CONJUGACY IN GROUPS WITH DIHEDRAL 3-NORMALISERS
by N. K. DICKSON
(Received 18 March, 1976)

1. Introduction. Much work has been carried out on the classification of finite simple
groups in terms of the structures of centralisers of involutions. However, it is sometimes the
case that these classification results cannot be applied to particular problems even although
information is available about one conjugacy class of involutions. The trouble is that informa-
tion about the other classes can be almost non-existent. In this paper we deal with a situation
where character theory can be employed to give a strong connection between the orders of
centralisers of different classes of involutions, enabling information about one class to be used
to give information about other classes. 'We prove the following result,

THEOREM 1. Let G be a finite non-abelian simple group. Suppose that d is an element of G of
order 3 such that Ng({d)) is dihedral. Then:

(a) every involution of G is conjugate to an involution inverting d;

(b) if | CG(d)I is odd, G has one conjugacy class of involutions;

(c) if | CG(d)| is even, G has at most two conjugacy classes of involutions;

(d) if ¢ and t are representatives of different conjugacy classes of involutions, then
| Cglo) | / | CG(r)| <2or | Ce(o) | / | CG(t)I = (2t+ 1)/t for some positive integer t.

REMARKS. 1. Note that part (d) implies that | Cs(0) |/ | Ce(7) | < 3. Interchangingeandr,
we also obtain: 4 < |Cg(0)|/| Co(r)| £ 3.

2. Part (b) is already well known and is due to Brauer.

3. In Section 5 of this paper we discuss ways in which the hypotheses of Theorem 1 can
be weakened.

NoOTATION. We use the standard group theory notation of Gorenstein’s book [2]; we will

also adopt the convention of writing N(H) and C(H) for Ng(H) and Cz(H). For character
theory we will refer to Dornhoff’s book [1] and, following G. Higman [3], for x, y,ze G we let

|G| zx(x)x(y)@
| C(x) || C»)| A1)

where the summation is taken over a complete set of inequivalent ordinary irreducible characters
x of G. #(x'y" =2z) is the number of ways z can be written as a conjugate of x times a
conjugate of y. If Bis a block of G, #(x"y* = z); will denote the same formula as above except
that the summation is restricted to characters in B.

Let G and d satisfy the hypotheses of Theorem 1. Let N = N(d)), H=C(d), H,
= 0;.(H), e N\H, and let b and x generate a Sylow 3-subgroup and a Sylow 2-subgroup of H,
respectively. (Note that we might have x = 1.) Suppose that || =3"and | x| = 2"

If ¢ is an ordinary irreducible character of Hy let E, = {geN: ¢*(h) = $(h) for all
heH,}. Since H is abelian, H £ E, so that we may let e, = | Ey:H | Let ¢ be the principal

#(x'y =2)=
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character of H and, when | H|is even, let ¢, be the character of H, such that | Hy :ker ¢, | =2
and ¢,(x) = —1.

Let 0 be a primitive 3™-th root of unity and let 4;, i=1,..., 3"—1 be the non-principal
irreducible characters of (b) given by 1,(6") =8, j=0,...,3"~1.

2. Block structure of G. We note first that since N({d)) is ‘dihedral {4) is a Sylow 3-
subgroup of G and that if P is any 3-group containing d then N(P)= N({d}) = N and
C(P)y=Cd)=H.

A theorem of Dade (see [1, p. 420]) enables us to determine completely the 3-block structure
of G. For ease of reference, we state those parts of Dade’s result which we require.

LemMA 2.1 (Dade). Let ¢ be an ordinary irreducible character of H,, let e = ey and let A
be a set of representatives of the equivalence classes of non-principal ordinary irreducible characters
of <b) under the action of E,, so that |A| =(3"=1)/e.

Then there is a 1-1 correspondence between 3-blocks of G with defect m and equivalence

classes of ordinary irreducible characters of H, under the action of N and, if B is the block
associated with the class containing ¢:

(a) B contains e irreducible Brauer characters y,\,, ..., Y. and e+(3™—1)/e ordinary

irreducibIe characters Yy,)z, ..., X, (the * non-exceptional” characters) and {yx,: A€ A} (the
“ exceptional > characters),;

(b) if notation is chosen so that y = Z d, W; on 3'-elements then

(i) all decomposition numbers in B are 0 or 1,
(ii) d,,, ; is independent of 2,
(ii)) ifd,, ,=0thend, ;= 1 forexactly twovalues of je {1, ...,e}andif d,, ; = 1 then
d,.i=1 for exactly one value of je{l,..., e} (in particular if e =1 then
dxz. 1= dxn 1= 1)’.

