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Abstract

For f analytic in the unit disk D, we consider the close-to-convex analogue of a class of starlike functions
introduced by R. Singh [‘On a class of star-like functions’, Compos. Math. 19(1) (1968), 78–82]. This
class of functions is defined by |z f ′(z)/g(z) − 1| < 1 for z ∈ D, where g is starlike in D. Coefficient and
other results are obtained for this class of functions.
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1. Preliminaries

Let H denote the class of functions f analytic in the unit disk D = {z ∈ C : |z| < 1}
and A the subclass of H consisting of functions normalised by f (0) = 0 = f ′(0) − 1.
Let S ⊂ A be the class of univalent (that is, one-to-one) functions in D. Any function
f ∈ A has the series representation

f (z) = z +

∞∑
n=2

anzn. (1.1)

Denote by S∗ the subclass of S of starlike functions. It is well known that f ∈ S∗

if and only if Re(z f ′(z)/ f (z)) > 0, z ∈ D. Denote by C the subclass of S∗ of convex
functions. It is well known that f ∈ S∗ if and only if f (z) = zg′(z), for some g ∈ C. By
P we denote the class of Carathéodory functions p which are analytic in D and satisfy
the condition Re(p(z)) > 0 for z ∈ D, with

p(z) = 1 +

∞∑
n=1

pnzn. (1.2)

Suppose now that f is analytic in D. Then f is close to convex if and only if there
exist α ∈ (−π/2, π/2) and a function g ∈ S∗ such that Re(eiα z f ′(z)/g(z)) > 0, z ∈ D.
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When α = 0, we denote this class of close-to-convex functions by K , and note that
S∗ ⊂ K ⊂ S.

Suppose next that f ∈ A and is given by (1.1) and satisfies |z f ′(z)/ f (z) − 1| < 1 for
z ∈ D. This class of functions S∗u was introduced in 1968 by Singh [9]. It is clear that
S∗u ⊂ S

∗. Singh [9] showed that if f ∈ S∗u, then |an| ≤ 1/(n − 1) for n ≥ 2, and that this
inequality is sharp. Other properties of functions in S∗u were also given in [9].

We now define the close-to-convex analogue of the class S∗u as follows.

Definition 1.1. We say that f ∈ Ku if f ∈ A and there exists g ∈ S∗ such that∣∣∣∣∣z f ′(z)
g(z)

− 1
∣∣∣∣∣ < 1, z ∈ D.

Again it is clear thatS∗u ⊂ Ku ⊂ K ⊂ S.AlthoughKu represents the natural close-to-
convex analogue of S∗u, we shall see that obtaining sharp estimates for the coefficients
represents a much more difficult problem. We note that this phenomenon is often
reflected in extending results from S∗ to K and will see in this paper that the class Ku
gives rise to some significant and interesting problems.

2. Lemmas

A function ω is called a Schwarz function if ω ∈ H , ω(0) = 0 and |ω(z)| < 1 for
z ∈ D. We denote the class of Schwarz functions by Ω.

Note that for p ∈ P given by (1.2), we can write p(z) = (1 + ω(z))/(1 − ω(z)), for
some ω ∈ Ω. So writing

ω(z) =

∞∑
n=1

ωnzn (2.1)

and equating coefficients gives

p1 = 2ω1, p2 = 2ω2 + 2ω2
1. (2.2)

We will need the following lemmas.

Lemma 2.1 [2, page 78]. Let ω ∈ Ω be given by (2.1). Then

|ω2n−1| ≤ 1 − |ω1|
2 − |ω2|

2 − |ω3|
2 − · · · − |ωn|

2 for n = 2, 3, . . . ,

|ω2n| ≤ 1 − |ω1|
2 − |ω2|

2 − |ω3|
2 − · · · − |ωn−1|

2 − |ωn|
2 for n = 1, 2, 3, . . . .

Lemma 2.2 [3]. Let ω ∈ Ω be given by (2.1). If µ ∈ C, then

|ω2 − µω
2
1| ≤ max{1, |µ|}. (2.3)

Using (2.2) and (2.3) immediately gives the following result.

