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Abstract. Rings in which each right ideal is quasi-continuous (right �-rings)
are shown to be a direct sum of semisimple artinian square full ring and a right
square free ring. Among other results it is also shown that (i) a nonlocal right con-
tinuous indecomposable right �-ring is either simple artinian or a ring of matrices of
a certain type, and (ii) an indecomposable non-local right continuous ring is both a
right and a left �-ring if and only if it is a right q-ring. In particular, a non local
indecomposable right q-ring is a left q-ring.

0. Introduction. Rings for which every right ideal is quasi-injective (known as
right q-rings) have been studied by several authors (c.f. [4], [5], [6], [7]). The purpose
of our paper is to extend this line of research by studying rings in which every right
ideal is quasi-continuous (right �-rings). In Section 2 we show that a �-ring is a
direct sum of a semisimple artinian square full ring and a square free ring.

In Section 3 we study right continuous right �-rings. We show that a non-local,
right continuous, indecomposable right �-ring R is either simple artinian or a ring of
matrices of a certain type (Theorem 3.8). We show that an indecomposable, non-
local, right continuous ring R is both a right and a left �-ring if and only if R is a
right q-ring (Theorem 3.13). In particular, under these hypotheses, R is a right q-ring
if and only if it is a left q-ring.

1. De®nitions and preliminaries. Throughout the paper R will be a ring with
identity and all R-modules will be unital right R-modules, unless otherwise stated.
For modules M, N, the notations N �0 M and N �� M respectively serve to denote
that N is an essential submodule of M and that N is a direct summand of M. By
Z�M�, Soc�M� we denote the singular submodule and socle of M, respectively. J�R�
is the Jacobson Radical of R. M̂ (or E�M�) stands for the injective hull of M.
HomR�M;N� stands for the set of R-homomorphisms from M to N. EndR�M� is the
set of R-endomorphisms of M. If N �M, a closure of N in M is a maximal essential
extension of N in M. N is said to be closed in M if N has no proper essential exten-
sion on M. Given right R-modules M and N, M is said to be N-injective i� for any
K � N, every � 2 HomR�K;M� is the restriction of some � 2 HomR�N;M�.

For a module M we consider the following conditions.

�C1� For every submodule N of M there exists a summand L of M with N �0 L.
�C2� If a submodule N of M is isomorphic to a summand of M then N itself is a

summand of M.
�C3� If A and B are summands of M with A \ B � 0 the A� B is a summand of

M.
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A module M is called (quasi-)continuous if it satis®es �C1� and �C2� (�C1� and
�C3�). A module M is called a CS (or extending) module if it satis®es �C1�.
Equivalently, M is a CS module if every closed submodule of M is a direct sum-
mand of M.

It is well known that a module M is quasi-continuous if and only if eM �M for
every idempotent e 2 End�M̂� if and only if every decomposition E�M� � �i2IEi

induces M � �i2I�M \ Ei� [10, 2.8].

Definition 1.1. A ring R is said to be a right � f ��-ring if every (®nitely gener-
ated) right ideal in R is quasi-continuous.

Remark 1.2. A right uniform ring is a right � f ��-ring.

The following Lemma is a particular case of [9, Proposition 2.6.]. This may
already be known but we have not found it anywhere in the literature.

Lemma 1.3. A right R-module M is quasi-continuous if and only if M satis®es
condition �C1� and, whenever M � A� B, A and B are mutually injective.

Proof. The `only if' part is well known (see Lemma 1.7 below). For complete-
ness, we include here the proof of the other implication.

Let M̂ � E1 � E2. We want to show that M � A� B where A � E1 \M and
B � E2 \M. Since A is closed in M and M satis®es �C1�, M � A� X for some
X �M. Let �A and �X be the corresponding projection maps. Then B � �X�B� � X.
De®ne � : �X�B� ! A by ���X�b�� � �A�b�. The map � is well-de®ned since
�X : B! �X�B� is an isomorphism. But A is X-injective, so � extends to � : X! A.
Let X� � x� ��x� j x 2 X

� 	
. Then M � A� X�. Also B �0 X� and B is closed. This

implies that B � X� and, consequently, M � A� B. &

Lemma 1.3 has the following immediate consequence, an intrinsic characteriza-
tion of � f ��-rings:

Theorem 1.4. A right ring R is a right � f ��-ring if and only if every (®nitely
generated) right ideal of R satis®es �C1� and, whenever A and B are right ideals of R
with A \ B � 0, A and B are mutually injective.

Proof. Immediate from Lemma 1.3. &

We list below some well known results that will be used frequently.
Theorem 1.4 may be strengthened by observing that in order to check if a ring R

is right � f ��, it su�ces to concentrate on the essential right ideals.

Theorem 1.5. For a ring R the following conditions are equivalent:

(1) R is a right � f ��-ring,
(2) every essential (®nitely generated) right ideal of R is quasi-continuous,
(3) every essential (®nitely generated) right ideal satis®es �C1� and, whenever

A and B are right ideals such that A� B �0 R, A and B are mutually
injective.
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Proof. It follows from the above characterizations of � f ��-rings since, when R
satis®es �C1�, every (®nitely generated) right ideal is a direct summand of a (®nitely
generated) essential right ideal. &

Lemma 1.6. Let M and N be two right R-modules. Then M is N-injective i� for
any � 2 HomR�N; M̂�, Im� �M.

Proof. See [10, 1.13]. &

Lemma 1.7. If M � �n
i�1Mi then M is quasi-continuous i� each Mi is quasi-con-

tinuous and Mi is Mj- injective for all i 6� j.

