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Abstract

For f analytic in the unit disk D, we consider the close-to-convex analogue of a class of starlike functions
introduced by R. Singh [‘On a class of star-like functions’, Compos. Math. 19(1) (1968), 78-82]. This
class of functions is defined by |zf"(z)/g(z) — 1| < 1 for z € D, where g is starlike in D. Coefficient and
other results are obtained for this class of functions.
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1. Preliminaries

Let H denote the class of functions f analytic in the unit disk D ={z € C : |z] < 1}
and A the subclass of H consisting of functions normalised by f(0) =0 = f’(0) — 1.
Let S C A be the class of univalent (that is, one-to-one) functions in D. Any function
f € A has the series representation

f=z+ ) a" (1.1)
n=2

Denote by S* the subclass of S of starlike functions. It is well known that f € §*
if and only if Re(zf’(z)/ f(2)) > 0, z € D. Denote by C the subclass of S* of convex
functions. It is well known that f € S* if and only if f(z) = zg’(z), for some g € C. By
% we denote the class of Carathéodory functions p which are analytic in D and satisfy
the condition Re(p(z)) > 0 for z € D, with

PR =1+ p". (1.2)
n=1

Suppose now that f is analytic in D. Then f is close to convex if and only if there
exist @ € (—mr/2,7/2) and a function g € S* such that Re(e’® zf'(z)/g(z)) > 0, z € D.
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When a = 0, we denote this class of close-to-convex functions by %, and note that
S'cKcS.

Suppose next that f € A and is given by (1.1) and satisfies |zf”(z)/f(z) — 1| < 1 for
z € D. This class of functions S;, was introduced in 1968 by Singh [9]. It is clear that
S; ¢ §*. Singh [9] showed that if f € S;, then |a,| < 1/(n — 1) for n > 2, and that this
inequality is sharp. Other properties of functions in S; were also given in [9].

We now define the close-to-convex analogue of the class S;, as follows.

DeriniTioN 1.1. We say that f € K, if f € A and there exists g € S* such that

z2f"(2)
8

Again itis clear that S}, ¢ K, ¢ K c S. Although K, represents the natural close-to-
convex analogue of S, we shall see that obtaining sharp estimates for the coefficients
represents a much more difficult problem. We note that this phenomenon is often
reflected in extending results from S* to K and will see in this paper that the class K,
gives rise to some significant and interesting problems.

-1

<1, zeD.

2. Lemmas

A function w is called a Schwarz function if w € H, w(0) = 0 and |w(z)| < 1 for
z € D. We denote the class of Schwarz functions by Q.

Note that for p € P given by (1.2), we can write p(z) = (1 + w(2))/(1 — w(z)), for
some w € Q. So writing

W@ = " @1
n=1

and equating coeflicients gives
p1=2w;, pr=2w;+2w3. (2.2)
We will need the following lemmas.
Lemma 2.1 [2, page 78]. Let w € Q be given by (2.1). Then
oot < 1 =i = o = lwsP = = lwaP* forn=2,3,...,
w2l < 1=l = w2’ = w3 = = |waer = lwal®  forn=1,2,3,....
LemmA 2.2 [3]. Let w € Q be given by (2.1). If u € C, then
|wz — prwi] < max{l, |ul}. (2.3)
Using (2.2) and (2.3) immediately gives the following result.
Lemma 2.3 [5]. Let p € P be given by (1.2). Then for u € C,
|p2 — upil < 2max{l, [2u — 1]},
The inequality is sharp for each complex p.

https://doi.org/10.1017/5S0004972719001606 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972719001606

270 V. Allu, J. Sokét and D. K. Thomas [3]

Lemma 2.4 [7, 10]. Let p € P be given by (1.2). Then for n > 1, |p,| < 2 and
|p2 = 3pi| <2 - 3|l

The following Fekete—Szegd type inequalities for g € S* due to Keogh and Merkes
[3] will be used extensively in Section 5.

