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1. Introduction. Much work has been carried out on the classification of finite simple
groups in terms of the structures of centralisers of involutions. However, it is sometimes the
case that these classification results cannot be applied to particular problems even although
information is available about one conjugacy class of involutions. The trouble is that informa-
tion about the other classes can be almost non-existent. In this paper we deal with a situation
where character theory can be employed to give a strong connection between the orders of
centralisers of different classes of involutions, enabling information about one class to be used
to give information about other classes. .We prove the following result.

THEOREM 1. Let G be a finite non-abelian simple group. Suppose that d is an element of G of
order 3 such that iv~c«rf» is dihedral. Then:

(a) every involution of G is conjugate to an involution inverting d;
(b) if | CG(d) | is odd, G has one conjugacy class of involutions;
(c) //1 CG(d) | is even, G has at most two conjugacy classes of involutions;
(d) ; / a and x are representatives of different conjugacy classes of involutions, then

| CG(a) | /1 CG(T) I £ 2 or I CG{a) | /1 CC(T) | = (2t+1)11 for some positive integer t.

REMARKS. 1. Note that part (d) implies that | CG{a) | /1 CC(T) | g 3. Interchanging a and x,
we also obtain: i ^ | CG(CT) | /1 CG(x) | g 3.

2. Part (b) is already well known and is due to Brauer.
3. In Section 5 of this paper we discuss ways in which the hypotheses of Theorem 1 can

be weakened.

NOTATION. We use the standard group theory notation of Gorenstein's book [2]; we will
also adopt the convention of writing N(H) and C(H) for NG(H) and CG(H). For character
theory we will refer to Dornhoff's book [1] and, following G. Higman [3], for x,y,zeGv/e let

I C(x) || C(y)|̂

where the summation is taken over a complete set of inequivalent ordinary irreducible characters
X of G. #(x'y' = z) is the number of ways z can be written as a conjugate of JC times a
conjugate of y. If B is a block of G, # (x' y' = z)B will denote the same formula as above except
that the summation is restricted to characters in B.

Let G and d satisfy the hypotheses of Theorem 1. Let N = N((d}), H= C(d), Ho

= O3(H), xeN\H, and let b and x generate a Sylow 3-subgroup and a Sylow 2-subgroup of H,
respectively. (Note that we might have x = 1.) Suppose that | b \ = 3m and | x | = 2".

If (j> is an ordinary irreducible character of Ho let E^ = {geN: (j)B(h) = <j>(h) for all
heH0}. Since His abelian, H ^ E^ so that we may let e^ = | E^ : H\. Let (j>0 be the principal
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character of Ho and, when | H\ is even, let <£x be the character of Ho such that | Ho : k e r ^ | = 2
and (t>i(x) = — 1.

Let 0 be a primitive 3m-th root of unity and let Af, i = 1 , . . . , 3m — 1 be the non-principal
irreducible characters of <6> given by kffi) = 6iJ, j = 0 , . . . , 3 m - 1 .

2. Block structure of G. We note first that since N((d)) is dihedral <&> is a Sylow 3-
subgroup of G and that if P is any 3-group containing d then N(P) = N((dy) = JV and

A theorem of Dade (see [1, p. 420]) enables us to determine completely the 3-block structure
of G. For ease of reference, we state those parts of Dade's result which we require.

LEMMA 2.1 (Dade). Let <f> be an ordinary irreducible character of Ho, let e = e^ and let A
be a set of representatives of the equivalence classes of non-principal ordinary irreducible characters
of {b} under the action of E^, so that | A | = (3m -1)1 e.