Proof. See [10, 2.14]. &

Lemma 1.8. A right quasi-continuous ring R is right continuous i� J�R� � Z�R�
and R=J�R� is a regular ring.

Proof. See [10, 3.15]. &

Lemma 1.9. In a right quasi-continuous ring the idempotents modulo Z�R� can be lifted.

Proof. See [10, 3.7]. &

A right module M is called local if M contains a unique maximal submodule. A
ring R is called local ring if the right R-module RR is local. Let e be an idempotent in
R. Then e is called primitive if the right ideal eR is indecomposable. Furthermore, e
is called local if the ring EndR�eR� is local or equivalently if eJ is the unique maximal
submodule of eR [8, 21.18].

Lemma 1.10. A primitive idempotent in a right continuous ring is local.

Proof. Let e be a primitive idempotent in a continuous ring R. Then eRe is a
continuous ring [10, 3.8] and contains no nontrivial idempotents [8, 21.8]. By Lem-
mas 1.7 and 1.8, eRe=eJe is a division ring. It follows that eJe is the maximal right
ideal in eRe and, therefore, e is local [8, 21.9]. &

Local rings have nontrivial idempotents. We see next that the converse also
holds when the ring is continuous.

Lemma 1.11. A right continuous ring R is local i� it contains no nontrivial
idempotents.

Proof. Let R be a right continuous ring with no nontrivial idempotents. Then
R=J�R� is a regular ring with no nontrivial idempotents. Hence R=J�R� is a division
ring. It follows that R is a local ring. The converse is trivial. &

Two modules M and N are said to be orthogonal if no submodule of M is
isomorphic to a submodule of N. Let M;X be arbitrary right R-modules and N a
submodule of M. Then M is said to be a square if M � X2. The N is called a square
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root in M if N2 is embeddable in M. M is called square free if M contains no square
roots. M is called square full if every submodule of M contains a square root in M.

2. Rings with quasi-continuous right ideals. Right � f �q-ringsmay be characterized
as those right self-injective rings for which every (®nitely generated) essential right
ideal is a two sided ideal [7]. For right � f ��-rings one obtains the following.

Proposition 2.1. A ring R is a right � f ��-ring if and only if R is quasi-continuous
and every (®nitely generated) essential right ideal is a left S-module, where S is the
subring of R generated by its idempotent elements.

Proof. From Theorem 1.5, in order to check to see if R is an � f ��-ring, it su�ces
to check that every (®nitely generated) essential right ideal in R is quasi-continuous.
We'll show here that a (®nitely generated) essential right ideal I of a quasi-con-
tinuous ring R is quasi-continuous if and only if it is a left S-module. Our result will
then follow. Let R be a quasi-continuous ring. The subring T generated by all the
idempotents of the ring EndR�R̂� can then be viewed as the subring S generated by
all the idempotents of the ring R. Let I be a (®nitely generated) essential right ideal
of R. Then, I � TI � SI if and only if I is quasi-continuous. &

Lemma 2.2. Let A, B be right ideals in a right f�-ring R with A \ B � 0 and
A � B. Then

(a) every ®nitely generated right ideal in A or B is injective. Moreover, if R is a
right �-ring then A and B are semisimple and injective, and

(b) the right ideals A and B are nonsingular.

Proof. For the ®rst part (a) we can assume that A and B themselves are ®nitely
generated. By the quasi-continuity of R, there exists an idempotent e2 � e 2 R such
that A �0 eR �� R. The fact that B \ eR � 0 implies that B is eR-injective. And
A � B) A is eR-injective. But A is also �1ÿ e�R-injective, therefore A is R-injective.
For the second part of (a), assume that R is a �-ring and 0 6� X � A then X � ��X�
where � : A! B is a given isomorphism. By a similar argument as aboveX is injective.
Thus,A is semisimple and so isB. Let us now consider (b). Let x be an element ofZ�A�.
Since xR is injective, there exists an idempotent e 2 R such that eR � xR < Z�A�.
Since Z�R� contains no nonzero idempotents, it follows that x � 0. &

Lemma 2.3. Let A;B be right ideals in a ring R with A \ B � 0. Let � : A! B be
a nonzero homomorphism.

(a) If R is a right �-ring then the image of � is semisimple.
(b) If R is a right f�-ring and B is uniform then the image of � is simple.
(c) Let R be a right f�-ring with a non-trivial primitive idempotent e such that

eR�1ÿ e� 6� 0. Then eR contains a simple right ideal.

Proof. (a) Let L �0 B. Since L� A is quasi-continuous, and � may be viewed as
� : A! L̂, Im� � L. It follows that Im� � Soc�B�.

(b) Let a and x be a nonzero elements in A and B respectively. Then
� : A! B � B̂ � cxR implies ��aR� � xR since aR� xR is quasi-continuous. It fol-
lows that Im� � xR. Then 0 6� Im� � Soc�B�, a simple right R-module.
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(c) Since eR quasi-continuous and indecomposable, eR is uniform. Thus, the
result follows from (b). &

Recall that a homogeneous component of an R-module is a complete sum of
mutually isomorphic simple submodules.

Lemma 2.4. For a right �-ring R, we have the following.
(1) Let A;B be independent right ideals of R with B an epimorphic image of A.

Then B is cyclic.
(2) Let Af g [ Bi : i 2 If g be an independent family of right ideals in R with
�i2IBi an epimorphic image of A. Then the index set I is ®nite.

