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Abstract

Various geometrical properties of a domain may be elicited from the asymptotic expan-
sion of a spectral function of the Laplacian operator for that region with appropriate
boundary conditions. Explicit calculations, using analytical formulae for the eigenvalues,
are performed for the cases of Neumann and mixed boundary conditions, extending
earlier work involving Dirichet boundary conditions. Two- and three-dimensional cases
are considered. Simply-connected regions deait with are the rectangle, annular sector, and
cuboid. Evaluations are carried out for doubly-connected regions, including the narrow
annulus, annular cylinder, and thin concentric spherical cavity. The main summation tool
is the Poisson summation formula. The calculations utilize asymptotic expansions of the
zeros of the eigenvalue equations involving Bessel and related functions, in the cases of
curved boundaries with radius ratio near unity. Conjectures concerning the form of the
contributions due to corners, edges and vertices in the case of Neumann and mixed
boundary conditions are presented.

1. Introduction

In a previous paper [12), the author performed an explicit analytical calculation
involving the eigenfunctions of the Laplacian for a narrow annular region with
Dirichlet boundary conditions, and showed that certain of the geometrical
properties of this doubly-connected region could be obtained from an asymptotic
expansion of the spectral function.

For eigenfunctions ¢, and eigenvalues A, of the two-dimensional Helmholtz
equation

Vi, + Ay, =0 (1.1)
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with Dirichlet conditions

v=0 (1.2)
on the (smooth curved) boundary, the spectral function
E=1Y exp(—A,t) (1.3)

has the asymptotic expansion [17], {23], [30],

g~ A _ L | 1-k

Amt  §mt 6
where the subscript on E denotes the dimension and the superscript (D) stands
for Dirichlet. A is the area of the region with total perimeter length L and
containing # smooth holes. (Some factors in (1.4) differ from those in [12] since
we have used the standard equation (1.1) without the factor of 1 used by Kac
[171)

If the region boundary has inward facing corners with angles # then the
expansion (1.4) picks up an extra constant term [23]
7% — 62
z 2470 (1.5)
In our case of the narrow annulus, with inner radius a and outer radius b, the
eigenvalues in (1.1) are given by

+ O(/t)ast -0, (1.4)

A= x%/a? (1.6)
where x is a root of the cross-product Bessel equation (A.1) given in Appendix A
with » = N. The sum in (1.3) is double, over integer N from — oo to co and root
ranking parameter s = 1 to oo for each N. The result obtained in [12], recast to
correspond to (1.4), is

E{P ~ 1’%‘12_)[1 + O(y - 1)2]
- 27';3%—“) [1+o(r-1)7]+0+o0(r-1) (1.7)

—%[1 +0(y-D]+0[(y-1)], -0,

where ¥y = b/a > 1 and y — 1 is small. Thus the area, 4 = n(b? — a?), total
perimeter, L = 27(b + a), and connectivity corresponding toh = 1,ie.1 — h =
0 in (1.4), have all been elicited explicitly.

This result was obtained by squaring McMahon’s explicit analytical asymptotic
formula for the roots in the approximation (A.2) (see Appendix A) and utilising
Poisson summation formulae in the forms (B.2), (B.3) (Appendix B). The case
corresponds physically to a vibrating annular membrane with fixed edges ([15],
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page 116; [13]), equation (1.1), with ¢ = displacement amplitude, being obtained
from the wave equation with free wave speed c¢ after separating off the time
dependence with angular frequency w, so the eigenvalues of the Laplacian are —A
where

A= w¥/c?. (1.8)

This direct explicit calculation, using the eigenvalues themselves in evaluating
(1.3), contrasts with the method for proving general formulae such as (1.4) ([17],
[23], [30], [18], [9]) which proceeds by regarding the Helmholtz equation (1.1) as
arising from a corresponding heat equation (with units chosen so that the
diffusivity constant is unity) and the parameter A is then the decay constant in the
time dependence which is separated off. Their approach is indirect, via Green’s
functions.

Our result for the annulus complements the explicit calculation of Stewartson
and Waechter [30] for the full circle and contrasts with the method of that paper
which proceeded indirectly via the Green’s function.