Lemma 2.3 [5]. Let p ∈ P be given by (1.2). Then for µ ∈ C,

|p2 − µp2
1| ≤ 2 max{1, |2µ − 1|}.

The inequality is sharp for each complex µ.
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Lemma 2.4 [7, 10]. Let p ∈ P be given by (1.2). Then for n ≥ 1, |pn| ≤ 2 and∣∣∣p2 −
1
2 p2

1

∣∣∣ ≤ 2 − 1
2

∣∣∣p2
1

∣∣∣.
The following Fekete–Szegö type inequalities for g ∈ S∗ due to Keogh and Merkes

[3] will be used extensively in Section 5.

Lemma 2.5 [3]. Let g ∈ S∗ be given by

g(z) = z +

∞∑
n=2

bnzn. (2.4)

Then for any µ ∈ C,

|b3 − µb2
2| ≤ max{1, |4µ − 3|},

|b3 − µb2
2| ≤ 1 + (|4µ − 3| − 1)

|b2|
2

4
. (2.5)

Both inequalities are sharp.

We will also use the following lemma concerning functions inP, the proof of which
follows easily from Lemma 2.5.

Lemma 2.6. Let p ∈ P. Then for any t ∈ C,

|p2 − tp2
1| ≤ 2 + (|2t − 1| − 1)

|p1|
2

2
. (2.6)

The inequality is sharp.

Proof. For p ∈ P, there exists a function g ∈ S∗ given by (2.4) such that

p(z) =
zg′(z)
g(z)

, z ∈ D.

Thus b2 = p1 and b3 = 1
2 (p2 + p2

1). Substituting in (2.5) gives

|p2 − (2µ − 1)p2
1| ≤ 2 + (|4µ − 3| − 1)

|p1|
2

2
,

for all complex µ. Writing µ = (t + 1)/2 gives (2.6) for all complex t. The function
p(z) = (1 + z)/(1 − z) shows that the result is sharp for |2t − 1| ≥ 1 and the function
p(z) = (1 + z2)/(1 − z2) shows the sharpness for |2t − 1| ≤ 1. �

Lemma 2.7 [1], [8, page 67]. Suppose that f ∈ S and z = reiθ ∈ D. If

m′(r) ≤ | f ′(z)| ≤ M′(r),

where m′(r) and M′(r) are real-valued functions of r in [0, 1), then∫ r

0
m′(t) dt ≤ | f (z)| ≤

∫ r

0
M′(r) dt.
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[4] Close-to-convex functions 271

Lemma 2.8 (Baernstein’s theorem, [2, page 198]). Let Φ(x) be a convex nondecreasing
function for −∞ < x <∞. If f ∈ S, then∫ 2π

0
Φ(ln | f (reiθ)|) dθ ≤

∫ 2π

0
Φ(ln |k(reiθ)|) dθ,

where k(z) = z/(1 − z)2. If equality holds for some r in (0, 1) and strictly convex Φ,
then f (z) = ηk(ηz) for some |η| = 1.

Lemma 2.9 [2, page 200]. If f ∈ C, then∫ 2π

0
| f ′(z)|λ dθ ≤

∫ 2π

0
|F′(z)|λ dθ

for all λ ≥ 0, 0 < r < 1, where F(z) = z/(1 − z) and z = reiθ.

Lemma 2.10 [6, page 70]. Suppose that h ∈ H is convex and univalent and P ∈ H
satisfies Re(P(z)) > 0 for z ∈ D. If p ∈ H , then

p(z) + P(z) · zp′(z) ≺ h(z)⇒ p(z) ≺ h(z).

3. Distortion theorems and integral means

Theorem 3.1. If f ∈ Ku and z = reiθ, 0 ≤ r < 1, then

1 − r
(1 + r)2 ≤ | f

′(z)| ≤
1 + r

(1 − r)2 , (3.1)

2r
1 + r

− log(1 + r) ≤ | f (z)| ≤
2r

1 − r
+ log(1 − r). (3.2)

The inequalities are sharp.