Then there is a 1-1 correspondence between 3-blocks of G with defect m and equivalence
classes of ordinary irreducible characters of Ho under the action of N and, if B is the block
associated with the class containing <j>:

(a) B contains e irreducible Brauer characters il/i,\J/2, ••-, tye
 and e + ( 3 m — l ) / e ordinary

irreducible characters XuX2>-->Xe ( ' ^ e "non-exceptional" characters) and {%x:XeA} (the
" exceptional" characters); e

(b) if notation is chosen so that x= £ dx $ix on Z'-elements then

(i) all decomposition numbers in B are 0 or I,
(ii) dXXt i is independent of X,
(iii) ifdx^ i = 0 then dXh, = I for exactly two values ofje { 1 , . . . , e] andifdXx< t = 1 then

dXJii=l for exactly one value of je{l,..., e} (in particular if e = 1 then

(c) there exist 80,8U ..., 8e,y0,yu ..., y3m-u each equal to ±\, such that the generalised
decomposition numbers are given by the following formulae (where zeN):

M _do7j ^ •

LEMMA 2.2. If<j> is an ordinary irreducible character ofH0 then e$ = 1 except when <j) = <j)0

or <f> = (j>! (and then e$ = 2).

Proof. Since H is abelian, 4>h = <f> and $** =<j>x for all heH. Thus e^ =2 if and only if
(t> = <j>r. But 4> = <t? if and only if (j)(h) = 4>(x~1hx) =^>(h~l) for all heH0, i.e. if and only if
4>(h2) = 1 for all heH0 (since $ is linear), i.e. if and only if h1 is in the kernel of (j> for all
h e Ho. The lemma follows immediately.

LEMMA 2.3. Let <j> be an ordinary irreducible character ofH0, where (j> ^ #o> 0i> and & B
be the block ofG with defect group <6> associated with <j>. Then:
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(a) B contains 3m ordinary irreducible characters, %•„ i = 0 , . . . , 3 m - 1 , say,
(b) x,(fc) is independent of i, for any 3'-element k,
(c) the notation can be chosen so that for all heH0 Xi(bjh) =

_/" = !, , 3m— 1, where e = +1 and e is independent ofi and h {but not necessarily off).

Proof. By Lemma 2.2, e$ = 1 and E$ = H. By Lemma 2.1, parts (a) and (b), parts (a) and
(b) of this lemma are clear. Choosing notation so that Xo ' s the non-exceptional character,
X^tih) = E*(<t>(h) + (j>\h)) for some e* = ± 1, by Lemma 2.1, part (c). We can also choose
notation so that there exists e = ± 1 such that

for all / i6 / / 0 and,/e { 1 , . . . , 3 m -1} .
Thus all that remains to be proved is that e* = e. Since 9 is a primitive 3m-th root of

3---1 / 3 m - l . \
unity, YJ fl0 = ~ 1 • B u t t n e columns 1 and b1 must be orthogonal I i.e. J] xl\)hQ>') = 0 j .

(=1 3 m - l \ i=0 /
By part (b), X;(l) is independent of i. Therefore £ Xi(bJ) = 0, which gives e* = £.

i 0
i = 0

LEMMA 2.4. If(j)1 exists, let B^ be the block ofG with defect group (by associated with $!.
Then Bt has i(3m +1) ordinary irreducible characters £,, £p, d, i = 1,2 ^(3m - 1 ) such that the

following is a fragment of the character table ofG:

1 k bJh

h

where at ^ >9X, ctuflua.k,flk are constants, et anrfe2 {which are independent of h andk but not
necessarily ofj) are ± 1, k is a 3'-element and heH0.

Proof. By Lemma 2.2, <pt = 0 / , e^ = 2 and £^, = JV. By Lemma 2.1, part (a), we may
let Ca>Cp be the non-exceptional characters and Ci, »'= 1, •••. i(3m—1) be the exceptional
characters. From Lemma 2.1, part (c), the rows of the character table corresponding to £„ and
Cp are as stated in the lemma. By Lemma 2.1, part(b), the value of f, on 3'-elements is indepen-
dent of i and by part (c) we may choose e** = ± l , e * * independent of /, such that
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£** /

= 7771
|" | V

noting that, since E^ = N,{Xt:i=l,..., i(3m— 1)} is a set ofrepresentatives of the equivalence
classes of non-principal ordinary irreducible characters of <6> under the action of E^^

Orthogonality of the columns 1 and V now gives e1a1 + e2j?1 — e**C;(l) = 0 since f;(l) is
independent of /. Thus e^a.^ +^ = £2e**Ci(l). Since a t g Pi and Ci(l) > 0, s2 = e** and
CiO) = ei£2ai +^i- Orthogonality of the columns k and bJ enables the remaining entries to be
rilled in.

