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Abstract. Rings in which each right ideal is quasi-continuous (right 7-rings)
are shown to be a direct sum of semisimple artinian square full ring and a right
square free ring. Among other results it is also shown that (i) a nonlocal right con-
tinuous indecomposable right n-ring is either simple artinian or a ring of matrices of
a certain type, and (ii) an indecomposable non-local right continuous ring is both a
right and a left 7-ring if and only if it is a right q-ring. In particular, a non local
indecomposable right q-ring is a left g-ring.

0. Introduction. Rings for which every right ideal is quasi-injective (known as
right g-rings) have been studied by several authors (c.f. [4], [5], [6], [7]). The purpose
of our paper is to extend this line of research by studying rings in which every right
ideal is quasi-continuous (right s-rings). In Section 2 we show that a m-ring is a
direct sum of a semisimple artinian square full ring and a square free ring.

In Section 3 we study right continuous right z-rings. We show that a non-local,
right continuous, indecomposable right z-ring R is either simple artinian or a ring of
matrices of a certain type (Theorem 3.8). We show that an indecomposable, non-
local, right continuous ring R is both a right and a left -ring if and only if R is a
right g-ring (Theorem 3.13). In particular, under these hypotheses, R is a right g-ring
if and only if it is a left ¢g-ring.

1. Definitions and preliminaries. =~ Throughout the paper R will be a ring with
identity and all R-modules will be unital right R-modules, unless otherwise stated.
For modules M, N, the notations N €’ M and N C® M respectively serve to denote
that N is an essential submodule of M and that N is a direct summand of M. By
Z(M), Soc(M) we denote the singular submodule and socle of M, respectively. J(R)
is the Jacobson Radical of R. M (or E(M)) stands for the injective hull of M.
Homz(M, N) stands for the set of R-homomorphisms from M to N. Endg(M) is the
set of R-endomorphisms of M. If N C M, a closure of N in M is a maximal essential
extension of N in M. N is said to be closed in M if N has no proper essential exten-
sion on M. Given right R-modules M and N, M is said to be N-injective iff for any
K C N, every @ € Hompg(K, M) is the restriction of some 8 € Homg(N, M).

For a module M we consider the following conditions.

(Cy) For every submodule N of M there exists a summand L of M with N C’ L.

(C,) If a submodule N of M is isomorphic to a summand of M then N itself is a
summand of M.

(C5) If A and B are summands of M with 4 N B =0 the 4 ® Bis a summand of
M.
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A module M is called (quasi-)continuous if it satisfies (C;) and (C3) ((C;) and
(C3)). A module M is called a CS (or extending) module if it satisfies (C)).
Equivalently, M is a CS module if every closed submodule of M is a direct sum-
mand of M.

It is well known that a module M is quasi-continuous if and only if eM C M for
every idempotent e € End(M) if and only if every decomposition E(M) = @, E;
induces M = ®;c;(M N E;) [10, 2.8].

DErFINITION 1.1. A ring R is said to be a right (f)m-ring if every (finitely gener-
ated) right ideal in R is quasi-continuous.

REMARK 1.2. A right uniform ring is a right (f)m-ring.

The following Lemma is a particular case of [9, Proposition 2.6.]. This may
already be known but we have not found it anywhere in the literature.

LEMMA 1.3. 4 right R-module M is quasi-continuous if and only if M satisfies
condition (Cy) and, whenever M = A & B, A and B are mutually injective.

Proof. The ‘only if” part is well known (see Lemma 1.7 below). For complete-
ness, we include here the proof of the other implication.

Let M = E, ® E,. We want to show that M = A ® B where A = E; N M and
B=E,NM. Since A4 is closed in M and M satisfies (C;), M = A& X for some
X C M. Let w4 and my be the corresponding projection maps. Then B = 7x(B) C X.
Define o :mwy(B) > A by a(ny(b)) = m4(b). The map o is well-defined since
Ty . B — my(B) is an isomorphism. But A is X-injective, so « extends to f: X — A.
Let X* = {x+,3(x) | x € X}. Then M = A ® X*. Also B C’ X* and B is closed. This
implies that B = X* and, consequently, M = A & B. []

Lemma 1.3 has the following immediate consequence, an intrinsic characteriza-
tion of (f)m-rings:

THEOREM 1.4. A right ring R is a right (f)m-ring if and only if every (finitely
generated) right ideal of R satisfies (Cy) and, whenever A and B are right ideals of R
with AN B =0, A and B are mutually injective.

Proof. Immediate from Lemma 1.3. []

We list below some well known results that will be used frequently.
Theorem 1.4 may be strengthened by observing that in order to check if a ring R
is right (f)7, it suffices to concentrate on the essential right ideals.

THEOREM 1.5. For a ring R the following conditions are equivalent:

(1) R is aright (f)m-ring,

(2) every essential (finitely generated) right ideal of R is quasi-continuous,

(3) every essential (finitely generated) right ideal satisfies (Cy) and, whenever
A and B are right ideals such that A® B C' R, A and B are mutually
injective.
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Proof. 1t follows from the above characterizations of (f)m-rings since, when R
satisfies (C1), every (finitely generated) right ideal is a direct summand of a (finitely
generated) essential right ideal. []

LEMMA 1.6. Let M and N be two right R-modules. Then M is N-injective iff for
any @ € Homg(N, M), Ima C M.