In this paper we investigate the case of Neumann boundary conditions and
extend the work to include mixed boundary conditions. We shall be concerned
primarily with doubly connected regions, but some simpler regions, e.g. rectangu-
lar, are dealt with where they shed light on the forms of various terms in the
expansions.

We also extend the work to three dimensions, including the cases of the annular
cylinder, and conclude with the concentric spherical cavity. The methods are
similar to our earlier paper [12], but there is a greater richness in the eigenvalue
structure. Formulae for zeros of eigenvalue equations, and some summation
formulae, are collected in three Appendices.

2. The case of the Neumann boundary conditions

The work of Pleijel ([26], page 565) and Sleeman ([29], page 138) indicates that,
for a simply connected two-dimensional region with Neumann boundary condi-
tions

9y _
n (2.1)

(where n here denotes the normal to the smooth boundary), the expansion for the
spectral function (1.3) for (1.1) is
A L

1
N 2 = 4+ -4 v

where the superscript (N) stands for Neumann.
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We may see why the coefficient of L has changed sign compared with the
Dirichlet case, equation (1.4), by modifying an argument of Kac [17]. As
mentioned in the Introduction, the procedure involves consideration of the heat
equation. The first effect of the boundary, which leads to the term involving L, is
to influence nearby points as if it were a straight line. The Green’s function
satisfying this approximate boundary condition is obtained from the (known) free
space Green’s function by the method of images. For Dirichlet boundary condi-
tions [17], one takes the difference of source and image functions and obtains the
negative coefficient of L in (1.4); for Neumann boundary conditions, one must
take the sum; and it is this plus sign which, when followed through, results in the
positive sign of the L term in (2.2).

2.1 Rectangular region

It is worthwhile confirming this sign change first in the simple case of a
rectangular region 0 < x < a, 0 < y < b. With Dirichlet boundary conditions, the
eigenfunctions and eigenvalues are

V7 (x, y) = sin(Mwx/a)sin( Nmy/b), (2.3)
XD, = n2[(M?/a?) +(N¥/b?)]; M,N=1,2,... (2.9)
Utilising the Poisson summation formula (B.3) twice after factorizing the form
(1.3), we easily get, with A = ab, L = 2(a + b),
A L 1
(Dy . 22— 4 .

E{ preriry + 75 (2.5)
neglecting exponentially small terms [23], the series terminates (cf. [30]). The first
two terms in (2.5) accord with (1.4). Since the boundary has no curvature, the
third term in (1.4) is inoperative, and the constant term is given by (1.5), as may
be verified for the four internal angles each of = /2.

For the case of Neumann boundary conditions, the eigenfunctions are

Y (x, y) = cos(Mmx/a)cos(Nwy/b), (2.6)
with eigenvalues as in (2.4) but with M, N = 0,1,2,.... Thus there are some
eigenvalues which are smaller than those in the Dirichlet case, and furthermore,
there is a zero eigenvalue corresponding to a constant eigenfunction. These
features occur in the analysis of later sections and one must be careful to include
them in the calculations.

The Poisson summation formula (B.4) must there be utilized, and yields
A L 1

(N o 4 — 4+ =
ES an - +7 2.7
The change in sign for the term involving L is thereby verified explicitly in this

case.
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2.2 Narrow annular region

For a narrow annular region with Neumann boundary conditions, there is first
of all a zero eigenvalue A = 0 corresponding to a constant eigenfunction, as in the
case of the rectangular region of the previous subsection. Most of the eigenvalues
in (1.1) are given by (1.6) where x is now a root of the cross-product derivative
Bessel equation (A.3) with » = N, an integer (see [15], Appendix III), and given
by (A.4). Remarkably, for this case (A.3) only [20] and for N # 0 [10], the lowest
root for each N is not given by a McMahon-type formula [24], but instead [32]
remains finite as y — 1, approaching the value N. The remaining roots of (A.3),
i.e. the remaining eigenvalues in (1.1), are given by (A.5) which was obtained
recently by the author [14]. For our purposes, the first order approximation to
these exceptional roots

xh=N{1-1(v-1)+0[(r- 1]} (28)

obtainable from a preliminary observation of Buchholz ([7], page 361), suffices. A
more extended discussion of the exceptional roots may be found in [14]. (We
stress that zero is not a solution of (A.3) but is a genuine eigenvalue of (1.1) for
this boundary condition (2.1) (cf. [25], page 604).)