Lemma 2.5 [3]. Let g € S8* be given by
2@ =2+ ) b7 (2.4)
n=2

Then for any u € C,

b3 — ub3| < max{1, [4u - 3|},

|b>?
Ibs — ub3| < 1 + (f4u — 3| - 1)%. 2.5)

Both inequalities are sharp.

We will also use the following lemma concerning functions in P, the proof of which
follows easily from Lemma 2.5.

Lemma 2.6. Let p € P. Then for any t € C,

Ip1?

lp2 —tpll <2+ (2t = 1] - 1) 5 (2.6)

The inequality is sharp.
Proor. For p € P, there exists a function g € S* given by (2.4) such that

_ 8@

s eD.
8(2)

PQ)
Thus b, = py and b3 = %(pz + p%). Substituting in (2.5) gives

piF
P2 = 2= DR <2+ (4= 3 - DA,

for all complex p. Writing u = (¢ + 1)/2 gives (2.6) for all complex ¢. The function
p(@) = (1 +2)/(1 — 2) shows that the result is sharp for |2¢ — 1| > 1 and the function
p(z) = (1 +22)/(1 — z%) shows the sharpness for [2¢ — 1| < 1. o

Lemma 2.7 [1], [8, page 67]. Suppose that f € S and z = re € D. If
m'(r) < |f" (2l < M'(r),

where m’(r) and M’ (r) are real-valued functions of r in [0, 1), then

frm’(t)dts lf(@)] < fr M’ (r) dt.
0 0
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Lemma 2.8 (Baernstein’s theorem, [2, page 198]). Let ®(x) be a convex nondecreasing
function for —co < x < 0. If f € S, then

27 27
f O(In | f(re™)]) dO < f O(In |k(re)]) d6,
0 0

where k(z) = z/(1 = 2)>. If equality holds for some r in (0, 1) and strictly convex @,
then f(z) = nk(nz) for some |n| = 1.

Lemma 2.9 [2, page 200]. If f € C, then

2n 27
f I @)I" do < f IF' ()" do
0 0

forall1>0,0<r <1, where F(z) = z/(1 — z) and z = re".

Lemma 2.10 [6, page 70]. Suppose that h € H is convex and univalent and P € H
satisfies Re(P(z)) > 0 for z e D. If p € H, then

p(2) + P(2) - 2p'(2) < h(z) = p(2) < h(z).

3. Distortion theorems and integral means

Tueorem 3.1. If f € K, and z = re®, 0 < r < 1, then

1- 1+r
) 3.1
T )2_|f()l_(_r)2 (3.1)
2r 2r
—— —log(l + 1) <|f(@)| £ — +log(l - r). (3.2)
1+r 1-r
The inequalities are sharp.
Proor. Write
8(@)
f()——(1+ w(2)), (3.3)
for some g € 8* and some w € Q. It is well known that for g € S*, with z = re®,
0<r<l1,
8(2)
34
(1+r)2 | | (l—r)2 S
Thus, using the Schwarz lemma,
l-r<l+w@| <1+, 3.5

and so from (3.3), using (3.4) and (3.5), we immediately obtain (3.1).
The inequalities in (3.1) are sharp when f; € %K, is given by

@)
f1<)—ﬁ(1+z> and  go(2) = ﬁ
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in which case

, 1-r 1+r
fl(—r) = m and fl(r) = —}")2

Clearly (3.2) follows from Lemma 2.7, since K, € S. The upper bound in (3.2) is
sharp for f; € K, and the lower bound for f, € K, where

h@) = —+10g(1—2) and  fo(z) = 2T—log(1+2) o

In the following two integral mean inequalities, the function f; shows that the orders
of growth as r — 1 are best possible (see [4, page 96]). However, the inequalities are
not sharp.

Turorem 3.2. Let f € K, be given by (1.1). Then with z = re' € D,

2
f |f(2)|dO < 2rlog T ! , (3.6)
0 _
27
f|ﬂmws§1. 3.7)
0 —r
Proor. Write
'@ =h@A + w), (3.8)

for some 4 € C and some w € Q. Integrating (3.8) and using the Schwarz lemma,

27 27
f |f(2)|d6 = f fh’(pe’9 [1+a)(pe"9]dp‘d9
0

21
f(1+p)f W (pe)| d6 dp.