(c) there exist 84,04, ..., 0o, P0s V15 - - +» Yam—1, €ach equal to x 1, such that the generalised
decomposition numbers are given by the following formulae (where ze N):

dx‘ ¢: = 5,"))1',
doY;
d) =Tt Y AP
o =Tl &,
LemMA 2.2. If ¢ is an ordinary irreducible character of H, then e, = 1 except when ¢ = ¢,
or ¢ = ¢, (and then ey = 2).

Proof. Since H is abelian, ¢" = ¢ and ¢** =¢* for all he H. Thus e, =2 if and only if
¢ =¢*. But ¢ = ¢* if and only if ¢(h) = ¢(z~'ht) =¢(h~") for all he Hy, i.e. if and only if

$(h*) = 1 for all he H, (since ¢ is linear), i.e. if and only if 4 is in the kernel of ¢ for all
he H,. The lemma follows immediately.

LemMA 2.3, Let ¢ be an ordinary irreducible character of Hy, where ¢ # ¢, ¢, and let B
be the block of G with defect group {b) associated with ¢. Then.:
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(a) B contains 3™ ordinary irreducible characters, y;, i = , 3"—1, say,

(b) xik) is independent of i, for any 3'-element k,

(c) the notation can be chosen so that for all he Hy y(b’h) = e[0"¢(h)+ 6 ¢*(h)] for
j=1,...,3"—1, where ¢ = +1 and ¢ is independent of i and h (but not necessarily of j).

Proof. By Lemma2.2,e,=1and E; =H. By Lemma 2.1, parts (a) and (b), parts (a) and
(b) of this lemma are clear. Choosing notation so that y, is the non-exceptional character,
xo(&’'h) = e*(¢p(h) + ¢*(h)) for some e* = + 1, by Lemma 2.1, part (c). We can also choose
notation so that there exists ¢ = +1 such that

1(bih) = I_Ij_l [( yz,, zg(bf)) d(h)+ (,ZH Ai‘”(b")> ¢‘(h)]

6' ) p(h 074 ) ¢(h
=i (55
= e[6Y¢(h)+ 67 ¢ (h)]

for all he Hy and je{l,...,3"—1}.
Thus all that remains to be proved is that e* = &. Since 6 is a primitive 3™-th root of

3m—1 3m-t
unity, Z 6"/ = —1. Butthecolumns 1 and b’ mustbeorthogonal(ie Z x(Dx(b%) = 0)

Im—1

By part (b), x«(1) is independent of i. Therefore Z xi(b%) = 0, which glves et =g

LemMA 2.4. If ¢, exists, let B, be the block of G with defect group {b) associated with ¢,.
Then B, has 4(3™ + 1) ordinary irreducible characters {,, {4, {;, i = 1,2, ..., $(3™ — 1) such that the
following is a fragment of the character table of G:

1 k b'h
e oy Oy &10,(h)
s B, Bx &201(h)
& 1820 + B4 €16, + By €20, (A)(0V +67)

where o, < B, o, By, %, B, are constants, ¢, and ¢, (which are independent of h and k but not
necessarily of j) are +1, k is a 3'-element and he H,.

Proof. By Lemma2.2, ¢, = ¢, ey, =2and E; = N. By Lemma 2.1, part (a), we may
let {,,{; be the non-exceptional characters and {;, i=1,...,3(3"—1) be the exceptional
characters. From Lemma 2.1, part (c), the rows of the character table corresponding to {, and
{sare as stated in the lemma. By Lemma 2.1, part(b), the value of {; on 3'-elements is indepen-
dent of i and by part (c) we may choose ¢** = +1, ¢** independent of i, such that
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{(b'h) = | H|<E ly(b’)>¢ (h)

yeH

f—’f—l(z WO+ T w(b’))qsl(h)

& j o hi
W(L TR ))qsl(h)

= e**(07+07")g (),

noting that, since E;,, = N, {A;:i=1, ..., 3(3"— 1)} isaset of representatives of the equivalence
classes of non-principal ordinary irreducible characters of {b) under the action of E,,.