The spectral function (1.3) now has a term 1, corresponding to A = 0, plus a
double sum over integral N from —oo to + oo and over parameter s = 1 to oo
corresponding, via (1.6), to the right hand side of (A.4), plus a single sum over
nonzero integer N corresponding, via (1.6), to the exceptional roots (2.8). For the
double sum,

2.2 2
7\=l2 ”—3—2+N—+4i+0(y—1)2. (2.9)
a (y - 1) Y Y

Upon use of the Poisson summation formulae (B.2), (B.3), we find by explicit
calculation that the ¢~! and constant terms in the Dirichlet boundary condition
result (1.7) remain unchanged and the r~!/2 term indeed changes sign precisely as
required by (2.2).

As far as we know, this is the first explicit verification of the doubly-connected
region version of (2.2) (¢f. (1.4)). It is amusing to note that the existence of a
family of exceptional roots x = N could have been deduced from the spectral
expansion result (1.7) by seeking extra values of A which would, via the Poisson
summation formula (B.3), just cancel out the contribution 1 from A = 0 and
change the sign of the L term. More intriguingly, to maintain the order of
approximation of the corresponding =172 term in (1.7), one may infer the first
order correction term given in (2.8).
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Regarding the ¢!/2 term of the spectral function expansion (1.3), for the
Neumann case we calculate a factor of (—3) times the corresponding (fourth)
term in (1.7), the Dirichlet case. (This is a direct result of the relative quantities
added to 4»? in the second terms of (A.2) and (A.4): see (2.9).) This contrasts
with a general result of Pleijel [26], expressed in terms of the integral of squared
curvature along the boundary, which indicates a relative factor of (—7). The
discrepancy may arise from the fact that Pleijel considered a simply connected
domain, but may more likely be related to the procedure which led to the
apparent error by Pleijel in the calculation for the Dirichlet boundary condition.
In the latter case, Stewartson and Waechter [30] have detected an error of sign in
the coefficient of the ¢1/2 term as given by Pleijel [26], a correction also noted by
Sen [28].

Our example corresponds physically to the purely transverse vibrations of a gas
enclosed in the annular space between two coaxial circular cylinders (¢f. [21],
page 263; [15], page 263; [24], page 29) with ¢ in (1.1) being the pressure or the
velocity potential. There is also some correspondence to the so-called tidal waves
on the surface of a liquid in a tank between concentric circular vertical walls. In
fact, the appropriate wave equation for the elevation of the surface above the
undisturbed plane is an approximation valid only for wavelengths which are large
compared with the depth of the tank (c¢f. [8], pages 87-88), so the physical
analogy deteriorates for the higher eigenfrequencies.

The eigenvalue equation (A.3) for Neumann boundary conditions also arises in
the analysis of coaxial (annular cross-section) acoustic ([25], pages 603-604), and
electromagnetic ([22], page 31) waveguides. The latter case corresponds to TE
(transverse electric) waves in transmission lines. The case of narrow annular
cross-section is in fact important in electrical engineering applications ([19], page
251). In these cases, the eigenvalue A in the two-dimensional Helmholtz equation
(1.1) arises after separating off the dependence on the third spatial variable along
the line. Some care must be exercised in interpreting A in terms of frequencies as
it will also involve a parameter corresponding to propagating and evanescent
modes in the third direction. Thus, loosely speaking, this section might be
subtitled, in emulation of the titles of references [17] and [12], “Sensing the
cross-section of a coaxial pipe.”

3. Mixed boundary conditions

By “mixed” boundary conditions, we mean that some sides may have Dirichlet
boundary condition (D.b.c.) (1.2) and some sides may have Neumann boundary
condition (N.b.c.) (2.1).
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3.1 Rectangular regions

There are four distinct inequivalent mixed boundary configurations for a
rectangular region. In each case, proceeding as in Section 2.1, we find that we
may expand the spectral function (1.3), for a rectangle of side lengths a and b, in
the form

A L,

am " Tgym gr + 2 Z)( :) G-

DD,NN
where 4 is the area of the rectangle, L, is the length of the part of the boundary
with N.b.c,, and L, is the length of the part with D.b.c.