Proof. Let � be a homomorphism from A onto B. There exists an idempotent e
in R such that eR is a closure of A in R. As R is a �-ring, � extends to an epi-
morphism from eR onto B. Hence B is cyclic and the proof of (1) follows. The proof
of (2) is immediate from (1). &

Theorem 2.5. A right �-ring R has only ®nitely many nonsimple homogeneous
components and each one of them is injective.

Proof. Let Hi : i 2 If g be the family of homogeneous components of a right �-
ring R. For each i 2 I, let Si and Ti be minimal right ideals such that Hi � �Si� � �Ti�
and Si \ Ti � 0. Then there exists an isomorphism �I2iSi !�i2ITi. By Lemma
2.4(2), jIj <1. Hence R has only ®nitely many non-simple homogeneous compo-
nents. Now let H be a non-simple homogeneous component of R. If H is not ®nitely
generated then there exist independent submodules A;B of H such that A � H � B.
By Lemma 2.2, A;B are injective. But then H is ®nitely generated, a contradiction.
So, H is ®nitely generated. &

Theorem 2.6. A right �-ring is a direct sum of a square full semisimple artinian
ring and a right square free ring.

Proof. Let R be a right �-ring and H the direct sum of all square full homo-
geneous components of R. By Lemma 2.3, each simple submodule of H is injective,
and by Theorem 2.5, H is injective. Let H � eR for some idempotent e 2 R. Since eR
and �1ÿ e�R are orthogonal, it follows that �1ÿ e�Re � 0 � eR�1ÿ e�. Hence the
decomposition R � eR� �1ÿ e�R is a ring decomposition. Now, suppose �1ÿ e�R
contains a square. Then there exist right ideals A;B in �1ÿ e�R with A \ B � 0 and
A � B. By Lemma 2.3, A;B are semisimple. It follows that �1ÿ e�R contains a
square full homogeneous component, a contradiction. Hence, �1ÿ e�R is square free
and we get the desired decomposition. &

Corollary 2.7. An indecomposable ring R containing a square is a right �-ring
i� R is simple Artinian.

Proposition 2.8. Let R be a right �-ring. Suppose Aif gi2I is an independent family
of right ideals in R. If for each i 2 I there exists a right ideal Bi in R that is a homo-
morphic image of Ai with Ai \ Bi � 0 then I is ®nite.
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Proof. Suppose I is in®nite. In view of Theorem 2.6 we can assume that R is
square free. By Lemma 2.3 we can assume the Bi are simple. Since R is a �-ring, any
homomorphism from Ai onto Bi can be extended to a homomorphism from eiR to
Bi, where eiR is a closure of Ai in R and ei is an idempotent in R. As R is square free,
using the projectivity of eiR one can assume that Bi are independent. Pick an Ai1 . By
Lemma 2.4, images of the Ai are contained in Ai1 for only ®nitely many i. Pick an Ai2

whose image is not contained in Ai1 . Again by Lemma 2.4, images of the Ai are
contained in Ai2 for only ®nitely many i. Hence there exists an Ai3 whose image is
not contained in Ai1 � Ai2 . Clearly this process is inductive.

Hence there exists an in®nite subset I0 � I such that ��i2I0Ai� \ ��i2I0Bi� � 0.
Now for each i 2 I0, the homomorphisms from Ai onto Bi induce an epimomorph-
ism from �i2I0Ai onto �i2I0Bi. By Lemma 2.4, I0 is ®nite, a contradiction. Hence the
proof follows. &

3. Continuous � f ��-rings. In this section we will study the � f ��-rings that are
continuous. Since, by Lemma 1.9, a continuous ring is local if and only if it contains
no non-trivial idempotents, a continuous, local � f ��-ring is uniform. Conversely, all
right uniform rings are �-rings (Remark 1.2.). Consequently, from now on, we shall
only consider non-local rings. We completely characterize indecomposable, non-
local, right �-rings that are right continuous. We prove that such rings are either
simple artinian or a certain type of rings of matrices.

Lemma 3.1. Let R be a right continuous right f�-ring, e a primitive idempotent in
R and � : eR! R a nonzero homomorphism with Im� \ eR � 0. Then

(a) Im� is simple;
(b) eR�1ÿ e� 6� 0.

In particular, for a right continuous, right f�-ring R and primitive idempotent e 2 R, if
�1ÿ e�Re 6� 0 then eR�1ÿ e� 6� 0.

Proof. (a). Let � : eR! R. By Lemma 1.8, eR is local and therefore ��eR� is
local. It follows that ��eR� is indecomposable and therefore uniform ���e�R, being
®nitely generated, is quasi-continuous). Thus, by Lemma 2.3(b), Im� is simple.

(b). Let Im� �0 fR. Then, fR \ eR � 0 and, therefore, R � � fR� eR� � L for

some L � R, since R is quasi-continuous. Thus, �1ÿ e�R � R

eR
� fR� L and,

therefore, A is embedded in �1ÿ e�R. Hence we can assume that � : eR! �1ÿ e�R.
Assume eR�1ÿ e� � 0. By Lemma 1.8, eRe � eR is local ring with its unique

maximal ideal eJ where J � J�R�. If eJ � 0, eR is simple right R-module and
��eR� � eR. The inverse of � from eR into ��eR� extends to some nonzero homo-
morphism from �1ÿ e�R to eR, proving our claim. Let x be a nonzero element in eJ.

Since eRe is local there exists an eRe-epimorphism � : xeR! eR

eJ
. Furthermore,

since eR � eRe, � is an R-homomorphism as well.

