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Almost sure asymptotic stability analysis of the θ-Maruyama
method applied to a test system with stabilising and

destabilising stochastic perturbations

Gregory Berkolaiko, Evelyn Buckwar, Cónall Kelly and Alexandra Rodkina

Abstract

We perform an almost sure linear stability analysis of the θ-Maruyama method, selecting as our
test equation a two-dimensional system of Itô differential equations with diagonal drift coefficient
and two independent stochastic perturbations which capture the stabilising and destabilising
roles of feedback geometry in the almost sure asymptotic stability of the equilibrium solution.
For small values of the constant step-size parameter, we derive close-to-sharp conditions for the
almost sure asymptotic stability and instability of the equilibrium solution of the discretisation
that match those of the original test system. Our investigation demonstrates the use of a discrete
form of the Itô formula in the context of an almost sure linear stability analysis.

1. Introduction

The field of numerical analysis is often concerned with the effect of a numerical method on the
qualitative behaviour of solutions of differential equations. To investigate this effect, one can
apply the method to a test problem which is simple enough to allow for a precise analytical
treatment, but which nonetheless exhibits the property of interest.

Numerical analysis for ordinary differential equations has produced several concepts
associated with the stability of numerical methods, for example A(α)-stability, A-stability and
L-stability: see Hairer and Wanner [10, Chapter IV.3]. These concepts are based on analysing
a method’s properties after it has been applied to the scalar linear test equation x′(t) = λx(t).
The power of this approach is that a large class of general nonlinear systems may be linked
analytically to the scalar linear test equation via a process of linearisation and diagonalisation:
again see [10, Chapter IV.2].

For the linear stability analysis of stochastic numerical methods, the focus in the literature
has been on a scalar linear test equation with a single Wiener process of the form dX(t) =
λX(t) dt+ µX(t) dW (t). A review of that literature may be found in Buckwar and Kelly [5],
along with precise definitions for various forms of asymptotic stability of equilibria of
continuous- and discrete-time stochastic processes. We additionally note that convergence to
zero in probability of solutions of linear random difference equations is addressed in [7] and [14]
as an application of the general analysis of products of random matrices.

Stochastic models of systems arising in such applications as neuroscience or electrical circuit
engineering typically consist of many coupled stochastic differential equations (SDEs) driven
by many sources of noise. Therefore, it seems appropriate to investigate the effect of multi-
dimensional noise in systems of SDEs on the stability properties of numerical methods.
However, results reported in [5, 6] indicate that a scalar linear test equation with a single
Wiener process is not an appropriate representative for general systems of nonlinear SDEs.

In this paper we perform an almost sure linear stability analysis of the θ-Maruyama method
for small step sizes using a two-dimensional test system with diagonal drift and almost
sure stabilising and destabilising diffusion coefficients. This analysis has three stages.
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(1) Transform the discretised test system into a scalar stochastic difference equation with
an equilibrium solution that has identical almost sure stability properties. This transformed
equation has the form

Zn+1 =RnZn, n= 1, 2, . . . ,

where {Rn} is an independent and identically distributed (i.i.d.) stochastic sequence with a
special structure.

(2) Use the strong law of large numbers to express an almost sure asymptotic stability
condition for the transformed system in terms of the constant E[ln(Rn)].

(3) Apply a discrete Itô formula developed in [2] to E[ln(Rn)] in order to derive almost
sure asymptotic stability and instability conditions (for small step sizes) in terms of the system
parameters.

Stage (2) was used previously by Higham [11] in an almost sure linear stability analysis
of the θ-Maruyama method, where he showed in particular that the θ-Maruyama method
does not possess the property of A-stability in the almost sure sense when applied to a linear
scalar test equation. By contrast, it was pointed out in [5] that A-stability in the almost
sure sense is not ruled out for systems of SDEs with more than one dimension and a stochastic
perturbation which is purely almost surely destabilising. These results support the idea that
linear systems of SDEs provide a more appropriate setting within which to study questions of
almost sure stability.