Proof. Write
f ′(z) =

g(z)
z

(1 + ω(z)), (3.3)

for some g ∈ S∗ and some ω ∈ Ω. It is well known that for g ∈ S∗, with z = reiθ,
0 ≤ r < 1,

1
(1 + r)2 ≤

∣∣∣∣g(z)
z

∣∣∣∣ ≤ 1
(1 − r)2 . (3.4)

Thus, using the Schwarz lemma,

1 − r ≤ |1 + ω(z)| ≤ 1 + r, (3.5)

and so from (3.3), using (3.4) and (3.5), we immediately obtain (3.1).
The inequalities in (3.1) are sharp when f1 ∈ Ku is given by

f ′1(z) =
g0(z)

z
(1 + z) and g0(z) =

z
(1 − z)2 ,
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in which case
f ′1(−r) =

1 − r
(1 + r)2 and f ′1(r) =

1 + r
(1 − r)2 .

Clearly (3.2) follows from Lemma 2.7, since Ku ⊂ S. The upper bound in (3.2) is
sharp for f1 ∈ Ku and the lower bound for f2 ∈ Ku, where

f1(z) =
2z

1 − z
+ log(1 − z) and f2(z) =

2z
1 + z

− log(1 + z). �

In the following two integral mean inequalities, the function f1 shows that the orders
of growth as r→ 1 are best possible (see [4, page 96]). However, the inequalities are
not sharp.

Theorem 3.2. Let f ∈ Ku be given by (1.1). Then with z = reiθ ∈ D,∫ 2π

0
| f (z)| dθ ≤ 2π log

1
1 − r

, (3.6)∫ 2π

0
| f ′(z)| dθ ≤

2π
1 − r

. (3.7)

Proof. Write
f ′(z) = h′(z)(1 + ω(z)), (3.8)

for some h ∈ C and some ω ∈ Ω. Integrating (3.8) and using the Schwarz lemma,∫ 2π

0
| f (z)| dθ =

∫ 2π

0

∣∣∣∣∣ ∫ r

0
h′(ρeiθ)[1 + ω(ρeiθ)] dρ

∣∣∣∣∣ dθ
≤

∫ r

0
(1 + ρ)

∫ 2π

0
|h′(ρeiθ)| dθ dρ.

Applying Lemma 2.9 with n = 2 and using Parseval’s theorem,∫ 2π

0
| f (z)| dθ ≤

∫ r

0

∫ 2π

0

1 + ρ

|1 − ρeiθ|2
dθ dρ =

∫ r

0

2π
1 − ρ

dρ = 2π log
1

1 − r
.

This gives (3.6). In order to prove (3.7), we write

f ′(z) =
g(z)

z
(1 + ω(z)), (3.9)

for some g ∈ S∗ and some ω ∈ Ω. Integrating (3.9) and using the Schwarz lemma,∫ 2π

0
| f ′(z)| dθ =

∫ 2π

0

∣∣∣∣∣g(reiθ)
reiθ [1 + ω(reiθ)]

∣∣∣∣∣ dθ ≤ 1 + r
r

∫ 2π

0
|g(reiθ)| dθ.

Applying Lemma 2.8,∫ 2π

0
| f ′(z)| dθ ≤

1 + r
r

∫ 2π

0
|g(reiθ)| dθ ≤

1 + r
r

2πr
1 − r2 =

2π
1 − r

,

which is (3.7). �
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Let C(r, f ) denote the image of the circle |z| = r < 1 under the mapping f and L(r, f )
the length of C(r, f ). We immediately deduce the following corollary.

Corollary 3.3. Let f ∈ Ku. Then with z = reiθ ∈ D,

L(r, f ) =

∫ 2π

0
|z f ′(z)| dθ ≤

2πr
1 − r

.

Theorem 3.4. Let f ∈ Ku. Then with z = reiθ ∈ D,∫ 2π

0
| f ′(z) − h′(z)| dθ ≤

2πr
1 − r2 , (3.10)

where h ∈ C and h′(z) = f ′(z)/(1 + ω(z)) for some ω ∈ Ω. Inequality (3.10) is sharp.