In the summation labels in the constant term, DD(NN) denotes angles at
corners both of whose adjacent sides have D.b.c. (N.b.c.), whilst DN denotes
angles with one adjacent side D.b.c. and the other N.b.c. Note that the number
(1/16) is just the value of the expression in (1.5) for § = 7 /2.

For example, with D.b.c. on x = 0, a, y = 0 and N.b.c. on y = b, the eigen-
functions are

E, ~

¢ = sin[ Mnx/a]sin[(N + 1) 7y /b] (3.2)

with M — 1, N =0,1,2,..., so the Poisson summation formula in the form (B.7)
is also used, and

ab 2b

E, ~ P ﬁ (3.3)

Based on this analysis and the corroborating results (2.5) and (2.7), we

conjecture that for a simply-connected convex plane domain, with piecewise

differentiable boundary consisting of a finite number of smooth segments with

pure or mixed boundary conditions, the spectral function (1.3) for (1.1) has the

expansion
A Ly-L

A v" Lo
Ey~g—+ Y + constant + O(Vr), (3.4)

where the contribution to the constant term from the corners with inward-facing

angles is (cf. (1.5))
,Z, E)%r ) 63)

DD,NN DN
There appears to be a ““parity factor” of (—1) associated with each D.b.c.

3.2 Narrow annular region
For a narrow annular region with Neumann boundary condition on the inner

radius and Dirichlet boundary condition on the outer, the eigenvalues in (1.1) are
given by (1.6) where x is a root of the mixed cross-product Bessel equation (A.6)
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with » = N. (The opposite boundary configuration can be obtained by ap-
propriate redefinitions of x and y [5], [20].) As indicated in the expression (A.7),
the roots tend to infinity as y = 1 (¢f. [5]). That this must be so can be deduced
immediately from the fact that the left side of (A.6) in the case y = 1 is just the
Wronskian ([2], page 500)

WiJ,, Y] =J(x)Y(x) = Y,(x)J)(x) = 2/(nx) (3.6)

so if the L.H.S. of (3.6) tend to zero, x — oo. Thus there can be no finite roots,
unlike the previous section.
A careful analysis of page 374 of [1] leads to (A.7) and to
_1)?
a2>\='rr2( 1) - —1+N2——L5—1—+0(y—1). (3.7
(-1 oD ATt oy

The fifth explicit term in (3.7) does not cancel away; it must be included to this
order so that the fourth term facilitates the summation over N. But then, even the
Poisson summation formula in the form (B.7) will not facilitate the summation
over s, so we do not proceed further analytically in this manner.

In any case, we note that the exponential factor in the spectral function (1.3)
corresponding to the single term (y — 1) ! on the right side of (3.7) results in the
vanishing of the spectral function as y — 1, in contrast with the previous case of
annuli with pure Dirichlet (Section 1) or pure Neumann (Section 2.2) boundary
conditions where the term representing the total length of the perimeter remained
finite (see (1.7)). This is consistent with our conjecture (3.4) for this doubly-con-
nected region, since for this mixed boundary condition case, L, — L, is propor-
tional to (y — 1) and hence indeed vanishes as y — 1.

3.3. Annular sector

The annular sector bounded by plane polar coordinates r = a, b, ¢ = 0,
(0 < a < 27) is simply connected but not convex. In this case, the Bessel
function order » in the radial part of the eigenfunction (¢f. [13]) is in general not
an integer. For instance, for Dirichlet boundary conditions,

v=Nmn/a; N=1,23,..., (3.8)

and this is to be used in equation (A.2).