To date, it has not been possible to derive necessary and sufficient almost sure stability
conditions which definitively confirm A-stability in the almost sure sense for a stochastic
numerical method. However, Higham, Mao and Yuan [12] were able to show that, if the
equilibrium of a scalar test equation is almost surely asymptotically stable, then that property
is preserved by a θ-Maruyama discretisation for sufficiently small step sizes. This represents
a weaker notion than A-stability, but may be viewed as a significant intermediate step,
particularly as their results generalise to a broad class of nonlinear SDE systems. In this
paper we refine their approach to generate close-to-sharp conditions for almost sure asymptotic
stability and instability in a test equation that encodes the effect of almost sure stabilising
and destabilising perturbations. Further, we introduce a discrete form of the Itô formula,
developed in Appleby, Berkolaiko and Rodkina [2], as a useful tool in this regard. A more
detailed comparison with the existing literature is given in § 2.1.

1.1. The θ-Maruyama discretisation method

Consider the general linear system of stochastic ordinary differential equations given by

dX(t) = FX(t) dt+
m∑
r=1

GrX(t) dWr(t), t > 0. (1.1)

Here F ∈ Rd×d, G1, . . . , Gm ∈ Rd×d and W = (W1, . . . , Wm)T is an m-dimensional Wiener
process defined on the filtered probability space (Ω, F , (F(t))t>0, P), where the natural
filtration generated by W is denoted (F(t))t>0. The initial value X(0) is an F(0)-measurable
random variable with finite second moment (X(0) may be constant). Equation (1.1) is a linear,
autonomous stochastic differential equation with constant coefficients, and unique strong global
solutions X = {X(t;X(0)), t> 0} exist (see for example [15]). In particular, equation (1.1)
has an equilibrium solution X(t)≡ 0 when X(0) = 0.

Applying the θ-Maruyama method with step size h > 0 and θ ∈ [0, 1] to solutions of
equation (1.1) yields a discrete-time approximation Xn ≈X(n h) satisfying the stochastic
difference equation

Xn+1 =Xn + (1− θ)hFXn + θhFXn+1 +
√
h

m∑
r=1

GrXnξr,n+1, n ∈ N. (1.2)
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Here each ξr,n, r = 1, . . . , m, n ∈ N, represents the F(nh)-measurable standardised Wiener
increment [Wr(nh)−Wr((n− 1)h)]/

√
h. For the analysis in this paper it is sufficient to

consider each {ξr,n}n∈N to be one of m independent sequences of mutually independent
standard normal random variables. The natural filtration generated by the m-dimensional
discrete-time stochastic process (ξ1,n, . . . , ξm,n)n∈N is denoted {Fn}n∈N. Notice that the
discretisation process has preserved the equilibrium solution Xn ≡ 0 when X0 = 0.

1.2. Motivating the test equation

As discussed above, the focus in the literature for the stability analysis of stochastic numerical
methods has been on the scalar linear test equation with a single Wiener process

dX(t) = λX(t) dt+ µX(t) dW (t), t > 0, X(0) = x0 6= 0, λ, µ ∈ C. (1.3)

However, since the matrix coefficients of equation (1.1) are simultaneously diagonalisable only
when they commute pairwise, the class of general nonlinear SDEs that can be linked analytically
to equation (1.3) is small. Thus, the identification of appropriate stochastic test systems is
necessary. In [5], two classes of test systems were proposed which seek to capture the effects of
stochastic perturbation on the almost sure asymptotic stability of point equilibria, and a partial
stability analysis was carried out on each. The structure of those test systems was motivated
by well-established results demonstrating that multiplicative stochastic perturbations may act
to stabilise or destabilise an equilibrium solution in the almost sure sense. A review of the
extensive literature on the subject may be found in Appleby, Mao and Rodkina [3].

In this paper we work with one of the linear test systems proposed in [5]. Consider

d

(
X1(t)
X2(t)

)
=
(
λ 0
0 λ

) (
X1(t)
X2(t)

)
dt+

(
σ 0
0 σ

) (
X1(t)
X2(t)

)
dW1(t)

+
(

0 −ε
ε 0

) (
X1(t)
X2(t)

)
dW2(t), t > 0, (1.4)

with system parameters λ, σ, ε ∈ R. The independent terms of the diffusion coefficient capture
both the almost sure stabilising and destabilising effects of stochastic perturbation; the
equilibrium solution of equation (1.4) is almost surely asymptotically stable if and only if

2λ− σ2 + ε2 < 0. (1.5)