Proof. Write (3.8) as f ′(z) − h′(z) = h′(z)ω(z), with ω ∈ Ω. By the Schwarz lemma,

| f ′(z) − h′(z)| = |h′(z)ω(z)| ≤ |zh′(z)| = |g(z)|, (3.11)

for some g ∈ S∗. Integrating (3.11) and applying Lemma 2.8,∫ 2π

0
| f ′(z) − h′(z)| dθ ≤

∫ 2π

0
|g(z)| dθ =

2πr
1 − r2 .

Choosing h(z) = z/(1 − z) and ω(z) = z, we have f (z) = 2z/(1 − z) + log(1 − z), which
gives equality in (3.10). �

4. Coefficients

Singh [9] was able to use the method of Clunie to obtain sharp coefficient estimates
for functions in S∗u. Since this is not possible in Ku, the problem of extending the
coefficient inequalities in [9] to the class Ku appears not to be straightforward, with
exact bounds not easy to find. We give the following results.

Theorem 4.1. Let f ∈ Ku be given by (1.1). Then

|a2| ≤
3
2
, |a3| ≤

5
3
, |a4| ≤

7.3731 . . .
4

= 1.8443 . . . , |a5| ≤
8
5

+
3

5 3√4
= 1.97 . . . .

The inequalities for |a2| and |a3| are sharp.

Proof. Write
z f ′(z) = g(z)[1 + ω(z)], (4.1)

for some g ∈ S∗ and some ω ∈ Ω. Equating coefficients in (4.1) and using (2.1) and
(2.4) gives

2a2 = b2 + w1, (4.2)
3a3 = b3 + b2w1 + w2, (4.3)
4a4 = b4 + b3w1 + b2w2 + w3, (4.4)
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where |bn| ≤ n and |wn| ≤ 1 for n ≥ 1. Therefore (4.2) gives

2|a2| ≤ |b2| + |w1| ⇒ 2|a2| ≤ 3.

Now write x1 = |w1|, x2 = |w2| and x3 = |w3|. From (4.3),

3|a3| ≤ |b3| + |b2||w1| + |w2|,

so that Lemma 2.1 implies

3|a3| ≤ 3 + 2|w1| + (1 − |w1|
2) ≤ 5,

since 0 ≤ 4 + 2x1 − x2
1 ≤ 5 for x1 ∈ [0, 1].

The bound for |a4| is more complicated. Again from (4.4) and Lemma 2.1,

4|a4| ≤ |b4| + |b3|w1| + |b2||w2| + |w3| ≤ 4 + 3x1 + 2x2 + x3,

and so
0 ≤ x1 ≤ 1, x2 ≤ 1 − x2

1, x3 ≤ 1 − x2
1 − x2

2.

We therefore need to find
max

H
g(x1, x2, x3),

where g(x1, x2, x3) = 4 + 3x1 + 2x2 + x3 and

H = {(x1, x2, x3) : x1 ≤ 1, x2 ≤ 1 − x2
1, x3 ≤ 1 − x2

1 − x2
2}.

It is clear that the maximum over H occurs on the boundary ∂H which we now
consider. If x3 = 1 − x2

1 − x2
2 and x2 = 1 − x2

1, then

g(x1, x2, x3) = 6 + 3x1 − x2
1 − x4

1, 0 ≤ x1 ≤ 1.

Solving this equation (using Wolfram Alpha),

max{6 + 3x1 − x2
1 − x4

1 : 0 ≤ x1 ≤ 1} = 7.3731 . . . at x1 = 0.72808 . . . ,

where

7.3731 . . . =
1
24

{
148 −

968
3
√

54181 + 2259
√

753
+

3
√

54181 + 2259
√

753
}
,

0.72808 . . . =

3
√

27 +
√

753

2
√

39
−

1
3
√

3(27 +
√

753)
.

Hence |a4| ≤
1
4 · 7.3731 . . . = 1.8443 . . . . Applying the same method for a5 gives

5|a5| ≤ 8 +
3
3√4

= 9.889 . . . , that is, |a5| ≤ 1.97 . . . .