Applying Lemma 2.9 with n = 2 and using Parseval’s theorem,

27 27 r
1+p 2n 1
do < dodp = ——dp =2rl
fo /@l ff 11— pei®l? P fo 1-p p=amoe T

This gives (3.6). In order to prove (3.7), we write

f@—“%H-O) (3.9)

for some g € S* and some w € Q. Integrating (3.9) and using the Schwarz lemma,

27 27 19
[ irie- [ [E
0 0

Applying Lemma 2.8,
27 21
1+r . 1+r 2ar 2
f lf'(2ldf < — f 18(re)|db < = :
0 r 0 r 1-r2 1-r

which is (3.7). O

27
—[1+ w(re™)] d9<— f lg(re)| de.
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Let C(r, f) denote the image of the circle |z| = r < 1 under the mapping f and L(r, f)
the length of C(r, f). We immediately deduce the following corollary.

CorOLLARY 3.3. Let f € K,. Then with z = re’’ € D,

2nr

27
LMﬁiﬁkﬂmwslf

Turorem 3.4. Let f € K,. Then with z = re’? € D,

2nr

21
fo '@ =W @10 < 77—, (3.10)

where h € C and W' (z) = f'(2)/(1 + w(z)) for some w € Q. Inequality (3.10) is sharp.
Proor. Write (3.8) as f'(z) — 1/ (2) = W' (2)w(z), with w € Q. By the Schwarz lemma,

If'(2) = I @) = I (Dw@)| < |20 (2)] = |g(2), (3.11)
for some g € S*. Integrating (3.11) and applying Lemma 2.8,

2 2 2
L W@—WMMSL le(2)ldo = =~

1-7r2
Choosing h(z) = z/(1 — z) and w(z) = z, we have f(z) = 2z/(1 — z) + log(1 — z), which
gives equality in (3.10). O
4. Coefficients

Singh [9] was able to use the method of Clunie to obtain sharp coefficient estimates
for functions in Sj. Since this is not possible in K, the problem of extending the
coefficient inequalities in [9] to the class K, appears not to be straightforward, with
exact bounds not easy to find. We give the following results.

THeOREM 4.1. Let f € K, be given by (1.1). Then

3 5 7.3731... 8 3
< -, <=, <— =1.8443.. ., < -+ =197....
|as| < > las| 3 lay ) las| VA
The inequalities for |ay| and |as| are sharp.
Proor. Write
2f'(2) = g1 + w(2)], (4.1)

for some g € §* and some w € Q. Equating coefficients in (4.1) and using (2.1) and

(2.4) gives
2a; = by + wy, “4.2)
3613 = b3 + bZWI + wy, (43)
4(14 = b4 + b3W1 + b2W2 + ws, (44)
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where |b,| < n and |w,| < 1 for n > 1. Therefore (4.2) gives
20as| < |by| + w1l = 2|ay| < 3.
Now write x; = [wy], xo = [wo| and x3 = |ws|. From (4.3),
3las| < |bs| + |ballwil| + Iwal,
so that Lemma 2.1 implies
3las] < 3+ 2wl + (1 — jwi*) <5,

since 0 <4+ 2x; — x% < 5 for x; € [0, 1].
The bound for |as| is more complicated. Again from (4.4) and Lemma 2.1,

Haa| < |bal + b3lwi] + [ballwal + ws] <4 + 3x; + 2x; + X3,

and so

0<x <1, m<l-x, xm<l-x-x.

We therefore need to find
m]_f}Xg(Xl,Xz,X:;),
where g(x1, X2, x3) =4 + 3x1 + 2x, + x3 and
H={(x1,x,x3): x1 <1, xx <1 —x%, x3<1 —x% —x%}.