Orthogonality of the columns 1 and 5’ now gives &,a, +¢&,8, —&e**{,(1) = 0 since {(1) is
independent of i. Thus &,6,6, + B, = £,6**{(1). Since a, £ B, and {(1) >0, &, = ¢** and
{i(1) = g6, +B,. Orthogonality of the columns k and &’ enables the remaining entries to be
filled in.

LEMMA 2.5. B, the principal block of G, has (3™ +1) ordinary irreducible characters
Dy, D, D, i=1,2,...,4(3™—1) such that the following is a fragment of the character table of G:

1 k bh
D, 1 1 1
o, 2 Vi )
O, P1+Es netes  &07+07Y)

where y,,y, are constants, ey (which is independent of h and k but not necessarily of j) is +1,k is a
3'-element and he H,.

Proof. The lemma follows immediately from the proof of Lemma 2.4 since Bj is the
block corresponding to ¢,.

3. Conjugacy of involutions. | We will now use the information obtained in Section 2 to
prove Theorem 1, parts (a), (b) and (c).

LemMMA 3.1. Let k and | be involutions of G, he H, and j be such that b = d. Then we have
the following table.

3-Block B #k'1' = dh)g
|G| ( =@ =)
[C&)| C(l)l 71(01+€3)

|Gledalh)  (1Bi— B )@ Bi—iBy)
lC(k) " C(I)l a1 Bi(e&z0 + By)

B# By, B, 0
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Proof. If Bis a block of G which does not have defect group (b) then, since the defect
group of a block is an intersection of Sylow subgroups, B has defect zero. So all characters of
B take value 0 on 3-singular elements. Thus # (k"' = dh)z = 0. amey

If Bis a block of the type dealt with in Lemma 2.3, #(k"I" = dh)y = Osince Y 64 = —1.

The contributions from B, and B, follow from Lemmas 2.4 and 2.5. =1

LemMA 3.2. Let k be any involution of G. Then k is conjugate to an involution inverting d.

Proof. If |H|is odd, then ¢, and B, do not exist and, from Lemma 3.1, #(k* k' =d) =
#(k'k* = d)p,# 0 because the simplicity of G forces y, # 7.
If | H | is even then, noting that ¢,(x) = —1, we see from Lemma 3.1 that we may write

#k'k'=d)y=#(k'k ' =d)g,+ # (k'k "= d)g,
and
#k'k’=dx)y=#k'k’=d)g,—#(k'k" = d)s,.
As remarked above # (k'k’ =d)g, # 0. Therefore at least one of #(k'k' =d) and
#(k k" = dx) is non-zero.

So in all cases k has two conjugates which generate a dihedral group contammg d,i.e.some
conjugate of k inverts d.

LemMAa 3.3. If | H | is odd, G has one conjugacy class of involutions; if | H | is even, G has at
most two classes of involutions.

Proof. N({d))is dihedral and therefore has one conjugacy class of involutions inverting d
if | H| is odd and two such classes if | H| is even. The lemma now follows from Lemma 3.2.

4. The case when G has two classes of involutions. In this section we prove part (d) of
Theorem 1. Suppose that G has two classes of involutions. By Lemma 3.3 ! H | is even and we
may choose our notation so that 7 is a representative of any specified class. Then xt is a
representative of the other class. Let ¢ = xt.

LEMMA 4.1. #('0'=d)=#( 1" =dx)=1%|H|
and
#(@' 1 =dy=#(c"6 =dx)=0.

Proof. Since all involutions of a dihedral group of order 6 are conjugate, #(o°'t° =d)=0.

N({x,1))NN({d)) = {x,7) so that N contains [N|/2"** =|H|/2" Sylow 2-subgroups
(all containing x). Since a dihedral group of order 3.2"*! contains 3 Sylow 2-subgroups, N has
| H|/3.2" dihedral subgroups of order 3.2"*! (all containing dx).