The inequalities for a2 and a3 are sharp when

f (z) =
2z

1 − z
+ log(1 − z) = z +

∞∑
n=2

2n − 1
n

zn. �
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Nonsharp bounds for |an| when n ≥ 5 can be obtained by the techniques used in the
proof of Theorem 4.1. However, the analysis becomes more involved as n increases,
and requires computer-aided numerical methods.

Inequalities for the coefficients of close-to-convex functions can exhibit
unpredictable behaviour (compare the solution to the Fekete–Szegö problem [3]). On
the basis of the extremal function for the coefficients a2 and a3 above, the obvious
conjecture is the following, but this may prove not to be correct.

Conjecture 4.2. Let f ∈ Ku be given by (1.1). Then for n ≥ 2,

|an| ≤
2n − 1

n
.

A simple consequence of Corollary 3.3 shows that the coefficients an of functions f
in Ku are bounded. To see this, let f ∈ Ku be given by (1.1). From Corollary 3.3, with
z = reiθ ∈ D,

n|an| ≤
1

2πrn

∫ 2π

0
|z f ′(z)| dθ ≤

1
rn−1(1 − r)

.

Choosing r = 1 − 1/n gives n|an| ≤ n(1 − 1/n)−n and, since (1 − 1/n)−n decreases for
n ≥ 2, we obtain |an| ≤ 4.

5. Fekete–Szegö theorems

Theorem 5.1. Let f ∈ Ku be given by (1.1) and let µ ∈ R.

(1) If µ ≤ 0, then
|a3 − µa2

2| ≤
5
3 −

9
4µ. (5.1)

(2) If 0 ≤ µ ≤ 2/3, then

|a3 − µa2
2| ≤

2(10 − 18µ + 9µ2)
3(4 − 3µ)

.

(3) If 2/3 ≤ µ ≤ 1, then
|a3 − µa2

2| ≤
2
3 . (5.2)

(4) If 1 ≤ µ ≤ 10/9, then

|a3 − µa2
2| ≤

3µ − 5
3(3µ − 4)

. (5.3)

(5) If µ ≥ 10/9, then
|a3 − µa2

2| ≤
9
4µ −

5
3 . (5.4)

Inequalities (5.1), (5.2) and (5.4) are sharp.

Proof. Since f ∈ Ku, we can write

z f ′(z) = g(z)
[ 2p(z)
1 + p(z)

]
, (5.5)
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where p ∈ P and g ∈ S∗. Equating coefficients in (5.5), using (1.2) and (2.4) gives

a3 − µa2
2 =

1
3

(
b3 −

3b2
2µ

4

)
+

b2 p1

12
(2 − 3µ) +

1
6

(
p2 −

p2
1

2

)
−

1
16

p2
1µ, (5.6)

=
1
3

(
b3 −

3b2
2µ

4

)
+

b2 p1

12
(2 − 3µ) +

1
6

(
p2 −

4 + 3µ
8

p2
1

)
. (5.7)

We now treat the five cases in the theorem.

Case 1: µ ≤ 0. We use (5.6) with |p1| = x. From Lemmas 2.4 and 2.5, since |b2| ≤ 2,

|a3 − µa2
2| =

∣∣∣∣∣13
(
b3 −

3b2
2µ

4

)
+

b2 p1

12
(2 − 3µ) +

1
6

(
p2 −

p2
1

2

)
−

1
16

p2
1µ

∣∣∣∣∣
≤

1
3
|3µ − 3| +

1
6
|2 − 3µ|x +

1
6

∣∣∣∣∣2 − x2

2

∣∣∣∣∣ − 1
16

x2µ

=
1
3

(3 − 3µ) +
1
6

(2 − 3µ)x +
1
6

(
2 −

x2

2

)
−

1
16

x2µ, (5.8)

where x ∈ [0, 2]. Since the right-hand side of (5.8) increases with respect to x ∈ [0, 2],

|a3 − µa2
2| ≤

[1
3

(3 − 3µ) +
1
6

(2 − 3µ)x +
1
6

(
2 −

x2

2

)
−

1
16

x2µ
]

x=2
=

5
3
−

9µ
4
.