Since Im� is simple (by (a)),
eR

eJ
� Im� � �1ÿ e�R. Let  be a nonzero homo-

morphism from
eR

eJ
to �1ÿ e�R. Then � is a nonzero R-homomorphism from xeR to

�1ÿ e�R. Since R is quasi-continuous, � extends to a nonzero R-homomorphism, �
say, from eR to �1ÿ e�R. But xeR � eJ � Ker� (by (a)). This implies that
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0 � ��xeR� � ��xeR� � Im�, a contradiction since � 6� 0. Thus eR�1ÿ e� 6� 0 and
the proof follows. &

Lemma 3.2. Let R be a continuous square free f�-ring with a primitive idempotent
e such that eR�1ÿ e� 6� 0. Then eRe is a division ring and eR�1ÿ e� is the only proper
submodule of eR.

Proof. By Lemma 2.3 S � Soc�eR� is non-zero. Since eR is continuous, S is
simple. By Lemma 2.3, we get eR�1ÿ e� � S. Now let 0 6� s 2 S and
0 6� � : �1ÿ e�R! eR. Clearly, by Lemma 2.3, Im� � S. If se 6� 0 then S � seR is a
homomorphic image of eR under some � : R! sR given by ��ex� � sex. By the
projectivity of eR there exists a homomorphism  : eR! �1ÿ e�R so that � � �.
By Lemma 3.1, Im is simple. It follows that Im � S, a contradiction since R is
square free. Hence se � 0 and s 2 eR�1ÿ e�. Consequently, S � eR�1ÿ e�. Now, let
J � J�R�. Then eJe is the Jacobson radical of eRe. Since R is continuous
J�R� � Z�R� and therefore JS � 0. Hence �eJe�S � �eJ��eS� � eJS � 0. Thus,
eJe�eR�1ÿ e�� � 0, and so eJeR � eJeRe � eJe. Hence eJe is an R-submodule of eR.
As S � eR�1ÿ e� it follows that �eJe� \ S � 0. But eR is uniform, so eJe � 0. Thus
eRe is a division ring. Now let I � eR. Then S � I (since eR is uniform). It follows
that S � I�1ÿ e� � eR�1ÿ e� � S. Hence I�1ÿ e� � S. Furthermore, since Ie is an
eRe-submodule of eRe, it follows that either Ie � 0 or Ie � eRe. If Ie � 0 then
I � I�1ÿ e� � S. If Ie � eRe then, since I � Ie� I�1ÿ e�, it follows that
I � eRe� eR�1ÿ e� � eR. Hence S is the only proper submodule of eR. &

Theorem 3.3. Let R be an indecomposable, non-local, right �-ring. If R is right
continuous then R has essential socle.

Proof. If R contains a square then, by Corollary 2.7, R is simple artinian and we
are done. Assume R is square free. Since R is non-local and indecomposable it con-
tains a nontrivial idempotent f and either fR�1ÿ f� or �1ÿ f�Rf is nonzero (by
Lemma 1.9). Therefore, by Lemma 2.3, R has nonzero socle. Let e2 � e 2 R with
Soc�R� �0 eR. Suppose e 6� 1. For any non-zero idempotent g 2 �1ÿ e�R, since
Soc�gR� � 0, �1ÿ g�Rg 6� 0 and g is not primitive (Lemmas 2.3, 3.1). Indeed, for any
� : gR! �1ÿ g�R, Im� is semisimple. So a : gR! eR. Furthermore, for any two
non-zero orthogonal idempotents g1; g2 2 �1ÿ e�R and non-zero �i : giR! eR, �i �
1; 2�, one gets that Im�1 \ Im�2 � 0, for, otherwise, there exists a minimal right ideal
S � eR such that g1R and g2R map onto S. But then by the projectivity of g1R there
exists a non-zero � : g1R! g2R. By Lemma 2.3, Im� is semisimple, a contradiction.

Let 1ÿ e � f1 � g1, a sum of orthogonal non-zero idempotents and
0 6� �1 : g1R! eR. Write f1 � f2 � g2, a sum of non-zero orthogonal idempotents
and 0 6� �2 : g2R! eR. Continue like this writing fi � fi�1 � gi�1 and considering
0 6� �i�1 : gi�1R! eR. Then the sum of Im�i is direct and there exists an epi-
morphism � : �1i�1giR!�1i�1Im�i. This is a contradiction in view of Lemma 2.4.
Therefore e � 1, proving that Soc�R� �0 R. &

Lemma 3.4. Let R be a continuous ring. Suppose e is a nonzero idempotent of R.
If, for a; b 2 R, aR, bR are two non-isomorphic minimal right ideals of R that are
homomorphic images of eR, then there exists a nonzero idempotent f in eR \ a? such
that f 62 b?, where x? is the right of x in R.
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Proof. As aR and bR are non-isomorphic, there exists a nonzero element x in
eR \ a? but not in eR \ b?. Let �R � R=J�R�. Then eRe � eRe=eJe is regular [10,
3.11]. Hence there exists �y 2 eRe such that xy is a nonzero idempotent in eRe. Thus
there exists a nonzero idempotent f in eRe such that fÿ xy 2 eJe (Lemmas 1.8, 1.9).
Thus f 2 eR \ a?. Now, if f 2 b?, then xy 2 b?. But, as xÿ xyx 2 b?, it follows that
x 2 b?, a contradiction. Hence, f 62 b?. &

Theorem 3.5. Let R be a continuous �-ring. For any two independent right ideals
A and B in R, A has only ®nitely many simple images in B.