Proof. See [10, 1.13]. [J

LeMMA 1.7. If M = @ M; then M is quasi-continuous iff each M; is quasi-con-
tinuous and M; is M- injective for all i # j.

Proof. See [10, 2.14]. [7J

Lemma 1.8. 4 right quasi-continuous ring R is right continuous iff J(R) = Z(R)
and R/J(R) is a regular ring.

Proof. See [10, 3.15]. [
LEmMMA 1.9. In a right quasi-continuous ring the idempotents modulo Z(R) can be lifted.
Proof. See [10, 3.7]. (]

A right module M is called local if M contains a unique maximal submodule. A
ring R is called local ring if the right R-module Ry is local. Let e be an idempotent in
R. Then e is called primitive if the right ideal eR is indecomposable. Furthermore, e
is called local if the ring Endg(eR) is local or equivalently if e/ is the unique maximal
submodule of eR [8, 21.18].

LEmMMA 1.10. A primitive idempotent in a right continuous ring is local.

Proof. Let e be a primitive idempotent in a continuous ring R. Then eRe is a
continuous ring [10, 3.8] and contains no nontrivial idempotents [8, 21.8]. By Lem-
mas 1.7 and 1.8, eRe/eJe is a division ring. It follows that eJe is the maximal right
ideal in eRe and, therefore, ¢ is local [8, 21.9]. O

Local rings have nontrivial idempotents. We see next that the converse also
holds when the ring is continuous.

LemMA 1.11. A4 right continuous ring R is local iff it contains no nontrivial
idempotents.

Proof. Let R be a right continuous ring with no nontrivial idempotents. Then
R/J(R) is a regular ring with no nontrivial idempotents. Hence R/J(R) is a division
ring. It follows that R is a local ring. The converse is trivial. []

Two modules M and N are said to be orthogonal if no submodule of M is

isomorphic to a submodule of N. Let M, X be arbitrary right R-modules and N a
submodule of M. Then M is said to be a square if M =~ X?>. The N is called a square
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root in M if N? is embeddable in M. M is called square free if M contains no square
roots. M is called square full if every submodule of M contains a square root in M.

2. Rings with quasi-continuous right ideals. Right (/)g-rings may be characterized
as those right self-injective rings for which every (finitely generated) essential right
ideal is a two sided ideal [7]. For right (f)m-rings one obtains the following.

PROPOSITION 2.1. 4 ring R is a right (f)m-ring if and only if R is quasi-continuous
and every (finitely generated) essential right ideal is a left S-module, where S is the
subring of R generated by its idempotent elements.

Proof. From Theorem 1.5, in order to check to see if R is an (f)n-ring, it suffices
to check that every (finitely generated) essential right ideal in R is quasi-continuous.
We’'ll show here that a (finitely generated) essential right ideal 7 of a quasi-con-
tinuous ring R is quasi-continuous if and only if it is a left S-module. Our result will
then follow. Let R be a quasi-continuous ring. The subring 7" generated by all the
idempotents of the ring Endz(R) can then be viewed as the subring S generated by
all the idempotents of the ring R. Let 7 be a (finitely generated) essential right ideal
of R. Then, I = TI = SI if and only if  is quasi-continuous. []

LEMMA 2.2. Let A, B be right ideals in a right fr-ring R with AN B =0 and
A = B. Then
(a) every finitely generated right ideal in A or B is injective. Moreover, if R is a
right w-ring then A and B are semisimple and injective, and
(b) the right ideals A and B are nonsingular.

Proof. For the first part (a) we can assume that 4 and B themselves are finitely
generated. By the quasi-continuity of R, there exists an idempotent > = e € R such
that 4 c’ eR Cc® R. The fact that BN eR =0 implies that B is eR-injective. And
A = B = Ais eR-injective. But A4 is also (1 — e)R-injective, therefore A4 is R-injective.
For the second part of (a), assume that R is a 7-ring and 0 # X C A4 then X = a(X)
where o : 4 — Bisa given isomorphism. By a similar argument as above X is injective.
Thus, 4 is semisimple and so is B. Let us now consider (b). Let x be an element of Z(A4).
Since xR is injective, there exists an idempotent ¢ € R such that eR = xR < Z(A).
Since Z(R) contains no nonzero idempotents, it follows that x = 0. ]

LEMMA 2.3. Let A, B be right ideals in a ring Rwith ANB=0. Leta: A — B be
a nonzero homomorphism.
(a) If R is a right m-ring then the image of « is semisimple.
(b) If R is a right fr-ring and B is uniform then the image of « is simple.
(¢c) Let R be a right fr-ring with a non-trivial primitive idempotent e such that
eR(1 —e) #0. Then eR contains a simple right ideal.

Proof. (a) Let L C’ B. Since L & A is quasi-continuous, and « may be viewed as
a:A— L, Ima C L. It follows that Ima C Soc(B).