LEMMA 2.5. Bo, the principal block of G, has i(3m + l) ordinary irreducible characters
%, Oy, O;, i = 1,2,..., i(3m - 1 ) such that the following is a fragment of the character table ofG:

1 Vh

y*+e3

where yltyk are constants, e3 (which is independent of h andk but not necessarily of j) is ±l,kis a
y-element andheH0.

Proof. The lemma follows immediately from the proof of Lemma 2.4 since Bo is the
block corresponding to <j>Q.

3. Conjugacy of involutions. We will now use the information obtained in Section 2 to
prove Theorem 1, parts (a), (b) and (c).

LEMMA 3.1. Let k and I be involutions ofG,he Ho andj be such that b* = d. Then we have
the following table.

3-Block B

Bo
G

I C(k) 1

\C(k)\\C(l)
7.!/

0

r = dh

(?i-V

Vi(>

)B

£2«l+i?l)
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Proof. If B is a block of G which does not have defect group <6> then, since the defect
group of a block is an intersection of Sylow subgroups, B has defect zero. So all characters of
B take value 0 on 3-singular elements. Thus #(k'l' = dh)B = 0. 3m_!

If5isablockofthetypedealtwithinLemma2.3, #(kT = dh)B = 0 since £ 6iJ = - 1 .
The contributions from Bo and Bt follow from Lemmas 2.4 and 2.5. 1=1

LEMMA 3.2. Let k be any involution ofG. Then k is conjugate to an involution inverting d.

Proof. If | H| is odd, then 4>l and Bt do not exist and, from Lemma 3.1, #(k'k' = d) =
#(k'k' = d)BoT^ 0 because the simplicity of G forces yk # yt.

If | H\ is even then, noting that 4>i{x) = — 1, we see from Lemma 3.1 that we may write

'=d )= #(k'k'=d)Bo+#(k'k'=d)Bl

and

As remarked above # (fc'fe" = d)Bo ̂  0. Therefore at least one of #(k'k' = d) and
#(k'k' = dx) is non-zero.

So in all cases k has two conjugates which generate a dihedral group containing d, i.e. some
conjugate of k inverts d.

LEMMA 3.3. If \ H | is odd, G has one conjugacy class of involutions; if\H\ is even, G has at
most two classes of involutions.

Proof. iV*«d» is dihedral and therefore has one conjugacy class of involutions inverting d
if | H| is odd and two such classes if | H\ is even. The lemma now follows from Lemma 3.2.

4. The case when G has two classes of involutions. In this section we prove part (d) of
Theorem 1. Suppose that G has two classes of involutions. By Lemma 3.3 | H\ is even and we
may choose our notation so that T is a representative of any specified class. Then xt is a
representative of the other class. Let a = xx.

LEMMA 4.1. # {a'a' = d) = # {a'x' = dx) = \\H \

and

# ( f f V = d)= # {a' a' = dx) = 0.

Proof. Since all involutions of a dihedral group of order 6 are conjugate, # {a' x' = d) = 0.
N«x, x})nN«d» = <X,T> so that N contains |iV|/2n+1 = |#| /2" Sylow 2-subgroups

(all containing x). Since a dihedral group of order 3.2n+1 contains 3 Sylow 2-subgroups, Nhas
|#|/3.2" dihedral subgroups of order 3.2n+1 (all containing dx).

In the dihedral group <rf,x,T> of order 3.2"+1 the only ordered pairs (k, I) of involutions
with kl = dx are given by k = (dx)'x and / = {dx)l~lx, 0 g i g 3.2"-1. Since for ally, (dx)2Jx is
conjugate to T and (dx)2J+1x is conjugate to xx, it follows that the contributions to #(o'o~' =
dx) and #(a' x' = dx) are 0 and 3.2"~* respectively. So #(a' a = dx) = 0 and #(a' x' = dx)
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Now <rf, x, T> contains 2" dihedral subgroups of order 6, namely (d, (<£C)'T>, 0 ^ i ^ 3.2" - 1 .
Of these 2"~x have involutions conjugate to a and 2"~ * have involutions conjugate to T. Thus
N contains 2""1. \H |/3.2" = i | / / | dihedral groups of order 6 with involutions conjugate
to a. Therefore #(a' a' = d) = 3 . £ | H\ = i | H|, as required.