Proof. Let I be an in®nite index set such that for each i 2 I, Si is a simple image
of A in B. For e2 � e 2 R, let eR be a closure of A in R. As R is a �-ring, each Si is
an image of eR. Let Si � a1R for some ai 2 R. For i 6� j, i, j 2 I, there exists, by
Lemma 3.4, a nonzero idempotent f in eR \ a?i such that f is not in a?j . One of fR or
�eÿ f�R maps onto in®nitely many akR, k 2 I. Denote the one that maps onto
in®nitely many akR

0 by g1R, and the other one by f1R.
Now eR � f1R� g1R. Since f 62 a?j and eÿ f is not in a?i , it follows that f1R has a

nonzero simple image inB. AsR is quasi-continuous and f1R \ B � 0, �1ÿ f1�Rf1 6� 0.
Now, since g1R has in®nitely many simple images in B, repeating the same process we
get idempotents f2 and h2 in g1R such that �1ÿ f2�Rf2 6� 0 and h2R has in®nitely many
simple images in B. Now eR � � f1R� f2R� � h2R. Continuing this process, we get an
in®nite family fn : n 2 N

� 	
of orthogonal idempotents inR such that �1ÿ fn�Rfn 6� 0, a

contradiction to Proposition 2.8. Hence the index set I is ®nite.&

Theorem 3.6. A continuous, indecomposable, non-local �-ring R has ®nitely gen-
erated essential socle.

Proof. In view of Theorem 2.6, we can assume that R is square free. By Theorem
3.3, Soc�R� �0 R. Suppose Soc�R� is not ®nitely generated. Let Si : i 2 If g be the
in®nite family of minimal right ideals in R. As R is square free, this family is inde-
pendent. For each i 2 I, let eiR be a closure of Si, where e

2
i � ei 2 R. By Proposition

2.8, there are only ®nitely many simple Si1 ; . . . ;Sin in R such that �1ÿ eik�Reik 6� 0,
k � 1; . . . ; n. We can pick an idempotent e 2 R such that both eR and �1ÿ e�R
contain in®nitely many minimal right ideals of R.

By Theorem 3.5, both eR and �1ÿ e�R have only ®nitely many simple images in
each other. Of these simple images, consider only those that are not Sik for
k � 1; . . . ; n. Now, take the closures fR and gR of these simple images of eR and
�1ÿ e�R in �1ÿ e�R and eR respectively, where f 2 � f 2 �1ÿ e�R and g2 � g 2 eR.
Since R is quasi-continuous, there exist primitive orthogonal idempotents f1; . . . ; f1,
g1 . . . ; gm such that fR � �l

i�1fiR and gR � �m
i�1giR. Then fR and gR do not map

outside themselves. Now there exist idempotents f 0 2 �1ÿ e�R and g0 2 eR such that
R � �gR� g0R� � � fR� f 0R� � �gR� f 0R� � � fR� g0R�. Since R is a �-ring and
any nonzero image of �1ÿ e�R in eR lie inside gR, any nonzero image of f 0R in eR
must lie inside gR. If there is a nonzero homomorphism from f 0R into fR, composing
with a projection map we'll get a nonzero homomorphism from f 0R onto a simple
right module S in fR. But every simple in fR is an image of eR. As eR is projective, S
would be isomorphic to a simple in f 0R. As R is square free, this is a contradiction.
Hence there is no nonzero homomorphism from gR� f 0R into fR� g0R. Symme-
trically, there is no nonzero homomorphism from fR� g0R into gR� f 0R. But, asR is
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indecomposable and f 0R and g0R have in®nitely many minimal right ideals, this is a
contradiction. Thus, R must have ®nitely generated essential socle. &

Proposition 3.7. Let R be an indecomposable, right continuous, right square free
ring. Then R is a right f�-ring with ®nite uniform right dimension if and only if R is a
right artinian right �-ring.

Proof. Let R be an f�-ring with ®nite uniform dimension. Then it contains an
independent family of uniform right ideals U1; . . . ;Un with �n

i�1Ui �0 R. As R is
quasi-continuous, there exist nonzero idempotents e1; . . . ; en in R such that
Ui �0 eiR and R � �n

i�1eiR. Since each Ui is uniform it follows that each eiR is pri-
mitive. As R is indecomposable and continuous it follows, by Lemma 3.1 that
eiR�1ÿ ei� 6� 0. By Lemma 3.2, each eiR is artinian. Hence R is artinian. Now, since
R is an f�-ring, it follows that R is a �-ring.

Conversely, assume that R is a right artinian �-ring. If R is local, then it is uni-
form (Lemma 1.11) and, therefore, has ®nite uniform dimension. If R is non-local,
then it has ®nite uniform dimension by Theorem 3.6. Hence the proof follows. &

The right handed version of Theorem 3 in [4] states that a ring R is a non-local
indecomposable right q-ring containing no minimal injective right ideals if and only
if R is isomorphic to a ring of n� n matrices of the form

Mn�D;V� �

D V
D V

D V
: :

: : V
V D

0BBBBBB@

1CCCCCCA
with D a division ring, V a null algebra over D with dimDV � dimVD � 1 and n � 2.
We will consider next a larger family of rings. Let n � 2 be a natural number. For
i 2 1; . . . ; nf g, let Di be a division ring. For i 2 1; . . . ; nÿ 1f g, let Di