(b) Let a and x be a nonzero elements in 4 and B respectively. Then
a:A— BC B=xRimplies a(aR) C xR since aR & xR is quasi-continuous. It fol-
lows that Ima C xR. Then 0 # Ima C Soc(B), a simple right R-module.
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(c) Since eR quasi-continuous and indecomposable, ¢R is uniform. Thus, the
result follows from (b). []

Recall that a homogeneous component of an R-module is a complete sum of
mutually isomorphic simple submodules.

LEMMA 2.4. For a right m-ring R, we have the following.

(1) Let A, B be independent right ideals of R with B an epimorphic image of A.
Then B is cyclic.

(2) Let {A}U{B;:i €I} be an independent family of right ideals in R with
@ic1Bi an epimorphic image of A. Then the index set I is finite.

Proof. Let o be a homomorphism from A onto B. There exists an idempotent e
in R such that eR is a closure of 4 in R. As R is a m-ring, o extends to an epi-
morphism from eR onto B. Hence B is cyclic and the proof of (1) follows. The proof
of (2) is immediate from (1). (]

THEOREM 2.5. A right w-ring R has only finitely many nonsimple homogeneous
components and each one of them is injective.

Proof. Let {H, : i € I} be the family of homogeneous components of a right n-
ring R. For each i € [, let S; and T; be minimal right ideals such that H; = [S;] = [T}]
and S;NT; =0. Then there exists an isomorphism ®,;S; = ®;;T;. By Lemma
2.4(2), |I| < co. Hence R has only finitely many non-simple homogeneous compo-
nents. Now let H be a non-simple homogeneous component of R. If H is not finitely
generated then there exist independent submodules A, B of H such that 4 =~ H =~ B.
By Lemma 2.2, 4, B are injective. But then H is finitely generated, a contradiction.
So, H is finitely generated. []

THEOREM 2.6. A right mw-ring is a direct sum of a square full semisimple artinian
ring and a right square free ring.

Proof. Let R be a right nw-ring and H the direct sum of all square full homo-
geneous components of R. By Lemma 2.3, each simple submodule of H is injective,
and by Theorem 2.5, H is injective. Let H = ¢R for some idempotent ¢ € R. Since eR
and (1 —e)R are orthogonal, it follows that (1 —e)Re = 0 = eR(1 — ¢). Hence the
decomposition R = eR ® (1 — e)R is a ring decomposition. Now, suppose (1 — e)R
contains a square. Then there exist right ideals 4, Bin (1 — e¢)R with AN B =0 and
A= B. By Lemma 2.3, 4, B are semisimple. It follows that (1 —e)R contains a
square full homogeneous component, a contradiction. Hence, (1 — ¢)R is square free
and we get the desired decomposition. []

COROLLARY 2.7. An indecomposable ring R containing a square is a right w-ring
iff R is simple Artinian.

PrOPOSITION 2.8. Let R be a right m-ring. Suppose {A;};c; is an independent family

of right ideals in R. If for each i € I there exists a right ideal B; in R that is a homo-
morphic image of A; with A; N\ B; = 0 then I is finite.
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Proof. Suppose I is infinite. In view of Theorem 2.6 we can assume that R is
square free. By Lemma 2.3 we can assume the B; are simple. Since R is a 7-ring, any
homomorphism from A4; onto B; can be extended to a homomorphism from ¢;R to
B;, where ¢;R is a closure of 4; in R and ¢; is an idempotent in R. As R is square free,
using the projectivity of e;R one can assume that B; are independent. Pick an 4;,. By
Lemma 2.4, images of the A; are contained in A4;, for only finitely many i. Pick an A4;,
whose image is not contained in A4;. Again by Lemma 2.4, images of the A4; are
contained in A;, for only finitely many i. Hence there exists an 4;, whose image is
not contained in 4;, @ A;,. Clearly this process is inductive.

Hence there exists an infinite subset 7/ C I such that (®;cyA4;) N (BierB;) = 0.
Now for each i € I', the homomorphisms from A; onto B; induce an epimomorph-
ism from @;cp A; onto @y B;. By Lemma 2.4, [’ is finite, a contradiction. Hence the
proof follows. ]

3. Continuous (f)7-rings. In this section we will study the (f)n-rings that are
continuous. Since, by Lemma 1.9, a continuous ring is local if and only if it contains
no non-trivial idempotents, a continuous, local (f)r-ring is uniform. Conversely, all
right uniform rings are n-rings (Remark 1.2.). Consequently, from now on, we shall
only consider non-local rings. We completely characterize indecomposable, non-
local, right m-rings that are right continuous. We prove that such rings are either
simple artinian or a certain type of rings of matrices.

LEMMA 3.1. Let R be a right continuous right fr-ring, e a primitive idempotent in
R and o : eR — R a nonzero homomorphism with Ima N eR = 0. Then

(a) Ima is simple;

(b) eR(1 —¢) #0.
In particular, for a right continuous, right f-ring R and primitive idempotent e € R, if
(1 —e)Re # 0 then eR(1 —e) # 0.

Proof. (a). Let @ : ¢eR — R. By Lemma 1.8, ¢R is local and therefore a(eR) is
local. It follows that a(eR) is indecomposable and therefore uniform (a(e)R, being
finitely generated, is quasi-continuous). Thus, by Lemma 2.3(b), Ime is simple.