The result is sharp for b3 = 3, b2 = p1 = p2 = 2 in (5.6), that is, g(z) = z/(1 − z)2,
p(z) = (1 + z)/(1 − z).

Case 2: 0 ≤ µ ≤ 2/3. We again use (5.6) with x = |p1|, which gives

|a3 − µa2
2| ≤

1
3

(3 − 3µ) +
1
6

(2 − 3µ)x +
1
6

(
2 −

x2

2

)
+

1
16

x2µ.

This expression has a maximum value at x = 4(3µ − 2)/(3µ − 4) in [0, 2], so the bound
for 0 ≤ µ ≤ 2/3 follows.

Case 3: 2/3 ≤ µ ≤ 1. Applying (2.5) and (2.6) in (5.7),

|a3 − µa2
2| ≤

1
3

(
1 + (|3µ − 3| − 1)

|b2|
2

4

)
+
|b2 p1|

12
|2 − 3µ|

+
1
6

(
2 +

(∣∣∣∣∣4 + 3µ
4
− 1

∣∣∣∣∣ − 1
)
|p1|

2

2

)
≤

1
3

(
1 −

3µ − 2
4
|b2|

2
)

+
3µ − 2

12
|p1||b2| +

1
6

(
2 −

4 − 3µ
4
|p1|

2

2

)
= −

3µ − 2
12
|b2|

2 +
3µ − 2

12
|p1||b2| −

4 − 3µ
48
|p1|

2 +
2
3

=
3µ − 2

12

(
−y2 + xy −

4 − 3µ
4(3µ − 2)

x2
)

+
2
3
, (5.9)
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where y = |b2| ∈ [0, 2], x = |p1| ∈ [0, 2]. If µ = 2/3, (5.2) follows at once from (5.9).
If µ , 2/3, we divide by 3µ − 2, so that it suffices to show that

F(x, y) = −y2 + xy −
4 − 3µ

4(3µ − 2)
x2 ≤ 0 for 2/3 < µ ≤ 1, y ∈ [0, 2], x ∈ [0, 2].

Since F(x, y) has no critical points in (0, 2) × (0, 2), we only need to check that
F(x, y) ≤ 0 when x = 0 or y = 0, which is trivial, and when x = 2 or y = 2. If x = 2,

F(2, y) = −y2 + 2y −
4 − 3µ
3µ − 2

= −(y − 1)2 −
6(1 − µ)
3µ − 2

≤ 0 when 2/3 < µ ≤ 1,

and if y = 2,

F(x, 2) = −2(2 − x) −
4 − 3µ

4(3µ − 2)
x2 ≤ 0 when 2/3 < µ ≤ 1,

which establishes (5.2). To show the result is sharp we choose b2 = 0, b3 = 1, p1 = 0
and p2 = 2 in (5.7), that is, g(z) = z/(1 − z2), p(z) = (1 + z2)/(1 − z2).

Case 4: 1 ≤ µ ≤ 10/9. Applying (2.5) and (2.6) in (5.7) gives, for all µ ≥ 1,

|a3 − µa2
2| ≤

1
3

(
1 + (|3µ − 3| − 1)

|b2|
2

4

)
+
|b2 p1|

12
|2 − 3µ|

+
1
6

(
2 +

(∣∣∣∣∣4 + 3µ
4
− 1

∣∣∣∣∣ − 1
)
|p1|

2

2

)
≤

1
3

(
1 −

4 − 3µ
4
|b2|

2
)

+
3µ − 2

12
|p1||b2| +

1
6

(
2 −

4 − 3
4
|p1|

2

2

)
= −

4 − 3µ
12
|b2|

2 +
3µ − 2

12
|p1||b2| −

4 − 3µ
48
|p1|

2 +
2
3

=
4 − 3µ

48

(
−4y2 +

4(3µ − 2)
4 − 3µ

xy − x2
)

+
2
3

:= F(x, y),

where y = |b2| ∈ [0, 2], x = |p1| ∈ [0, 2]. Thus to prove (5.3) it suffices to establish that