Vi;i�1Di�1 be a
bimodule and let Dn

Vn1D1
be a bimodule. For convenience, we will consider here,

when dealing with the subscripts, addition modulo n on the set 1; . . . ; nf g rather than
on 0; . . . nÿ 1f g as is customary. We do this since the rows and columns of matrices
are usually labeled by the ®rst set and not the second. So, in particular, n� 1 � 1
and therefore it su�ces to say that Di

Vi;i�1Di�1 is a bimodule for i � 1; . . . ; n. By
M �Mn�D1; . . . ;Dn;V12; . . . ;Vnÿ1;n;Vn1� we denote the set of n� n matrices with
�i; i� entry from D1; �i; i� 1� entry from Vi;i�1�i � 1 . . . n�, and all other entries zero.
It is straight forward to see that M is a ring under the usual matrix addition and
multiplication if one assumes that Vi;i�1Vi�1;i�2 � 0 for i � 1; . . . ; n.

In the following theorem we show that, under certain conditions, right �-rings
are precisely those rings of the form

Mn�D1; . . . ;Dn;V12; . . . ;Vnÿ1;n;Vn1� �

D1 V12

D2 V23

D3 V34

: :
: : Vnÿ1;n

Vn1 Dn

0BBBBBB@

1CCCCCCA
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for which dim�Vi;i�1Di�1 � � 1.

Theorem 3.8. Let R be an indecomposable, non-local ring. Then the following
conditions are equivalent:

(1) R is right continuous and a right �-ring.
(2) Every right ideal in R is right continuous.
(3) Either R is simple artinian or R is right continuous, square free and there exist

orthogonal primitive idempotents e1; . . . en in R such that eiRej 6� 0 if and only
if either i � j or jÿ 1�mod n�, each eiR has length two and R � �n

i�1eiR.
(4) R is either simple artinian or isomorphic to a ring of the form

M �Mn�D1; . . . ;Dn;V12; . . .Vnÿ1;n;Vn1�

for some natural number n and with entries such that dim�Vi;i�1Di�1 � � 1.
(5) R is right continuous and every right ideal in R containing the Soc�R� is two-

sided.
(6) R is right continuous and every essential right ideal in R is two-sided.

Proof. The implications (2) ) (1) and (5) ) (6) are trivial, and (6) ) (1)
following from Proposition 2.1. It remains only to prove the following implications:
(1)) (3)) (4)) (5) and (1)) (2). Suppose (1) holds. If R contains a square then
R is simple artinian, by Corollary 2.7. Suppose R is square free. By Theorem 3.6, R
has ®nitely generated nonzero essential socle. Let S1; . . .Sn be the minimal right
ideals in R. Let I � 1; . . . ; nf g. For each i 2 I, let Si �0 eiR, where ei is a primitive
idempotent in R. Clearly, R � �n

i�1eiR. As R is indecomposable, eiR�1ÿ ei� 6� 0 for
each i 2 I (Lemma 3.1). Hence there exists some j 6� i, j 2 I such that eiRej 6� 0. As R
is square free and ejR is projective, eiRek � 0 for all k 6� i; j; k 2 I. Since R is inde-
composable, there must exist some k 2 I, k 6� i (unless n � 2) such that ejRek 6� 0.
Hence, there exists a permutation � on I � 1; . . . ; nf g such that eiRe��i� 6� 0 and
��i� 6� i for all i 2 I. Write � � �1�2 . . .�k, a composition of disjoint cycles. Since R
is indecomposable, k � 1 and � is a cycle. Renumbering if necessary, we can write
�i�1� � i� 1, for i � 1; . . . ; nÿ 1, and �n�1� � 1. Therefore, for each i 2 I, we may
consider the sequence of homomorphisms �i�1 : ei�1R! eiR as follows:
enR! enÿ1R! . . .! e2R! e1R! enR. Now, for each i 2 1; . . . ; nÿ 1f g,
Im�i�1 � Si is simple. Moreover, for each i < j; i; j 2 1; . . . nf g, eiRej 6� 0 i� i � j or
i � jÿ 1�mod n�. By Lemma 3.2, each eiR has length two. Hence we have proved
(1))(3). Now, assume (3) holds. If R is not simple artinian then, by (3), R is right
continuous and there exist orthogonal primitive idempotents e1; . . . en in R such that
eiRej 6� 0 if and only if either i � j or i � j�mod n�, each eiR has length two and
R � �n

i�1eiR. By Lemma 3.2, eiRei is a division ring for all i 2 1; . . . nf g. By Lemma
3.2, Si � eiRei�1. Thus Si can be viewed as a left vector space over eiRei and a right
vector space over ei�1Rei�1. Denote each division ring eiRei by Di and each vector
space eiRei�1 by Vi;i�1. We will show that dim�Vi;i�1Di�1 � � 1. Let eii be the unit
matrix in M whose only nonzero entry is the �i; i� entry and equals 1. Then
eiiM � �0 . . . 0DiVi;i�1 0 . . . 0� � eiR. It is easy to check that the proper M-sub-
modules of eiiM are precisely �0 . . . 0Wi;i�1 0 . . . 0� where Wi;i�1 is a right Di�1-sub-
space of Vi;i�1. Therefore, it is clear that the eiiM has no non-trivial summands.
Since eiiM, being isomorphic to eiR, is quasi-continuous it follows that it is uniform
as a right M-module. Thus, Vi;i�1 is uniform as a right Di�1-module. Hence,
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dim�Vi;i�1Di�1 � � 1. Finally by de®ning Vi;i�1Vi�1;i�2 � 0, i 2 I, we get the following
matrix representation of R:

R � �n
i�1eiR �

D1 V12

D2 V23

D3 V34

: :

: : Vnÿ1;n
Vn1 Dn

0BBBBBBBB@

1CCCCCCCCA
�Mn�D1; . . .Dn;V12; . . . ;Vnÿ1;n;Vn1�:

This proves (4).
Now, assume (4) holds. If R is simple artinian then (5) holds trivially. Assume R

is square free and isomorphic to the matrix ring M. It is easy to check that the only
proper M-submodules of eiiM are �0 . . . 0Wi;i�1 0 . . . 0�, where Wi;i�1 is a right Di�1-
subspace of Vi;i�1. As dim�Vi;i�1Di�1 � � 1, it is clear that eiiM is uniform. It is also
clear that eiiM is not isomorphic to any of its proper submodules. It follows that
each eiiM is continuous. It is easy to check that Soc�eiiM� � �0 . . . 0Vi;i�1 0 . . . 0�.
Therefore, as M is square free, there is no nonzero homomorphism from a
proper right ideal of eiiM to a right ideal of ejjM for i 6� j. Hence, for i 6� j, eiiM is
ejjM-injective. Hence M is right continuous.

Now, let a, m be two nonzero elements of M. For i � 1; . . . ; n, there exist di,
�i 2 Di and vi;i�1, wi;i�1 2 Vi;i�1 such that

a �

d1 v12
d2 v23

d3 v34
: :

: : vnÿ1;n
vn1 dn

0BBBBBB@

1CCCCCCAand m �

�1 w12

�2 w23

�3 w34

: :
: : wnÿ1;n

wn1 �n

0BBBBBB@

1CCCCCCA:

For i � 1 . . . nÿ 1, de®ne �i � �ÿ1i di�i, if �i 6� 0, and �i � 0 otherwise. De®ne ui;i�1 �
�ÿ1i diwi;i�1 if �i 6� 0 and ui;i�1 � 0 otherwise. De®ne si � vi;i�1�i�1ÿ wi;i�1�i�1 if
�i 6� 0 and si � diwi;i�1 � vi;i�1�i�1 ÿ wi;i�1�i�1 if �i � 0. For i � n, de®ne
un1 � �ÿ1n dnwn1 if �n 6� 0 and sn � vn1�1 ÿ wn1�1 if �n 6� 0, and sn � vn1�1�
dnwn1 ÿ wn1�1 if �n � 0.

It is straightforward to verify that ma � s� am0, where

s �

0 s1
0 s2

0 s3
: :
: : snÿ1

sn 0

0BBBBBB@

1CCCCCCAand m0 �

�1 u12
�2 u23

�3 u34
: :
: : unÿ1;n

un1 �n

0BBBBBB@

1CCCCCCA:

Now, as Soc�eiiM� � �0 . . . 0Vi;i�1 0 . . . 0�, Soc�M� consists of all matrices in M with
zero diagonal. Thus, ma 2 Soc�M� � aM. Hence every right ideal of M containing
the Soc�M� is two-sided, proving (5).
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Now, suppose (1) holds. Let I be a right ideal of R isomorphic to a summand eR
of R where e2 � e 2 R. If e is primitive then, by Lemmas 3.1 and 3.2, eR has only
one proper right ideal S � Soc�eR�. Since eR is indecomposable, I is indecompo-
sable. Let fR be a closure of I in R, where f 2 � f 2 R. Then fR is indecomposable
and again, by Lemmas 3.1, 3.2, fR has only one proper right ideal T � Soc� fR�. As
eR is not simple, I is not simple. Thus, I � fR. Now suppose e is not primitive. As R
is quasi-continuous and has ®nite uniform dimension (Theorem 3.6), we can write
eR � f1R� . . .� fkR, where the fi are primitive idempotents. There exist sub-
modules Ii of I, i � 1; . . . k, such that I � I1 � . . .� Ik and Ii � fiR. By the above
arguments, each I, is a summand of R. Since R is quasi-continuous, it follows that
I �� R. Hence R is continuous. Thus, (2) holds. &

Example 3.9. In the above Theorem, the left dimension of Vi;i�1 over Di is not
necessarily 1, as the following example shows.

Let F be any ®eld, F�x� the ®eld of rational functions over F on the variable x.
Let V � F�x� be the F�x�-bimodule with left action of F�x� on V given by
f�x�.g�x� � f�x2�g�x� and the right action given by multiplication in F�x�. Consider
the ring

R �
F�x� V 0
0 F�x� V
V 0 F�x�

0@ 1A
where V2 � 0. This ring satis®es all the conditions in Theorem 3.6 but
dim�F�x�V� � 2. &

Let

M0 �M0n�D1; . . . ;Dn;V21; . . .Vn;nÿ1;V1n� �

D1 V1n

V21 D2

V32 D3

V43 :
: :

Vn;nÿ1 Dn

0BBBBBB@

1CCCCCCA;

where for i � 1 . . . n;Di is a division ring and Vi�1;i is a Di�1 -Di bimodule. Notice
that, as we did before, when dealing with subscripts we are considering addition
modulo n on the set 1; . . . ; nf g rather than on 0; . . . ; nÿ 1f g.

It is straightforward to see that M0 is a ring under the usual matrix addition and
multiplication if we assume that Vi�1;iVi;iÿ1 � 0 for i � 1 . . . n.