(b). Let Ima c’ fR. Then, fRNeR = 0 and, therefore, R = (fR® eR) ® L for

. . . . R
some L C R, since R is quasi-continuous. Thus, (1 —¢)R = R =~ fR® L and,
e

therefore, A is embedded in (1 — ¢)R. Hence we can assume that « : eR — (1 — ¢)R.

Assume eR(1 —e¢) = 0. By Lemma 1.8, eRe = ¢R is local ring with its unique
maximal ideal eJ where J = J(R). If eJ =0, eR is simple right R-module and
a(eR) = eR. The inverse of « from eR into a(eR) extends to some nonzero homo-
morphism from (1 — ¢)R to eR, proving our claim. Let x be a nonzero element in eJ.

. . . . . eR
Since eRe is local there exists an eRe-epimorphism S : xeR — —. Furthermore,
. _ . . eJ
since eR = eRe, B is an R-homomorphism as well.

. L R
Since Ima is simple (by (a)), e_J =~ Ima C (1 —e)R. Let y be a nonzero homo-
. R e ,
morphism from C;—J to (1 — e)R. Then yBis a nonzero R-homomorphism from xeR to

(1 — ¢)R. Since R is quasi-continuous, y8 extends to a nonzero R-homomorphism, §
say, from eR to (1 —e)R. But xeR C eJ =Keré (by (a)). This implies that
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0 = 8(xeR) = yB(xeR) = Ima, a contradiction since o % 0. Thus eR(1 —e) # 0 and
the proof follows. []

LEMMA 3.2. Let R be a continuous square free fr-ring with a primitive idempotent
e such that eR(1 — ¢) # 0. Then eRe is a division ring and eR(1 — e) is the only proper
submodule of eR.

Proof. By Lemma 2.3 S = Soc(eR) is non-zero. Since eR is continuous, S is
simple. By Lemma 2.3, we get eR(1—¢)CS. Now let 0£AseS and
0#a:(l —e)R— eR. Clearly, by Lemma 2.3, Ima = S. If se £ 0 then S = seR is a
homomorphic image of ¢R under some f: R — sR given by B(ex) = sex. By the
projectivity of eR there exists a homomorphism y : eR — (1 — ¢)R so that ay = 8.
By Lemma 3.1, Imy is simple. It follows that Imy = S, a contradiction since R is
square free. Hence se = 0 and s € eR(1 — ¢). Consequently, S = eR(1 — ¢). Now, let
J=J(R). Then eJe is the Jacobson radical of eRe. Since R is continuous
J(R) = Z(R) and therefore JS =0. Hence (eJe)S = (eJ)(eS) =eJS =0. Thus,
eJe[eR(1 —e)] =0, and so eJeR = eJeRe C eJe. Hence eJe is an R-submodule of eR.
As S = eR(1 — e) it follows that (eJe) NS = 0. But eR is uniform, so eJe = 0. Thus
eRe is a division ring. Now let 7 C eR. Then S C I (since eR is uniform). It follows
that S C I(1 —e) C eR(1 —e) = S. Hence I(1 — ¢) = S. Furthermore, since le is an
eRe-submodule of eRe, it follows that either e =0 or Ie = eRe. If Ie =0 then
I=11—-¢)=S. If le=ecRe then, since I=1Ie@ Il —¢), it follows that
I=¢Re®eR(1 —e) =eR. Hence S is the only proper submodule of eR. []

THEOREM 3.3. Let R be an indecomposable, non-local, right w-ring. If R is right
continuous then R has essential socle.

Proof. If R contains a square then, by Corollary 2.7, R is simple artinian and we
are done. Assume R is square free. Since R is non-local and indecomposable it con-
tains a nontrivial idempotent f and either fR(1 —f) or (1 —f)Rf is nonzero (by
Lemma 1.9). Therefore, by Lemma 2.3, R has nonzero socle. Let ¢ = ¢ € R with
Soc(R) C’ eR. Suppose e # 1. For any non-zero idempotent g € (1 —e¢)R, since
Soc(gR) =0, (1 — g)Rg # 0 and g is not primitive (Lemmas 2.3, 3.1). Indeed, for any
a:gR— (1 — @R, Ima is semisimple. So a : gR — eR. Furthermore, for any two
non-zero orthogonal idempotents g1, g> € (1 — e)R and non-zero ¢; : g;R — eR, (i =
1, 2), one gets that Ima; N Ima, = 0, for, otherwise, there exists a minimal right ideal
S C eR such that g| R and g> R map onto S. But then by the projectivity of g; R there
exists a non-zero ¢ : g1R — g»R. By Lemma 2.3, Im¢ is semisimple, a contradiction.