There are six distinct inequivalent configurations with D.b.c., or with N.b.c., on
both curved sides and either b.c. on the straight side segments. In all cases,
proceeding as in previous sections for small (y — 1), we find by calculations using
Appendices A4, B that the spectral function expansion (1.3) has the form of
equations (3.4), (3.5) with 4 = (b2 — a?) a/2, curved side lengths ba and aa, and
two radial segments of length (b — a). Although the latter are of order (y — 1)

https://doi.org/10.1017/50334270000004525 Published online by Cambridge University Press


https://doi.org/10.1017/S0334270000004525

[9] Eigenvalues of the Laplacian 301

compared with the curved side lengths, they are indeed elicited explicitly where
appropriate by these calculations, with neglected error being of order (y — 1)%
The corner contributions come out correctly according to (3.5).

The case « = 27 is of physical interest, being a septate annulus. For purely
D.b.c., it corresponds to a vibrating annular membrane fixed along a radius. For
purely N.b.c, it corresponds to the transverse vibrations of gas in a coaxial
cylinder with a single rigid radial wall. The lowest frequency is lower than for an
uninterrupted annulus. (Cf. [27], page 300; and [22], page 31, for the electromag-
netic transmission line case.)

4. The three-dimensional case

For a three-dimensional simply-connected domain bounded by a convex surface,
Waechter [33] has determined, indirectly via the diffusion (heat) equation and
Green’s functions and by other considerations, the expansion for the spectral

function
Ey=Ye™ (4.1)
involving eigenvalues of the Laplacian (three-dimensional Helmholz equation)
VH+AY=0 (4.2)
for the case of Dirichlet boundary conditions to be
E{P) ~ v s + constant + O(t'/?) ast— 0,

8(7rt)3/2 167t 2(,”1)1/2

(4.3)

where V is the volume of the region and S is its surface area. C is a constant
which, if there are edges present, receives contributions in the form

f[”;;gz ] dL(9). (4.4)

In this integral, L(f) is the length of the edge formed by two faces inclined at
angle 4, and the bracketed term is the corner correction (1.5) of the two-dimen-
sional plane case. (There is a misprint in equation (4.9) in [33]: see [30] and [23].)

We may fairly readily extend our previous work using direct calculations
involving explicit eigenvalues and Poisson summation formulae to three-dimen-
sional examples with Dirichlet (1.2) and /or Neumann (2.1) boundary conditions.
Purely Neumann boundary conditions correspond physically to oscillations of a
gas confined within the volume, and ¢ in (4.2) may represent the pressure or the
velocity potential ([25], page 243).
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4.1 Rectangular parallelepiped

Before dealing with doubly-connected regions, which are the main concern of
this paper, it is worthwhile considering the simpler case of the cuboid to obtain an
understanding of the various terms which arise and of the effects of edges and
vertices.

For the case of a cuboidal region (rectangular parallelepiped) with either D.b.c.
or N.b.c on any face, there are ten distinct inequivalent configurations. Using
calculations similar to those in Sections (2.1) and (3.1), with eigenfunctions the
product of three appropriate trigonometric functions, and utilizing the Poisson
summation formulae (B.3), (B.4), (B.7), in three factored summations, we find
that in each case the spectral function expansion for a cuboid of side lengths a, b
and ¢, may be written in the form

abc Sy—Sp , Lpp+ Lyy— Lpy
3~ 2 + 16 + +
8(mt) mt 16(2Va1)

1
E L -2 )zz
NNN, DDD,
DDN DNN
(4.5)

where S, (Sp) is the total area of those surfaces with N.b.c. (D.b.c.), and Ly,
denotes the total length of edges formed by faces which both have D.b.c,, etc. In
the last, constant term in (4.5), the summation label NNN, for instance, denotes
(three-dimensional) vertices subtended by three faces with N.b.c., etc. (For purely
D.b.c., (4.5) corresponds to a result quoted by Waechter [33], the last term taking
the value — {.)

For example, for faces x = 0,a,y = 0, b D.b.c,, and z = 0, ¢ N.b.c., we find
abc 2ab — 2bc — 2ac . 4c —(4a + 4b) 1
~ + + =,

8(771)3/2 167t 32(’17[)1/2 8
whilst forx = 0,y =0,z = 0D.b.c.and x = g,y = b, z = ¢ N.b.c. we obtain the
first term in (4.6) only. We note that the number (1/16) in the third term in (4.5)
is, as mentioned in Section (3.1), the value of the two-dimensional corner
expression (1.5) for the case § = = /2.