It is clear that the maximum over H occurs on the boundary dH which we now
consider. If x3 =1 — x% - x% and x, =1 — x%, then
g(x1,x2,x3) =6+ 3x; —x% —x‘f, 0<x <1.
Solving this equation (using Wolfram Alpha),

max{6 +3x; —x; —x}: 0<x; <1}=73731... atx; =0.72808...,

where
1 968 3
73731...= —{148 - + i/54181 + 2259 \/753},
24 3
\/54181 + 2259 V753
27 + V753 1
0.72808... = - .

2V39 /327 + V753)
Hence |ay| < % -7.3731...=1.8443.... Applying the same method for as gives

Slas| < 8 + ‘i =9.889..., thatis, |as|<197....
4

The inequalities for a, and a3 are sharp when

2n—-1 ,
7"

n

2z >
f(z)—l—_z+log<1—z>—z+;
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Nonsharp bounds for |a,| when n > 5 can be obtained by the techniques used in the
proof of Theorem 4.1. However, the analysis becomes more involved as n increases,
and requires computer-aided numerical methods.

Inequalities for the coeflicients of close-to-convex functions can exhibit
unpredictable behaviour (compare the solution to the Fekete—Szeg6 problem [3]). On
the basis of the extremal function for the coefficients a, and a3 above, the obvious
conjecture is the following, but this may prove not to be correct.

CongecTure 4.2. Let f € K, be given by (1.1). Then for n > 2,

2n—1
la,| < .
n

A simple consequence of Corollary 3.3 shows that the coefficients a,, of functions f
in K, are bounded. To see this, let f € K, be given by (1.1). From Corollary 3.3, with
z=re? eD,

1 27
<« ") df < ————.
nla,| < - L lzf"(2)1do < (1 =)

Choosing r = 1 — 1/n gives nla,| < n(1 — 1/n)™ and, since (1 — 1/n)™" decreases for
n > 2, we obtain |a,| < 4.

5. Fekete-Szego theorems
TueorEM 5.1. Let f € K, be given by (1.1) and let u € R.

(1) Ifu<0, then
las — pa3| < 3 - 2p. (5.1)

2) IfO<u<2/3, then
2(10 — 18u + 9u?)

laz — paj) < 3@ -3
(3) If2/3<u<l, then
las — pas] < 3. (5.2)
@) If1 <u<10/9, then
a3 — pad) < % (5.3)
(5) Ifu=>10/9, then
las — pa3| < Ju - 3. (5.4)
Inequalities (5.1), (5.2) and (5.4) are sharp.
Proor. Since f € K, we can write
@) = g(z)[ 12+p ;Z()Z)] (5.5)
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where p € P and g € §*. Equating coefficients in (5.5), using (1.2) and (2.4) gives

1 3b3 b o1
@ = 5 (b= )+ 203 2 (p- D)= e 60
1 3bsuy b 443
R B e NG

We now treat the five cases in the theorem.

Case 1: u <0.We use (5.6) with |p| = x. From Lemmas 2.4 and 2.5, since |b;| < 2,

3b M bzpl 1 p2 1
las — | = \ (bs——42 )+ 202 - 3+ ( -2 - i
1 2
§|3/1 3]+ —|2 3ulx + ’ - 1—6x u
1 x2 1
- §(3 ~3u) + 6(2 — 3+ 8(2 - 5) - $e P (5.8)

where x € [0, 2]. Since the right-hand side of (5.8) increases with respect to x € [0, 2],

1 1 1 x2 1 5 9u
—udd < |=3-3uw+-2-3 +—(2——)——2] = -=
las — paz| < 3( ) 6( )X g > 16xux:2 377

The result is sharp for b3 = 3,b, = p; = p» = 2 in (5.6), that is, g(z) = z/(1 — 2)%,
p@@)=>0+2)/(1-2).

Case 2: 0 < u<2/3. We again use (5.6) with x = |p;|, which gives

1 1 1 2 1
a3~ pad] < 3G =30 + 2@ = How+ (2= 3 )+

This expression has a maximum value at x = 4(3u —2)/(3u —4) in [0, 2], so the bound
for 0 < u <2/3 follows.

