geq \sum_{i=1}^{k} \lambda_{i}$ it follows that

$$
\lambda_{k} \geq \frac{n}{n+2} C_{n}(k / V)^{2 / n}
$$

For problem (I), we have the following well-known variational characterization ([1], p. 395),

$$
\lambda_{n}=\max _{\left\{v_{1}, \ldots, v_{n-1}\right\}} \min _{\substack{u \mid v_{1}, \ldots, v_{n-1} \\ u=0 \text { on } \partial D \\ j u^{2}=1}}-\int_{D} u \Delta u
$$

and on going through the proof in [1], p. 395, we can see that problem (II) can be similarly characterized by

$$
\mu_{n}=\max _{\left\{v_{1}, \ldots, v_{n-1}\right\}} \min _{\substack{u \perp v_{1}, \ldots, v_{n-1} \\ u=\partial u / \partial n=0 \text { on } \partial D}} \int_{D}(\Delta u)^{2}
$$

and hence

$$
\mu_{n} \geq \max _{\left\{v_{1}, \ldots, v_{n-1}\right\}} \min _{\substack{u \perp v_{1}, \ldots, v_{n-1} \\ u=0 \text { on } \partial D}}^{\int u^{2}=1}<(\Delta u)^{2}
$$

and so it follows from the Cauchy-Schwarz inequality that

$$
\mu_{k} \geq \lambda_{k}^{2}
$$

Therefore by applying Polya's theorem, we obtain
THEOREM 1. If D is a \mathbf{R}^{n}-covering domain, then

$$
\mu_{k} \geq c_{n}^{2}(k / V)^{4 / n}
$$

In view of these, it is natural to propose the following:
CONJECTURE. For any bounded domain in \mathbb{R}^{n},

$$
u_{k} \geq c_{n}^{2}(k / V)^{4 / n} .
$$

In this note we shall make a slight modification of the proof in [2] and show that:

THEOREM 2. For any bounded domain D in \mathbf{R}^{n}, we have

$$
\sum_{i=1}^{k} \mu_{k} \geq \frac{n}{n+4} c_{n}^{2} V^{-4 / n_{k}}(n+4) / n
$$

COROLLARY. $\quad \mu_{k} \geq(n /(n+4)) c_{n}^{2}(k / V)^{4 / n}$.
Proof. This follows since $k \mu_{k} \geq \sum_{i=1}^{k} \mu_{i}$.
Proof of Theorem 2. We shall need the following extension of a lemma of Hormander ([2], p. 3l1).

LEMMA 1. Let f be a real-valued function defined on \mathbb{R}^{n} such that $0 \leq f \leq M_{1}$ and let m be a positive integer. Suppose

$$
\int_{\mathbf{R}^{n}}|z|^{m} f(z) d z \leq M_{2},
$$

then

$$
\int_{\mathbf{R}^{n}} f(z) d z \leq\left(\frac{n+m}{n}\right)^{n /(n+m)}\left(M_{1} B_{n}\right)^{m /(n+m)} M_{2}^{n /(n+m)}
$$

Proof. Just replace 2 by m in the proof in [2], p. 312, and everything goes through just the same.

Now let $\phi_{1}, \ldots, \phi_{k}$ be a set of orthonormal eigenfunctions corresponding to the eigenvalues μ_{1}, \ldots, μ_{k} respectively and extend ϕ_{i} to be zero outside D. Following [2] we introduce the function

$$
\Phi(x, y)=\sum_{i=1}^{k} \phi_{i}(x) \phi_{i}(y)
$$

and consider its Fourier transform in x which is given by

$$
\hat{\Phi}(z, y)=(2 \pi)^{-n / 2} \int_{\mathbf{R}^{n}} \Phi(x, y) e^{i x \cdot z} d x
$$

We now let

$$
f(z)=\int_{D}|\hat{\Phi}(z, y)|^{2} d y
$$

Then from equations (6) and (4) of [2] we have

$$
0 \leq f(z) \leq(2 \pi)^{-n} V
$$

and
(*)

$$
\int_{\mathbb{R}^{n}} f(z) d z=k
$$

As in [2] the crucial step now is to get an estimate of the left hand side of (*).

```
To do this we consider
```

$\int_{\mathbb{R}^{n}}|z|^{4} f(z) d z$

$$
\begin{aligned}
& =\left.\left.(2 \pi)^{-n} \int_{\mathbf{R}^{n}} \sum_{i=1}^{k}\left|\int_{D}\right| z\right|^{2} \phi_{i}(x) e^{i x \cdot z} d x\right|^{2} d z \\
& =\left.\sum_{i=1}^{k}(2 \pi)^{-n} \int_{\mathbf{R}^{n}}| |_{D} \sum_{j=1}^{n} z_{j}^{2} \phi_{i}(x) e^{i x \cdot z^{2}} d x\right|^{2} d z \\
& =\sum_{i=1}^{k}(2 \pi)^{-n} \int_{\mathbf{R}^{n}}\left|\int_{D} \phi_{i}(x) \Delta_{x} e^{i x \cdot z} d x\right|^{2} d z \\
& =\sum_{i=1}^{k} \int_{\mathbf{R}^{n}}\left|(2 \pi)^{-n / 2} \int_{D}\left(\Delta \phi_{i}(x)\right) e^{i x \cdot z} d x\right|^{2} d z \quad \text { (by Green's identity) } \\
& =\sum_{i=1}^{k} \int_{\mathbf{R}^{n}}\left|\Delta \hat{\phi}_{i}(z)\right|^{2} d z \\
& =\sum_{i=1}^{k} \int_{\mathbb{R}^{n}}\left(\Delta \phi_{i}(z)\right)^{2} d z \quad \text { (by Parseval formula) } \\
& =\sum_{i=1}^{k} \int_{D} \phi_{i}(z) \Delta^{2} \phi_{i}(z) d z \\
& =\sum_{i=1}^{k} \mu_{i} \cdot
\end{aligned}
$$

Finally, by applying Lemma 1 with $m=4, M_{1}=(2 \pi)^{-n_{V}}$, $M_{2}=\sum_{i=1}^{k} \mu_{i}$, we obtain

$$
k \leq\left(\frac{n+4}{n}\right)^{n /(n+4)}\left((2 \pi)^{-n} V B_{n}\right)^{4 /(n+4)}\left(\sum_{i=1}^{k} \mu_{i}\right)^{n /(n+4)}
$$

which simplifies to

$$
\sum_{i=1}^{k} \mu_{i} \geq \frac{n}{n+4} c_{n}^{2} v^{-4 / n_{k}(n+4) / n}
$$

ADDED REMARK. After we had completed this paper we were informed by Professor S.T. Yau that Professor M.H. Protter has obtained similar results
independently.

References

[1] P.R. Garabedian, Partial differential equations (John Wiley \& Sons, London, New York, 1964).
[2] P. Li and S.T. Yau, "On the Schrodinger equation and the eigenvalue problem", Comm. Math. Phys. 88 (1983), 309-318.
[3] G. Polya, "On the eigenvalues of vibrating membranes", Proc. London Math. Soc. (3) 11 (1961), 419-433.
[4] H. Weyl, "Das asymptotische Verteilungsgesetz der Eigenwerte linear partieller Differentialgleichungen (mit einer Anwendung auf die Theorie der Hohlraumstrahlung)", Math. Ann. 71 (1912), 441-479.

Department of Mathematics,
National University of Singapore,
Kent Ridge,
Singapore 0511.

[^0]: Copyright Clearance Centre, Inc. Serial-fee code: 0004-9727/85 $\$ \mathrm{~A} 2.00+0.00$.