Based on (4.5) and (4.4), we conjecture that, for a simply connected convex
volume, the spectral function (4.1) for the three-dimensional case (4.2) with pure
or mixed boundary conditions has the expansion

_ vV Sy—3Sp
3 8(7")3/2 167t 2(771)1/2

where the contribution from the edges to the constant C in the third term is

f[%_vrToz][dLDD(o) +dLyy(6) - dLy(6)]. (4.8)

E, (4.6)

+ constant + O(#'/%)  (4.7)
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The contribution to the constant (fourth term) in (4.7) due to the vertices is
conjectured, from (4.5), to have the form

( Y- ¥ )x (49)
v DD,

where the contribution for a purely Dirichlet vertex is —x, and x assumes the
value 1/64 for a solid angle of 4w/8 = 7w /2. As in the two-dimensional case, a
“parity factor” (—1) appears to be associated with each D.b.c.

4.2 Annular cylinder

For the case of a finite annular cylinder, the eigenfunctions are the product of
the two-dimensional annular eigenfunctions (see [13]) and a single trigonometric
function of the appropriate form for the boundary conditions in the z direction,
as in Section 2.1. The eigenvalue A in (4.1) is the sum of the squares of certain
roots in the annular problem, as in (1.6), and a single Cartesian square of the type
appearing in (2.4). The spectral function (4.1) therefore just has as factors, the
spectral function for the annular case and a single Cartesian term, and so the
special function expansion may be obtained from the product of the result
already obtained in Sections 1 and 2.2 and (B.3), (B.4) or (B.7).

There are twelve distinct inequivalent configurations corresponding to various
combinations of Dirichlet and /or Neumann boundary conditions on the several
surfaces, but because of the results of Section (3.2) we are only able to discuss the
six configurations with D.b.c. (or N.b.c.) on both curved surfaces.

We find that in each case the spectral function expansion, for small (y — 1),
may be written in the form

- V. Sv=S  Lop+tLw-L
8(mt)>?  16m 16[2(1)"?]

PN + constant + O(1/?)

(4.10)

which agrees with our conjectures (4.7), (4.8). For instance, for the case of D.b.c.
on the annular ends and N.b.c. on the curved surfaces, we obtain, for cylinder
length ¢,

7(b? — a?)c N 27(b + a)c — 27(b* — a?)

E ~ 8(7rt)3/2 167t

4 —2Q2#)(b + a) 3¢

16(24e) + 6ot o(Vt). (4.11)
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(In the cases of D.b.c. on the curved surfaces, the fourth, constant, term turns out
to be —c/(16a).)

Our result (4.10) for the mixed annular cylinder complements and extends a
calculation of Waechter [33] via Green’s functions for the full cylinder with purely
D.b.c. which agrees with the Dirichlet terms in the first three terms in (4.10) and
also includes curvature terms, the first of which is absent in (4.10) because of the
double-connectedness (cf. (1.4)).

5. Concentric spherical cavity

The eigenfunctions for the doubly-connected region bounded by two concentric
spherical surfaces, radii » = a, b, involve spherical Bessel functions and associated
Legendre functions (see [8], pages 11-12). Because of the degeneracy associated
with the azimuthal angle, there is a factor (2N + 1) for each order N of spherical
Bessel functions jy, yy, where N = 0,1,2,....

For D.b.c., the eigenvalue equation is given by (A.1) with v = N + 3, with
roots given by (A.2). For nearby concentric surfaces, i.e. small (y — 1), the
spectral function (4.1) leading to the first 2 terms in the asymptotic expansion has

the form
E; ~ [3(1,/7?—:1)— -1 Ni;o(N + %)exp[—(N + %)zt/(aZY)]‘ (5.1)

The first term in square parentheses arises via (B.3) from the sum over s just as
for the annular case of Section 1 (the factor  being carried through to the next
summation). The sum in (5.1) is not obtainable by manipulation of the Poisson
summation formulae in Appendix B.