Case 3: 2/3 <u < 1. Applying (2.5) and (2.6) in (5.7),

|ba|? ) |l72P1|

Ias—ﬂazl<3(1+(|3,u 3I=D—= )+ —5=12 =34

oo

1 3ﬂ 2 2) ( 4 -3u Ip1|2)
~(1- b p R a1
3( 1b2] 4 2
|b2| + 12 |P1||b2| 13 Ip1l” + 3
3u-2( , 4 -3y 2) 2
_ _ __OTOH 2\, 2 5.
12 (y YT G-t )T (5-9)
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where y = |by| € [0,2], x = |p1| € [0,2]. If u =2/3, (5.2) follows at once from (5.9).
If u # 2/3, we divide by 3u — 2, so that it suffices to show that

4 -3u
4(83u —12)
Since F(x,y) has no critical points in (0, 2) X (0,2), we only need to check that
F(x,y) <0 when x =0 or y =0, which is trivial, and when x =2 ory = 2. If x = 2,

4 —3u 6(1
FQ2.y) = -y +2y—3ﬂ———< S _g)

F(x,y)= —y2+xy— <0 for2/3<u<1,y€el0,2],x€]0,2].

<0 when2/3<pu<l,
andify =2,
Fr2)= 202 -2 - —=3H 220 when2/3<u<1
= WGBu-2) ° o=

which establishes (5.2). To show the result is sharp we choose b, =0, b3 =1, p; =0
and p, = 2in (5.7), that is, g(z) = z/(1 = 2%), p(z) = (1 + 22)/(1 = ).

Case4: 1< u<10/9. Applying (2.5) and (2.6) in (5.7) gives, for all u > 1,

b b
las — uaj| < 3(1 +(3u = 3| - l)ﬁ) | 2P1|

2
; l(2+ (‘423" - 1‘ - 1)@)

12 =3l

6 2
4- 3,u 2) 3/1 ( 4- 3|P1|2)
~(1- bol?) + 2= |p1llb A
3( 1bs| 211l + —2
4-3 3 4 2
“|b2| “ 2 oillbal = 2222 4 3
4- 3/1 , 4(3/1 2) ) 2
= gy TRy Z=F
48 ( t oy Ty i)

where y = |by| € [0,2], x = |p1] € [0, 2]. Thus to prove (5.3) it suffices to establish that

- 3u , 4@u-12) 2) 2 u-1

4y + ——xy — < —+

48 ( 4-3u 2T ) 3T a3,
for1 <u<10/9,ye€[0,2] and x € [0, 2].

Again F(x,y) has no critical points in (0, 2) X (0, 2), so we only need to check that

F(x,y) <0 when x=0o0ry=0, and when x =2 or y = 2. It is clear from (5.10) that
in these four cases F(x, y) attains the greatest value when x = 2, and

4-3 8(3u -2
[ u(_4z+Ly_ )]
48 4 -3u y=(3u-2)/(4=3)
_2, u—1  3u-35
"3 4—3y_3(3y—4)'

F(xy)—%+

(5.10)

FQ2 ——+
53332 (2,y)

o

This gives (5.3).
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Case 5: u>10/9. From (5.7) with x = |p;| and y = |b,|,

oo -2} G - 5) 22

> = H(x,y).

Since the only critical point of H(x,y) is at x =y = 0 and H(0,0) = 2/3, we only need
to check the boundary values of H(x,y) on [0, 2] X [0, 2]. Observe that:
() HO,y)=5+3(1+10Gu-4y) <3Gu-2)<ju—3whenp> Land0<y<2;

(i) H(2,y) = {p+ tGBu—2)y + 3(1 + 13 — 4)y?), which increases on y € [0,2] and
so again H(2,y) < %u -z

(iii) H(x, 0) = % + %(Sm — 4)x* and H'(x,0) = 0 when either x =0 or u = %, but
H(%,0) = 4u -2 so we only need to consider x = 0 and x = 2, where H(0,0) = %
and H(2, 0) = j 4,u 4,u - % giving the result in this case;

(iv) H(x,2) = 3(3,u 3)+ 6(?y,u 2)x + 16,ux + 6(2 - ixz) is increasing for x € [0, 2]
when u > 10 and H(2,2) = Wthh completes the proof.