F(x, y) =
2
3

+
4 − 3µ

48

(
− 4y2 +

4(3µ − 2)
4 − 3µ

xy − x2
)
≤

2
3

+
µ − 1
4 − 3µ

(5.10)

for 1 ≤ µ ≤ 10/9, y ∈ [0, 2] and x ∈ [0, 2].
Again F(x, y) has no critical points in (0, 2) × (0, 2), so we only need to check that

F(x, y) ≤ 0 when x = 0 or y = 0, and when x = 2 or y = 2. It is clear from (5.10) that
in these four cases F(x, y) attains the greatest value when x = 2, and

max
0≤y≤2

F(2, y) =
2
3

+

[4 − 3µ
48

(
− 4y2 +

8(3µ − 2)
4 − 3µ

y − 4
)]

y=(3µ−2)/(4−3µ)

=
2
3

+
µ − 1

4 − 3µ
=

3µ − 5
3(3µ − 4)

.

This gives (5.3).
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Case 5: µ ≥ 10/9. From (5.7) with x = |p1| and y = |b2|,

|a3 − µa2
2| ≤

1
3

(
1 + (3µ − 4)

y2

4

)
+

xy
12

(3µ − 2) +
1
6

(
2 −

x2

2

)
+
µx2

16
:= H(x, y).

Since the only critical point of H(x, y) is at x = y = 0 and H(0, 0) = 2/3, we only need
to check the boundary values of H(x, y) on [0, 2] × [0, 2]. Observe that:

(i) H(0, y) = 1
3 + 1

3 (1 + 1
4 (3µ − 4)y2) ≤ 1

3 (3µ − 2) ≤ 9
4µ −

5
3 when µ ≥ 10

9 and 0 ≤ y ≤ 2;

(ii) H(2, y) = 1
4µ + 1

6 (3µ − 2)y + 1
3 (1 + 1

4 (3µ − 4)y2), which increases on y ∈ [0, 2] and
so again H(2, y) ≤ 9

4µ −
5
3 ;

(iii) H(x, 0) = 2
3 + 1

48 (3m − 4)x2 and H′(x, 0) = 0 when either x = 0 or µ = 4
3 , but

H( 4
3 , 0) = 2

3 ≤
1
4µ −

5
3 so we only need to consider x = 0 and x = 2, where H(0, 0) = 2

3
and H(2, 0) = 1

3 + 1
4µ ≤

9
4µ −

5
3 , giving the result in this case;

(iv) H(x, 2) = 1
3 (3µ − 3) + 1

6 (3µ − 2)x + 1
16µx2 + 1

6 (2 − 1
2 x2) is increasing for x ∈ [0, 2]

when µ ≥ 10
9 and H(2, 2) = 9

4µ −
5
3 , which completes the proof.

The result is sharp on choosing b3 = 3, b2 = p1 = p2 = 2 in (5.8), that is, g(z) =

z/(1 − z)2, p(z) = (1 + z)/(1 − z). �

The following Fekete–Szegö theorem for complex µ is probably not sharp.

Theorem 5.2. Let f ∈ Ku be given by (1.1). For µ ∈ C,

|a3 − µa2
2| ≤

1
3 [max{1, |4µ1 − 3|} + max{1, |2µ2 − 1|} + |2 − 3µ|], (5.11)

where µ1 = 3µ/4 and µ2 = (4 + 3µ)/8.

Proof. From (5.7),

|a3 − µa2
2| ≤

1
3

∣∣∣∣∣b3 −
3µ
4

b2
2

∣∣∣∣∣ +
1
12
|b2 p1||2 − 3µ| +

1
6

∣∣∣∣∣p2 −
4 + 3µ

8
p2

1

∣∣∣∣∣
≤

1
3

∣∣∣∣∣b3 −
3µ
4

b2
2

∣∣∣∣∣ +
1
3
|2 − 3µ| +

1
6

∣∣∣∣∣p2 −
4 + 3µ

8
p2

1

∣∣∣∣∣.
Applying Lemmas 2.3 and 2.5 gives (5.11). �

6. The radius of convexity and starlikeness

A number r0 ∈ [0, 1] is called the radius of convexity of a particular subclass of A
if r0 is the largest number such that Re(1 + z f ′′(z)/ f ′(z)) > 0 for all f in the subclass
and |z| < r0. It was shown in [9] that the radius of convexity for functions in S∗u is
(
√

13 − 3)/2. We now show that when f ∈ Ku, the radius of convexity is 1/3.