Up till now we have carried through explicit calculations to verify formulae
such as (1.4) and (4.3). Now we are going to turn the problem on its head, and use
the first two terms of (4.3) for the Dirichlet case to evaluate the leading
asymptotic form of the sum remaining in (5.1). Then we shall use that result to
follow our original procedure for the Neumann case.

The ratio of the first to second terms in (4.3) for the case of a concentric
spherical cavity with ¥V = (4/3)7(b> — a*), S = 4n(a? + b?), is just

a(y - 1)
vVt
This is exactly the ratio of first to second terms in the first square parantheses in

(5.1). We therefore deduce by comparing the second term in (4.3) with the second
term in (5.1) for small (y — 1) that

+0(y-1)> (5.2)

S (N + Bep(—2(N + 1)) = 5 asz =0, (53)
N=0
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where z = t/(a?y) in this instance. The correction is of order constant. That this
is not a Poisson-summation-type formula can be seen by the fact that there is no
factor #!/? on the right side, and the correction is not of order z7'/? (cf.
equations (B.4), (B.7)).

Now we return to our usual procedure of previous sections in carrying out the
explicit calculation of the spectral function using analytical expressions for the
eigenvalues, for the case of Neumann boundary conditions. We shall demonstrate
the change in sign in the surface area term of (4.7) for N.b.c., utilizing (5.3).

For Neumann boundary conditions on a concentric spherical cavity, there is
first of all a zero eigenvalue corresponding to constant eigenfunction which
produces a constant term 1 in the spectral function (4.1) and therefore is not
required if we work to the first two leading orders in (4.7). The remaining
eigenvalues satisfy the eigenvalue equation (A.8) with» = N = 0,1,2,..., involv-
ing spherical Bessel functions ([1], page 437; [2], page 52). Most of the eigenvalues
in (4.2) are given by (1.6) where x is given, for small (y — 1), by (A.9) (see [24],
and [15], Appendix III) with » a nonnegative integer. This leads to the same
contributions to the first two terms in the spectral function (4.1) expansion as in
the Dirichlet case (5.1) with (5.3).

As discussed in Section (2.2) and Appendix A, for N.b.c. equations of the
derivative cross-product type (A.3), (A.8) there is an exceptional set of lowest
roots which remain finite as y — 1, i.e. which are not given by the McMahon-type
formulae such as (A.9) and which, for equation (A.8), do not appear to have
received attention. They are given by (A.10) (see {14]); for our purposes, the
first-order approximation suffices:

xy= NN+ 1) {1-3(y-1) +0[(v- 1]} (5.4)

(The zeroth order approximation in (5.4) may be found in Rayleigh [27], page
272.) Use of (5.4) in (1.6) gives an extra contribution to (4.1) which, for small
(y — 1) and leading order in (1 /1), is just twice the sum in the right side of (5.1).
Thus adding this to the contribution (5.1) from McMahon-type roots indeed
changes the sign of the second, area, term. Use of (5.3) then yields the first two
terms in (4.7) for the Neumann case, with volume V and total surface area S,
elicited explictly (the corrections being of order (y — 1)2).

The asymptotic result (5.3) may be derived by direct mathematical methods
(Appendix C), but in this instance we prefer to proceed in the above manner to
show how the Dirichlet boundary condition results may contribute towards
obtaining the Neumann boundary condition results.

With this rather spectacular demonstration of the importance of the excep-
tional eigenvalues associated with (A.8) we close our series of calculated cases of
the spectral function expansion involving Neumann boundary conditions. The
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conjectures (3.4) with (3.5) (two dimensions) and (4.7) with (4.8) and (4.9) (three
dimensions) are recorded for comparison with any prospective extensions of
general procedures.
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Appendix A. Formulae for zeros

Asymptotic expansions of zeros of various cross-products of Bessel and related
functions obtained by McMahon and others (see [24]; [15], pages 260-263; [16],
pages 617-618; [1], page 374) and used in this paper are recorded here. In each
case a is the inner radius, b is the outer radius, and y = b/aisnear 1,i.e.y — 1is
small and positive. x{*) is the sth root in order of magnitude. J, and Y, are Bessel
functions of order » of the first and second kind respectively [1]. A prime on a
function denotes differentiation with respect to argument. j, and y, are spherical
Bessel functions of order » [1], [2].