The result is sharp on choosmg b3 =3,by = p; = pp =2 in (5.8), that is, g(z) =
z/(1 - 2%, p(2) = (1 +2)/(1 - 2).

The following Fekete—Szego theorem for complex y is probably not sharp.
THEOREM 5.2. Let f € K, be given by (1.1). For u € C,
las — pa3] < §max{1, 4y = 31} + max{1, [2u; — 11} +12 = 3ul], (5.11)
where p; = 3u/4 and uy = (4 + 3u)/8.

Proor. From (5.7),

3u 4+3
s — ) < 5 [bs ~ L83 + Zibapllz = 3u + glps - 25K g2
3 4 8
1 3 4+3
<3les - 03|+ —|2 3l + - <lp2 - —pl|.
Applying Lemmas 2.3 and 2.5 gives (5.11). O

6. The radius of convexity and starlikeness

A number ry € [0, 1] is called the radius of convexity of a particular subclass of A
if ry is the largest number such that Re(1 + zf”'(z)/f’(z)) > 0 for all f in the subclass
and |z] < rp. It was shown in [9] that the radius of convexity for functions in S is
(V13 — 3)/2. We now show that when f € %, the radius of convexity is 1/3.

THEOREM 6.1. The radius of convexity of K, is 1/3.
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Proor. For f € K, we write zf”(z) = g(z)[1 + w(z)], for some g € S* and some w € Q.

Thus ., , ,
1@ _w@ W@ ©.1)
'@ g  1+w@)
It is well known (see [10]), that for g € S*, withz = re? and 0 < r < 1,
NI
8(2) L+r
Also from the Schwarz lemma, |w(z)| < |z| = r and from [2, page 77],
, 1-|w@P 1-|wE)
lw’(2)] < = . (6.2)

1-12 1-7

Thus from (6.1), forz = re and0 < r < 1,

me{l . Zf”(z)} 5 me{zg'(z)} | 2 ()
f'(@) g(2) 1 + w(z)
1-r r ,
“1+r 1- |w(z)||w @l
1-r r 1- Ia)(z)I2

T14r 1-lw@| 1-r2
1-r r(1+|w@)
T+r  1-12
S 1—r_r(1+r): 1-3r
“1l+r 1-12 1-r2
when r € [0, 1/3). Thus the radius of convexity for the class K, is at least 1/3.

To see that this is the largest such radius, consider f € K, at the point z = —r where
fo is defined by fj(2) = (1 +2)/((1 - 2)*. o

A number ry € [0, 1] is called the radius of starlikeness of a particular subclass of
functions in A if ry is the largest number such that Re(zf"(z)/f(z)) > 0 for all f in that
subclass and |z] < ry.

>0,

Turorem 6.2. The radius of starlikeness of K, is not smaller than V2 — 1.

Proor. For f € K,
1)
8'(@)
for some g € C and where £ is convex and univalent. Write p(z) = f(z)/g(z) and P(z) =
£(2)/z¢' (). Since g € C, (6.3) becomes p(z) + P(z) - zp'(z) < h(z), where Re(P(z)) > 0
for z € D. Thus from Lemma 2.10,

<1+z=:h(z), (6.3)

f (@)

@ =1 +CL)(Z),
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for some g € C and some w € Q. This gives

@) 8@ W)
f@) gz  l+w
It is well known that if g € C, with z = re??, 0 < r < 1, then
me{zg’(z)} > ! .
8@ 1+r
Again using the Schwarz lemma and (6.2), we obtain
1

7w’ (2)

me{z—f (Z)} ziRe{Z’g (Z)} - > - W @)
f@) 8(2) l+w@! 1+r 1-l|w@)

oL TP 1 (1 + @)

Tl+r 1-w@l 1-r2  L+r 1-12

1 _ _ 2
S _r(1+r)=1 2r r>O
l+r 1-r2 1-r?
when r € [0, V2 - 1). Thus the radius of starlikeness of %K, is at least V2 -1. O
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