Let 1—e=f1+g, a sum of orthogonal non-zero idempotents and
0#a:g1R— eR. Write f| = f> + g2, a sum of non-zero orthogonal idempotents
and 0 # oy : g@2R — eR. Continue like this writing f; = fir1 + gi+1 and considering
0# a1 :gir1R— eR. Then the sum of Ime; is direct and there exists an epi-
morphism « : X, g;R — &L, Ime;. This is a contradiction in view of Lemma 2.4.
Therefore e = 1, proving that Soc(R) ' R. [J

LEMMA 3.4. Let R be a continuous ring. Suppose e is a nonzero idempotent of R.
If, for a,b € R, aR, bR are two non-isomorphic minimal right ideals of R that are
homomorphic images of eR, then there exists a nonzero idempotent f in eR N at such
that f & b, where x* is the right of x in R.
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Proof. As aR and bR are non-isomorphic, there exists a nonzero element x in
eRNat but not in eRNb*. Let R = R/J(R). Then eRe = eRe/ele is regular [10,
3.11]. Hence there exists y € eRe such that Xy is a nonzero idempotent in eRe. Thus
there exists a nonzero idempotent f'in eRe such that f — xy € eJe (Lemmas 1.8, 1.9).
Thus '€ eRNa*. Now, if f € b+, then xy € b*. But, as x — xyx € b*, it follows that
x € b*, a contradiction. Hence, f & b*. [

THEOREM 3.5. Let R be a continuous w-ring. For any two independent right ideals
A and B in R, A has only finitely many simple images in B.

Proof. Let I be an infinite index set such that for each i € 7, S; is a simple image
of Ain B. For ¢ = e € R, let eR be a closure of 4 in R. As R is a 7-ring, each S, is
an image of eR. Let S; = a;R for some a; € R. For i #, i, j € I, there exists, by
Lemma 3.4, a nonzero idempotent /in eR N a;" such that fis not in aiL. One of fR or
(e —f)R maps onto infinitely many a;R, k € I. Denote the one that maps onto
infinitely many a; R’ by g1 R, and the other one by fiR.

Now eR = fiR @ g1 R. Since f ¢ a;" and e — fis not in a;-, it follows that f; R has a
nonzero simple image in B. As R is quasi-continuous and f{R N B =0, (1 — f1)Rf1 # 0.
Now, since g| R has infinitely many simple images in B, repeating the same process we
get idempotents f> and /1, in g; R such that (1 — f5)Rf> # 0 and /i, R has infinitely many
simple images in B. Now eR = (f{ R @ f2R) @ hy R. Continuing this process, we get an
infinite family {/, : n € N} of orthogonal idempotents in R such that (1 — £,)Rf, # 0, a
contradiction to Proposition 2.8. Hence the index set / is finite. []

THEOREM 3.6. 4 continuous, indecomposable, non-local w-ring R has finitely gen-
erated essential socle.

Proof. In view of Theorem 2.6, we can assume that R is square free. By Theorem
3.3, Soc(R) C’ R. Suppose Soc(R) is not finitely generated. Let {S;:i € I} be the
infinite family of minimal right ideals in R. As R is square free, this family is inde-
pendent. For each i € I, let ¢;R be a closure of S;, where ef = ¢; € R. By Proposition
2.8, there are only finitely many simple S, , ..., S;, in R such that (1 —e;)Re;, # 0,
k=1,...,n. We can pick an idempotent ¢ € R such that both ¢R and (1 —¢)R
contain infinitely many minimal right ideals of R.

By Theorem 3.5, both eR and (1 — ¢)R have only finitely many simple images in
each other. Of these simple images, consider only those that are not S, for
k=1,...,n Now, take the closures fR and gR of these simple images of eR and
(1 —¢)R in (1 —¢)R and eR respectively, where f> =fe (1 —¢)R and g> = g € eR.
Since R is quasi-continuous, there exist primitive orthogonal idempotents f1, ..., f],
g1...,&n such that fR = eaf:lﬁR and gR = @ ,g;R. Then fR and gR do not map
outside themselves. Now there exist idempotents /' € (1 — e)R and g’ € eR such that
R=ERDPIZRDP(/RB®f'R=ERDRD(fR®ZR). Since R is a m-ring and
any nonzero image of (1 — ¢)R in eR lie inside gR, any nonzero image of /'R in eR
must lie inside gR. If there is a nonzero homomorphism from /R into fR, composing
with a projection map we’ll get a nonzero homomorphism from f’R onto a simple
right module S in fR. But every simple in fR is an image of eR. As eR is projective, S
would be isomorphic to a simple in f’R. As R is square free, this is a contradiction.
Hence there is no nonzero homomorphism from gR @ /'R into fR & g’R. Symme-
trically, there is no nonzero homomorphism from fR & g'R into gR @ f'R. But, as R is
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indecomposable and /'R and g’ R have infinitely many minimal right ideals, this is a
contradiction. Thus, R must have finitely generated essential socle. []

PROPOSITION 3.7. Let R be an indecomposable, right continuous, right square free
ring. Then R is a right fr-ring with finite uniform right dimension if and only if R is a
right artinian right m-ring.

Proof. Let R be an fr-ring with finite uniform dimension. Then it contains an
independent family of uniform right ideals Ui, ..., U, with @, U; C' R. As R is
quasi-continuous, there exist nonzero idempotents ej,...,e, in R such that
U; C' e;R and R = @'_¢;R. Since each U, is uniform it follows that each ¢;R is pri-
mitive. As R is indecomposable and continuous it follows, by Lemma 3.1 that
¢;R(1 —¢;) # 0. By Lemma 3.2, each ¢;R is artinian. Hence R is artinian. Now, since
R is an fr-ring, it follows that R is a 7-ring.