We note that » is unrestricted [24]. Furthermore, as indicated in [7] and [25]
page 604, the formulae are valid not only for large s but also for low s values if
y — 1 is sufficiently small.

Finally, in the case of equation (A.3), the lowest root for v # 0 is not given by a
McMahon-type formula, and is overlooked by mathematical formula handbooks
(although numerical values are available, e. g. [11], [6], [3]). Equation (A.5) for this
exceptional root has been derived by the author [14]. The » = 0 case of (A.3) is
just the » = 1 case of (A.1), since J; = —J,, Yj = — Y, (¢f. the second terms in
(A.4) and (A.2)). Equation (A.8) has an exceptional lowest root if » # 0 (—1),
given by (A.10), which has been derived by the author. Higher order terms for
equations (A.5) and (A.10) may be found in [14].

J(x)Y,(vx) = J,(vx)Y,(x) = 0, (A1)
x,(,’)=y7f1+4V827T_Y1(Y:1)+0[(Y:1)3], (A2)
L (%)Y (yx) - L (yx)Y;(x) = 0, (A3)
x5”>=y’f1+4”;;3(711)+0(7;1)3], (A.4)
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wheres’ = s,v=0,ands" =s+ 1,v # 0. If » # 0[14],

xi=”{1—%(v—1)+%(7—1)2+0[(Y‘1)3]}’ (A5)
L (x)Y,(vx) = J,(yx)¥;(x) = 0, (A.6)
,_m(s=1) 1 (4v2+3) (y-1)
TGD TamGen T 8 (o)
1 (r-1) +O[(y—1)2}, (A7)
r(s=4) (-1
J)¥rx) = (vx) (%) = 0, (A8)
xi"’=y’fl+4(”§2 +7(7;1)+0[(Y:1)3], (A.9)

wheres’' = s, v =0(—1),ands’ =s+ L,y # 0(—1).If » + 0 (—1)[14],
= G FD{1-4r-1)+ ~(r =1+ 0(v - 7). (a10

Appendix B. Poisson summation formulae

The extended Poisson summation formula for Gaussians may conveniently be
written in the form (see [34], page 124 and page 476; [31], page 347)

f: exp[—z(N + a)2] = (Vm /Vz) i exp(—72N?%/z)cos(2maN ).

N Ne o
(B.1)
If a = 0, we have
f exp(—zN?) ~ Vo /Vz asz—0 (B.2)
and T
T exp(=aN?) 7 /QE) 4 asz =0, (83)
f exp(—zN2) ~ Vo /(Vz) + % asz - 0. (B.4)
Ifa = 1, we get "
X enp-a(w e )] = (e ) T (- exp(-nNz) (B5)
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~Vr Nz asz—0 (B.6)
and
io exp[—z(N + %)2] ~Vm /(2Vz) asz >0, (B.7)

where in each asymptotic case the exponentially small terms are neglected (cf.

[23)).

Appendix C. Riemann integral summation method

We may evaluate the asymptotic expansion result (5.3) in a rather direct way by
approximating the sum by a Riemann integral, utilising a method described by
Bender and Orszag ([4], page 303). Writing z = {2, we have

2 (N + 1)em el = g2 B (N 4 3)g] e ber)
N=0 N=0

~ {'zjc;wue“"zdu as{ -0

=¢72/2, (C.1)
since as { — O the second series above becomes a Riemann sum for the given
integral. Thus (5.3) is obtained.

A more general result obtained similarly is

> 1 1
P —z(N+B)Y __ — -
NZ:lO(N +B)’e PRl (VAR Rty (C2)

as z = 0, for p > ~1, ¢ > 0, and arbitrary finite 8, where I'( ) is the Gamma
function. Note that this method only gives the leading asymptotic term, which is
independent of 8. Forp =0, ¢ = 2 and 8 = 0 or B8 = }, we recover the leading
term of (B.4) or (B.7). Equation (5.3) correspondstop = 1,9 =2 and 8 = 3.
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