Theorem 6.1. The radius of convexity of Ku is 1/3.
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Proof. For f ∈ Ku, we write z f ′(z) = g(z)[1 + ω(z)], for some g ∈ S∗ and some ω ∈ Ω.
Thus

1 +
z f ′′(z)
f ′(z)

=
zg′(z)
g(z)

+
zω′(z)

1 + ω(z)
. (6.1)

It is well known (see [10]), that for g ∈ S∗, with z = reiθ and 0 ≤ r < 1,

Re

{zg′(z)
g(z)

}
≥

1 − r
1 + r

.

Also from the Schwarz lemma, |ω(z)| ≤ |z| = r and from [2, page 77],

|ω′(z)| ≤
1 − |ω(z)|2

1 − |z|2
=

1 − |ω(z)|2

1 − r2 . (6.2)

Thus from (6.1), for z = reiθ and 0 ≤ r < 1,

Re

{
1 +

z f ′′(z)
f ′(z)

}
≥ Re

{zg′(z)
g(z)

}
−

∣∣∣∣∣ zω′(z)
1 + ω(z)

∣∣∣∣∣
≥

1 − r
1 + r

−
r

1 − |ω(z)|
|ω′(z)|

≥
1 − r
1 + r

−
r

1 − |ω(z)|
1 − |ω(z)|2

1 − r2

=
1 − r
1 + r

−
r(1 + |ω(z)|)

1 − r2

≥
1 − r
1 + r

−
r(1 + r)
1 − r2 =

1 − 3r
1 − r2 > 0,

when r ∈ [0, 1/3). Thus the radius of convexity for the class Ku is at least 1/3.
To see that this is the largest such radius, consider f0 ∈ Ku at the point z = −r where

f0 is defined by f ′0(z) = (1 + z)/((1 − z)2. �

A number r0 ∈ [0, 1] is called the radius of starlikeness of a particular subclass of
functions inA if r0 is the largest number such that Re(z f ′(z)/ f (z)) > 0 for all f in that
subclass and |z| < r0.

Theorem 6.2. The radius of starlikeness of Ku is not smaller than
√

2 − 1.

Proof. For f ∈ Ku,
f ′(z)
g′(z)

≺ 1 + z =: h(z), (6.3)

for some g ∈ C and where h is convex and univalent. Write p(z) = f (z)/g(z) and P(z) =

g(z)/zg′(z). Since g ∈ C, (6.3) becomes p(z) + P(z) · zp′(z) ≺ h(z), where Re(P(z)) > 0
for z ∈ D. Thus from Lemma 2.10,

f (z)
g(z)

= 1 + ω(z),
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for some g ∈ C and some ω ∈ Ω. This gives

z f ′(z)
f (z)

=
zg′(z)
g(z)

+
zω′(z)
1 + ω

.

It is well known that if g ∈ C, with z = reiθ, 0 ≤ r < 1, then

Re

{zg′(z)
g(z)

}
≥

1
1 + r

.

Again using the Schwarz lemma and (6.2), we obtain

Re

{z f ′(z)
f (z)

}
≥ Re

{zg′(z)
g(z)

}
−

∣∣∣∣∣ zω′(z)
1 + ω(z)

∣∣∣∣∣ ≥ 1
1 + r

−
r

1 − |ω(z)|
|ω′(z)|

≥
1

1 + r
−

r
1 − |ω(z)|

1 − |ω(z)|2

1 − r2 =
1

1 + r
−

r(1 + |ω(z)|)
1 − r2

≥
1

1 + r
−

r(1 + r)
1 − r2 =

1 − 2r − r2

1 − r2 > 0

when r ∈ [0,
√

2 − 1). Thus the radius of starlikeness of Ku is at least
√

2 − 1. �
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