Conversely, assume that R is a right artinian s-ring. If R is local, then it is uni-
form (Lemma 1.11) and, therefore, has finite uniform dimension. If R is non-local,
then it has finite uniform dimension by Theorem 3.6. Hence the proof follows. []

The right handed version of Theorem 3 in [4] states that a ring R is a non-local
indecomposable right g-ring containing no minimal injective right ideals if and only
if R is isomorphic to a ring of n x n matrices of the form

DV
DV
Mn(Dy V) = bV
N 4
14 D
with D a division ring, V" a null algebra over D with dimpV =dimVp =1 and n > 2.
We will consider next a larger family of rings. Let n > 2 be a natural number. For
ie{l,...,n}, let D; be a division ring. For i € {l,...,n— 1}, let D,-Vi,i+ln,.+l be a
bimodule and let p, Vitp, be a bimodule. For convenience, we will consider here,
when dealing with the subscripts, addition modulo n on the set {1, ..., n} rather than
on {0, ...n — 1} as is customary. We do this since the rows and columns of matrices
are usually labeled by the first set and not the second. So, in particular, n+ 1 =1
and therefore it suffices to say that p, Vi,i+lo,.+, is a bimodule for i=1,...,n. By
M=M,Dy,...,Dp; Via, ..., Vu_1.n, V1) we denote the set of n x n matrices with
(i, i) entry from Dy, (i,i+ 1) entry from V;;1(i = 1...n), and all other entries zero.
It is straight forward to see that M is a ring under the usual matrix addition and
multiplication if one assumes that Vi Vitjq2 =0fori=1,...,n.
In the following theorem we show that, under certain conditions, right z-rings
are precisely those rings of the form

Dy Vi,

Dy Vn

D V-
MDDy, ..., D Vizy oo s Vs Vi) = BT

. anl.n
an Dn
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for which dim( Vi,iHD,.H) =1.

THEOREM 3.8. Let R be an indecomposable, non-local ring. Then the following

conditions are equivalent:

(1) R is right continuous and a right w-ring.

(2) Every right ideal in R is right continuous.

(3) Either R is simple artinian or R is right continuous, square free and there exist
orthogonal primitive idempotents ey, .. .e, in R such that e;Re; # 0 if and only
if either i = j or j — 1(mod n), each e;R has length two and R = &)_,e;R.

(4) R is either simple artinian or isomorphic to a ring of the form

M = Mn(Dl» ey Dn; VIZ’ e Vn—l,m an)

for some natural number n and with entries such that dim(V; ;4 Dm) =1.

(5) R is right continuous and every right ideal in R containing the Soc(R) is two-
sided.

(6) R is right continuous and every essential right ideal in R is two-sided.

Proof. The implications (2) = (1) and (5) = (6) are trivial, and (6) = (1)
following from Proposition 2.1. It remains only to prove the following implications:
(1)=3)= @) = (5 and (1) = (2). Suppose (1) holds. If R contains a square then
R is simple artinian, by Corollary 2.7. Suppose R is square free. By Theorem 3.6, R
has finitely generated nonzero essential socle. Let Sy, ...S, be the minimal right
ideals in R. Let I={1,...,n}. For each i € I, let S; C’ ¢;R, where ¢; is a primitive
idempotent in R. Clearly, R = ®}_,e;R. As R is indecomposable, e;R(1 — ¢;) # 0 for
each i € I (Lemma 3.1). Hence there exists some j # i, j € I such that e;Re; # 0. As R
is square free and ¢;R is projective, e;Re; = 0 for all k # i, j, k € I. Since R is inde-
composable, there must exist some k € I, k # i (unless n = 2) such that e;Re; # 0.
Hence, there exists a permutation ¢ on /= {1,...,n} such that e;Rey; # 0 and
¢(i) £ ifor all i € I. Write ¢ = ¢1¢5 . . . ¢k, a composition of disjoint cycles. Since R
is indecomposable, £k = 1 and ¢ is a cycle. Renumbering if necessary, we can write
o () =i+1,fori=1,...,n—1, and ¢"(1) = 1. Therefore, for each i € I, we may
consider the sequence of homomorphisms ;. :e 1R — ¢;R as follows:
eyR—> e, 1\R—...—> eR—> e R—e¢,R. Now, for each ie{l,...,n—1},
Imo; = S; is simple. Moreover, for each i <j,i,j € {1,...n}, e;Re; # 0 iff i =j or
i=j— 1(mod n). By Lemma 3.2, each ¢;R has length two. Hence we have proved
(1)=(3). Now, assume (3) holds. If R is not simple artinian then, by (3), R is right
continuous and there exist orthogonal primitive idempotents ey, ... e, in R such that
eiRe; # 0 if and only if either i = or i = j(mod n), each ¢;R has length two and
R =@ e;R. By Lemma 3.2, ¢;Re; is a division ring for all i € {1, ...n}. By Lemma
3.2, S; = e;Re;;1. Thus S; can be viewed as a left vector space over ¢;Re; and a right
vector space over e¢;y1Re;y 1. Denote each division ring ¢;Re; by D; and each vector
space e;Reiy1 by Viiy1. We will show that dim(V,;,-HDIH) = 1. Let ¢; be the unit
matrix in M whose only nonzero entry is the (i, i) entry and equals 1. Then
eiM=(0...0D;V;i+10...0) =2 ¢;R. It is easy to check that the proper M-sub-
modules of e; M are precisely (0...0 W;,;+;0...0) where W;,.; is a right D;;;-sub-
space of V;1. Therefore, it is clear that the e;M has no non-trivial summands.
Since e; M, being isomorphic to ¢;R, is quasi-continuous it follows that it is uniform
as a right M-module. Thus, V;;; is uniform as a right D;;;-module. Hence,
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dim(V,-ﬂiHDM) = 1. Finally by defining V; 11 Vit1.i42 =0, i € I, we get the following
matrix representation of R:

Dy Vi,
Dy Vp

D3y Vi
R= @?’zle,-R =

anl,n
I/111 Dn

= Mn(Dl» .. ~Dn; V127 ceey Vn—l,m an)'

This proves (4).

Now, assume (4) holds. If R is simple artinian then (5) holds trivially. Assume R
is square free and isomorphic to the matrix ring M. It is easy to check that the only
proper M-submodules of e; M are (0...0 W;;110...0), where Wy, is a right Dy ;-
subspace of V1. As dim(V,-,iHDM) =1, it is clear that e;M is uniform. It is also
clear that e; M is not isomorphic to any of its proper submodules. It follows that
each e;M is continuous. It is easy to check that Soc(e;M)=(0...0V;;+;0...0).
Therefore, as M is square free, there is no nonzero homomorphism from a
proper right ideal of e; M to a right ideal of e;M for i # j. Hence, for i # j, e;M is
e;M-injective. Hence M is right continuous.

Now, let a, m be two nonzero elements of M. For i =1, ..., n, there exist d;,
A; € D,‘ and Viit1> Wiitl € V,",'_;,_l such that

di vz Ar win
d vy Ay wp
d; v Ay w
a= 3 V34 and m — 3 34
Vn—1,n . . Wup—1n
Vnl dn Wnl An

Fori=1...n—1,defines; = Ai_ld,-Ai, if A; # 0, and §; = 0 otherwise. Define u; ;11 =
Ai‘ld,-w,«,,ur] if A; ;é 0 and Ui+l = 0 otherwise. Define Si = V,‘J.,.]AH_]— W,',,‘+15,'+1 if
A # 0 and s; = diWi,H—l + Viir1 A1 — ‘1’,",'_;,_1(3,‘_;,_1 if A;=0. For i=n, define
Uy = A dywy if A, #0 and s, = v Ay —wad if A, #0, and s, = v A+
d,w, — wéy if A, = 0.

It is straightforward to verify that ma = s + am’, where

0 S1 81 uin
0 s & ux
0 s 83 u
§ = 3 and ' = 3 34
Sn—1 . . Un—1,n
Sn 0 Upl 8/1

Now, as Soc(e;M) = (0...0V;;+10...0), Soc(M) consists of all matrices in M with
zero diagonal. Thus, ma € Soc(M) + aM. Hence every right ideal of M containing
the Soc(M) is two-sided, proving (5).
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Now, suppose (1) holds. Let I be a right ideal of R isomorphic to a summand eR
of R where ¢ = e € R. If e is primitive then, by Lemmas 3.1 and 3.2, eR has only
one proper right ideal S = Soc(eR). Since eR is indecomposable, 7 is indecompo-
sable. Let /R be a closure of 7 in R, where /> = fe R. Then fR is indecomposable
and again, by Lemmas 3.1, 3.2, fR has only one proper right ideal 7= Soc(fR). As
eR is not simple, [ is not simple. Thus, / = fR. Now suppose e is not primitive. As R
is quasi-continuous and has finite uniform dimension (Theorem 3.6), we can write
eR=fiR® ... dfR, where the f; are primitive idempotents. There exist sub-
modules [; of I, i=1,...k, such that I=1, ®...® I; and [; = f;R. By the above
arguments, each 7, is a summand of R. Since R is quasi-continuous, it follows that
I c® R. Hence R is continuous. Thus, (2) holds. [

ExaMmPLE 3.9. In the above Theorem, the left dimension of V; ;1 over D; is not
necessarily 1, as the following example shows.

Let F be any field, F(x) the field of rational functions over F on the variable x.
Let V= F(x) be the F(x)-bimodule with left action of F(x) on V given by
f(x)-g(x) = fix*)g(x) and the right action given by multiplication in F(x). Consider

the ring
Fx) V 0
R= 0 Fx) V
vV 0 Flx

where V2 =0. This ring satisfies all the conditions in Theorem 3.6 but

Let
D1 Vln

M = M;(Dl,u-,Dn; V21s~~' Vn,nflv Vln) =

Vn,n—] Dn

where for i=1...n, D; is a division ring and Vi ; is a D; 1 - D; bimodule. Notice
that, as we did before, when dealing with subscripts we are considering addition
modulo 7z on the set {1, ..., n} rather than on {0, ...,n — 1}.