In the dihedral group {d, x,t) of order 3.2"*! the only ordered pairs (k, /) of involutions
with kl = dx are given by k = (dx)'t and I = (dx)'"'7,0 £ i < 3.2"—1. Since for all j, (dx)*/z is
conjugate to 7 and (dx)*/*11 is conjugate to xr, it follows that the contributions to #(¢"¢ " =
dx) and #(c" 1" = dx) are 0 and 3.2" ! respectively. So #(¢'¢’ =dx) =0and #(c'1’ = dx)
=321 |H|3.2"=1|H|.
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Now {d, x, 7) contains 2" dihedral subgroups of order 6, namely {d, (dx)'t),0 £ i £ 3.2"—-1.
Of these 2"~ ! have involutions conjugate to ¢ and 2"~ ! have involutions conjugate to 7. Thus
N contains 2"~'.| H|/3.2" = 4| H| dihedral groups of order 6 with involutions conjugate
to 6. Therefore #(c" 0" =d)=3.4|H|=1%| H|, as required.

LEMMA 4.2. |C@)|/|C@| = 1 =1)(1 =)
Proof. By Lemmas 3.1 and 4.1, since ¢,(x) = —1,
HH|=3# (06" =d)]+3[# (¢ 0" = dx)]

_ 16l Gi=v)?
IC(O‘)|2 71(y1+¢3)

and
HH|=4[#(c'7 = D]+3[# (¢'7 = dx]

_ 16l i=r)Oi-v)
[C@C@|  7i(r+e3)-

whence the result.

ReEMARK. The proof of the next lemma is the first place where we use in an essential way
the fact that d has order three rather than any odd prime.

LeEMMA 4.3.

?1—)’a§2+ 2¢4 )
P17 Y1— 7

Proof. Let M be the module affording ®,. (@, is defined in Lemma 2.5.) Then M is
completely reducible as a {d, 7)-module so that we may suppose that d and 7 are represented by
matrices of the form

diag(L,1, ..., Lnn™ Y ..., ™Y
[ ——

r entries

01 01
dlag(i-l, +1,..., 1, [1 0], , [1 O])’

respectively, where # is a primitive cube root of unity. Clearly |y,| = |®,(z)| Sr. Since
n+n~t = =1, @(d) = r—H®,(1)—7), i.e. r = HO,(1)+20,(d)) = ¥(y, +2¢;).

Thus |y,| < 3(y,+2¢3). By considering {d, 6> we also obtain |y, | < 3(y, +2¢;).

Now 27,7, < 2|7.| +|7.| £ 71+2e5 so that y,—y, <2(y,—y)+2e;. In addition
¥1—7, is a positive even integer (because it equals twice the number of times 7 has —1 as an
eigenvalue). Thus

and

- 2e .
M7V o900 23 as required.
Y1V Y1— 7

LeMMA 44. | C(0)|/| C(@)| £ 20r | C(0)|/| C(x)| = (2t+1)]t for some positive integer .
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Proof. By Lemma 4.2 it is sufficient to prove that (y, —v,)/(y1—7.) <2 or (y,—7,)/
(y1—7s) = (2t +1)/t for some integer ¢.

Suppose that (y; —y,)/(y1 —7.) > 2. Since (y, —7,)/(y1—7.) is the ratio of two integers we
may write it in the form 2+ (s/t) where s and ¢ are positive integers with no common factor.
From Lemma 4.3 s/t < 2¢4/(y, —7,) so that g5 = 1 and s(y, —7y,) < 21.

Now y, —7.and y, —y, = (2+(s/t))(y, —y.) are positive even integers. Since s and 7 have no
common factor, ¢ divides y, —y,. But, from above, s(y, —7,) < 2t. Therefore we either have
s=1(andy,~y,=tory,—y,=2t)ors=2(and y, —y, = ). In thelatter case ¢is now even
and so s and ¢ have 2 as a common factor. This contradiction establishes that s = 1, which
proves the lemma.

S. An extension. In Sections 3 and 4 we proved Theorem 1. An examination of this

proof shows that only 2-subgroups and 3-subgroups of G play an important role and that we
have in fact obtained the following slightly stronger result.

THEOREM 2. Let G be afinite non-abelian simple group. Suppose that dis an element of G of
order 3 such that

(i) C(d) = H, x H, where H, is abelian of order prime to 2 and 3 and H, is cyclic, and
(i) NKd)) = C(d) . {z) for some element © such that v~ *ht = h™? for all he C(d).

Then 1% = 1 and conclusions (a), (b), (c) and (d) of Theorem 1 hold.

(Note that the conclusion that 72 =1 arises as follows. Certainly | N({d)): C(d)| =2

since d has order 3. So 72e€C(d). Lemma 3.2 proves that there are involutions inverting d,
whence 12 = 1.)
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