Certainly, there is a symmetric, left-handed version of Theorem 3.8 to char-
acterize left continuous indecomposable left � rings in terms of rings of the form
M0 �M0n�D1; . . . ;Dn;V21; . . .Vn;nÿ1;V1n�, as follows.

Theorem 3.10. Let R be an indecomposable, non-local ring. Then the following
conditions are equivalent:

(1) R is left continuous and a left �-ring;
(2) R is either simple artinian or isomorphic to a ring of the form
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M0 �M0n�D1; . . . ;Dn;V21; . . . ;Vn;nÿ1;V1n�

for some natural number n and with entries such that dim� Di�1Vi�1;i� � 1:

Proof. Similar to that of Theorem 3.8. &

However, it is important to point out that one can also characterize right con-
tinuous, indecomposable, non-local rings in terms of rings of the formM0, as follows.

Theorem 3.11. Let R be a right continuous, indecomposable, non-local ring. Then
the following conditions are equivalent:

(1) R is a right �-ring
(2) either R is simple artinian or R is square free and there exist orthogonal pri-

mitive idempotents f1; . . . ; fn in R such that fiRfj 6� 0 if and only if either i � j
or i � j� 1�mod n�, each fiR has length two and R � �n

i�1fiR;
(3) either R is simple artinian or R is square free and isomorphic to a ring of the

form

M0 �Mn�D1; . . . ;Dn;V21 . . . ;Vn;nÿ1;V1n� �

D1 V1n

V21 D2

V32 D3

V43 :
: :

Vn;nÿ1 Dn

0BBBBBB@

1CCCCCCA
for some natural number n and dim�Vi�1;iDi

� � 1.

Proof. Suppose (1) holds. Assume R is not simple artinian. By Theorem 3.8, R is
right continuous, square free and there exist orthogonal primitive idempotents
e1; . . . en in R such that eiRej 6� 0 if and only if either i � j or i � jÿ 1�mod n�, each
eiR has length two and R � �n

i�1eiR. De®ne fi � enÿi�1. Then fiRfj �
enÿi�1Renÿj�1 6� 0 if and only if either nÿ i� 1 � nÿ j� 1 or nÿ i� 1 � nÿ j� 1ÿ
1�mod n� if and only if either i � j or i � j� 1�mod n�. Hence the sequence
enR! enÿ1R! . . .! e2R! e1R! enR is the same as the sequence f1R!
f2R! . . .! fnR! f1R. This gives rise to the matrix representation M0 of the ring
R. A proof similar to the proof of Theorem 3.8 will prove the equivalence of all the
statements in Theorem 3.11.

Corollary 3.12. If R is indecomposable are non-local, then the condition of being
a right q-ring is equivalent to being a left q-ring.

Proof. A right handed version of [4, Theorem 3] states that an indecomposable,
non-local right q-ring is either simple artinian or a ring of the form

Mn�D;V� �

D V
D V

: :
: : V

V D

0BBBB@
1CCCCA;
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where D is a division ring and V is a null algebra over D with dim�DV� � 1 �
dim�VD�. Following the proof of Theorem 3.11, it is easy to check that an
indecomposable, non-local, right q-ring R is either simple artinian or a ring of the
form

M0n�D;V� �

D V
V D

V D
: :

: :
V D

0BBBBBB@

1CCCCCCA

with D and V as above. By [4, Theorem 3], M0n�D;V� is a left q-ring. &

If the ring R in Theorem 3.8 is both a left and right �-ring, then both the left
and right dimensions of Vi;i�1, over Di and Di�1 respectively, are equal to one and R
is a (two-sided) q-ring, as the following Theorem shows:

Theorem 3.13. Let R be a right continuous, indecomposable, non-local ring. Then
the following conditions are equivalent:

(1) R is a right and left �-ring;
(2) R is a left quasi-continuous right �-ring;
(3) R is either simple artinian or isomorphic to a ring of the form

M �Mn�D1; . . . ;Dn;V12; . . . ;Vnÿ1;n;Vn1�;

for some natural number n and with entries such that dim�Vi;i�1Di�1 � �
1 � dim�Di

Vi;i�1�;
(4) R is a right q-ring;
(5) R is a right and a left q-ring.

Proof. Clearly (1) implies (2). Now suppose (2) holds. Then R is a right �-ring.
By Theorem 3.8(4), R is either simple artinian or of the form Mn�D1; . . .Dn;
V12; . . . ;Vnÿ1;n;Vn1�. If R is simple artinian then (3) holds trivially. Otherwise, every

left summand Rei �

0
:
:
:

Vi�1;i
Di

:
:
:
0

0BBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCA
, where ei is the unit matrix eii, has as its only
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submodules Rei and `columns' of the form

0
:
:
:

Wiÿ1;i
0
:
:
0

0BBBBBBBBBBBB@

1CCCCCCCCCCCCA
where Wiÿ1;i is a Diÿ1-sub-

space of Viÿ1;i. Therefore, Rei is indecomposable and, since it is also left
quasi-continuous, the dimension of Viÿ1;i as left Diÿ1-space is 1, proving (3). Now,
suppose (3) holds. Let 0 6� x 2 Vi;i�1. Then Vi;i�1 � xDi�1 � Dix. The assignment
d! d 0 if and only if dx � xd 0 de®nes a ring isomorphism betweenDi andDi�1. Hence
the D0i are all isomorphic and we can view them as a division ring D. It is now easy to
check that the V0i are all isomorphic as well. Hence R is a right q-ring [4, Theorem 3],
proving (4). Now (4)) (5) is clear by Corollary 3.12, (5)) (1) is trivial. &
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