It is straightforward to see that M’ is a ring under the usual matrix addition and
multiplication if we assume that Vi ; Vi1 =0fori=1...n.

Certainly, there is a symmetric, left-handed version of Theorem 3.8 to char-
acterize left continuous indecomposable left 7 rings in terms of rings of the form
M =MDy, ...,Dp; Vor, ... Viu_i, Vin), as follows.

THEOREM 3.10. Let R be an indecomposable, non-local ring. Then the following
conditions are equivalent:

(1) R is left continuous and a left w-ring;

(2) R is either simple artinian or isomorphic to a ring of the form
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M = M;,(Dl, cees Dn; V21’ ey Vn,nflv Vln)
Jor some natural number n and with entries such that dim( p,,, Viy1,;) = 1.
Proof. Similar to that of Theorem 3.8. []

However, it is important to point out that one can also characterize right con-
tinuous, indecomposable, non-local rings in terms of rings of the form M’, as follows.

THEOREM 3.11. Let R be a right continuous, indecomposable, non-local ring. Then
the following conditions are equivalent:

(1) R is aright m-ring

(2) either R is simple artinian or R is square free and there exist orthogonal pri-
mitive idempotents f1, ..., f, in R such that fiRf; # 0 if and only if either i = j
ori=j+ 1(mod n), each f;R has length two and R = &_,f;R;

(3) either R is simple artinian or R is square free and isomorphic to a ring of the
form

D, Vin
Vor Ds

V: D
M/:Mn(Dlsu-sDns V21~~'; Vn,nfls Vln): 2 V433

I/n,n—l Dn
for some natural number n and dim(Viyy ;, ) = 1.
1

Proof. Suppose (1) holds. Assume R is not simple artinian. By Theorem 3.8, R is
right continuous, square free and there exist orthogonal primitive idempotents
el ...e, in R such that e;Re; # 0 if and only if either i = j or i = j — 1(mod n), each
e;R has length two and R=@®] e;,R. Define fi=e,_;41. Then [fiRf;=
en—it+1Re,—_jy1 # 0if and only if eithern —i+1=n—j+lorn—i+1l=n—j+1-
I(mod n) if and only if either i=j or i=j+ l(mod n). Hence the sequence
eyR—> e, 1R— ... > 3R — ¢R — ¢,R is the same as the sequence fIR —
LR — ... > fuR — fiR. This gives rise to the matrix representation M’ of the ring
R. A proof similar to the proof of Theorem 3.8 will prove the equivalence of all the
statements in Theorem 3.11.

COROLLARY 3.12. If R is indecomposable are non-local, then the condition of being
a right g-ring is equivalent to being a left q-ring.

Proof. A right handed version of [4, Theorem 3] states that an indecomposable,
non-local right g-ring is either simple artinian or a ring of the form

D vV
DV
MH(D7 V) = . . ’
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where D is a division ring and V is a null algebra over D with dim(,V)=1=
dim(Vp). Following the proof of Theorem 3.11, it is easy to check that an
indecomposable, non-local, right ¢g-ring R is either simple artinian or a ring of the
form

< T

M, (D. V) =

with D and V as above. By [4, Theorem 3], M, (D, V) is a left g-ring. []

If the ring R in Theorem 3.8 is both a left and right n-ring, then both the left
and right dimensions of V; 41, over D; and D, respectively, are equal to one and R
is a (two-sided) ¢-ring, as the following Theorem shows:

THEOREM 3.13. Let R be a right continuous, indecomposable, non-local ring. Then
the following conditions are equivalent:

(1) R is aright and left n-ring;

(2) R is a left quasi-continuous right m-ring;

(3) R is either simple artinian or isomorphic to a ring of the form

M = Mn(Dla e -’Dn; Vi, ..., Vn—l.na I/ﬂl)’

for some natural number n and with entries such that dim(V; i1 ’)1+1) =
1 =dim(p, Vi)

(4) R is aright g-ring,

(5) R is aright and a left g-ring.

Proof. Clearly (1) implies (2). Now suppose (2) holds. Then R is a right 7-ring.
By Theorem 3.8(4), R is either simple artinian or of the form M,(D,,...D,;

Vi, .oy Va1, V). If R is simple artinian then (3) holds trivially. Otherwise, every
0

left summand Re; =2 V’B” , where ¢; is the unit matrix e;, has as its only
0
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0

submodules Re; and ‘columns’ of the form | W,_;; | where W,_;; is a D;_;-sub-

0
space of V,_;;. Therefore, Re; is indecomposable and, since it is also left
quasi-continuous, the dimension of V;_;; as left D;_;-space is 1, proving (3). Now,
suppose (3) holds. Let 0 # x € V; ;1. Then V;;y1 = xD;yy = D;x. The assignment
d — d'ifand only if dx = xd’ defines a ring isomorphism between D; and D,, ;. Hence
the D} are all isomorphic and we can view them as a division ring D. It is now easy to
check that the V7 are all isomorphic as well. Hence R is a right ¢-ring [4, Theorem 3],
proving (4). Now (4) = (5) is clear by Corollary 3.12, (5) = (1) is trivial. []
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