LEMMA 4.2. | C(er) | /1 C(t) | = (yt -y,) / ( y i -y t ) .

Proo/. By Lemmas 3.1 and 4.1, since 4>i(.x) = —1»

i | H | = i [ # (ff a = d)] + i [ # (ff a =

and
} | tf | = i [ # (ff'T* - d ) ] + i [ # (ffT- = dx]

=

| C(a) || C(T) I'
whence the result.

REMARK. The proof of the next lemma is the first place where we use in an essential way
the fact that d has order three rather than any odd prime.

LEMMA 4.3. y i - y . ^ . , , . 2e
3

Proof. Let M be the module affording O r (Oy is denned in Lemma 2.5.) Then M is
completely reducible as a <</, r>-module so that we may suppose that d and T are represented by
matrices of the form

r entries
and

respectively, where r\ is a primitive cube root of unity. Clearly | yt | = | $,,(*) | ^ r. Since
fj + f?-1 = - 1 , <!>y(d) = r-X%(l)-r), i.e. r = K*y(l)+2O/d)) = i ( ? 1 + 2e3).

Thus | yr | <; Kyi + 2e3). By considering <</, a> we also obtain | ya \ ̂  Kyi +2e3).
Now 2y t -y f f ^2 |y t | + |y ( T |^y1 + 2e3 so that y j -y , , ^ 2(y1-yt)+2e3. In addition

yt - y t is a positive even integer (because it equals twice the number of times T has - 1 as an
eigenvalue). Thus

y-^- ^ 2 + - ^ - , as required.
yy yy

LEMMA 4.4. | C(a) |/| C(T) | g 2 or \ C(a) |/| C(T) | = (2r+ l)/i/or some positive integer t.
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Proof. By Lemma 4.2 it is sufficient to prove that (yt— yff)/(Vi— yr) ^ 2 or (y1— ya)/
(Vi — Vt) = (2f +1) / ' for some integer /.

Suppose that ()>i—y /̂CVi — yt) > 2. Since (?i—?„)/(?i — ?r) is the ratio of two integers we
may write it in the form 2+(s/f) where s and t are positive integers with no common factor.
From Lemma 4.3 sjt ^ 2e3/(y1 —yt) so that e3 = 1 and s(yi — yt) :g 2?.

Now y1—yx and Vi—yff = (2+Cs/OXVi — }"t) a r e positive even integers. Since s and t have no
common factor, t divides yt —yr. But, from above, s(yx -yt) g 2t. Therefore we either have
s = I (and yt— yT = t or y, — yt = 2/) or J = 2 (andyj — yz = /). In the latter case t is now even
and so 5 and t have 2 as a common factor. This contradiction establishes that s=l, which
proves the lemma.

5. An extension. In Sections 3 and 4 we proved Theorem 1. An examination of this
proof shows that only 2-subgroups and 3-subgroups of G play an important role and that we
have in fact obtained the following slightly stronger result.

THEOREM 2. Let G be a finite non-abelian simple group. Suppose that d is an element ofG of
order 3 such that

(i) C(d) = Hi x H2 where H^ is abelian of order prime to 2 and 3 and H2 is cyclic, and
(ii) #(<</» = C(d) . <t>/or some element x such that x~lhx = h~ifor allheC(d).

Then x2 = 1 and conclusions (a), (b), (c) and (d) of Theorem 1 hold.

(Note that the conclusion that T2 = 1 arises as follows. Certainly | N((d}): C(d) \ = 2
since d has order 3. So x2eC(d). Lemma 3.2 proves that there are involutions inverting d,
whence x2 = 1.)
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