Remark 1. Clearly, the equilibrium solution of equation (1.4) is almost surely unstable
if 2λ− σ2 + ε2 > 0. This regime breaks into two cases. First, when 2λ− σ2 + ε2 > 0, non-
equilibrium solutions of equation (1.4) satisfy limt→∞ |X(t)|=∞ almost surely. Second, in the
threshold case where 2λ− σ2 + ε2 = 0, non-equilibrium solutions satisfy lim inft→∞ |X(t)|= 0
and lim supt→∞ |X(t)|=∞. The combination of the strong law of large numbers and the
discrete Itô formula employed in this paper allows us to determine when the norms of the
discretisation of discrete solutions of equation (1.4) tend to infinity almost surely, but does not
address recurrent behaviour; therefore, we omit the threshold case from consideration. For this
reason we refer to the almost sure asymptotic stability and instability conditions developed for
the discretisation of equation (1.4) as being ‘close-to-sharp’, rather than ‘sharp’.

Following discretisation by the θ-Maruyama method, equation (1.4) becomes, for n ∈ N,

(
X1,n+1

X2,n+1

)
=


1 + (1− θ)hλ

1− θhλ
+

√
hσξ1,n+1

1− θhλ
−
√
hεξ2,n+1

1− θhλ√
hεξ2,n+1

1− θhλ
1 + (1− θ)hλ

1− θhλ
+

√
hσξ1,n+1

1− θhλ

(X1,n

X2,n

)
, (1.6)
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where additionally θ ∈ [0, 1], h > 0 and {ξ1,n}n∈N, {ξ2,n}n∈N are independent sequences of
mutually independent standard normal random variables. Notice that the equilibrium solution
(X1,n, X2,n)≡ (0, 0) has been preserved in equation (1.6). In order that equation (1.6) be well
defined for all n ∈ N, we assume for the duration of the paper that 1− θhλ 6= 0.

The main result of this paper shows that for sufficiently small h, with the possible exception of
the threshold case where 2λ− σ2 + ε2 = 0, we recover precisely Condition (1.5) and therefore
for small step sizes the almost sure asymptotic stability or instability of the equilibrium of
equation (1.4) is preserved exactly through a θ-Maruyama discretisation.

1.3. Outline of the paper

In § 2.1 we review some of the relevant literature and discuss the context of our analysis within
it. In § 2.2 we introduce the discrete Itô formula published in [2], and reformulate it in a manner
that makes it useful for our purposes. In §§ 2.3 and 2.4 we transform equation (1.6) in such
a way that the discrete Itô formula may be applied. In § 3 we present our main results, first
writing almost sure asymptotic stability and instability conditions in terms of the expectation
of the logarithm of the stochastic coefficient of the transformed system. These conditions apply
for all step-size parameters h > 0. Second, we apply the discrete Itô formula in order to state
(for sufficiently small h) close-to-sharp almost sure asymptotic stability and instability criteria
explicitly in terms of the system parameters. Finally in § 4 we summarise and discuss our work
and indicate possible future lines of investigation.

2. Preliminaries

2.1. The context of our work in the literature

A method of characterising the almost sure asymptotic stability of a prototypical linear
stochastic difference equation in terms of an expectation may be found in Berkolaiko and
Rodkina [4]. Consider

Xn+1 =Xn(1 + ξn+1), n= 1, 2, . . . , X0 = x0 ∈ R, (2.1)

where ξi are i.i.d. random variables with Eξi = 0 and Var[ln |1 + ξi|]<∞. Since one can write

|Xn|= |X0|
n∏
i=1

|1 + ξi+1|= |X0| exp
{ n∑
i=0

ln |1 + ξn+1|
}
,

almost sure asymptotic stability (respectively instability) follows if
∞∑
i=1

ln |1 + ξi+1|=−∞ (respectively +∞).

One can then apply Kolmogorov’s strong law of large numbers (see for example Shiryaev [16,
Chapter IV, p. 389] and Theorem 2.1 below) to show that almost sure asymptotic stability of
the equilibrium solution of equation (2.1) corresponds precisely to E[ln |1 + ξi|]< 0.

Theorem 2.1 (Kolmogorov’s strong law of large numbers). Let {ξi}i∈N be a sequence of
independent random variables with Var[ξk] = θ2k <∞. Let Sn = ξ1 + . . .+ ξn and define the
positive sequence {bn} such that limn→∞ bn =∞ and

∞∑
i=1

θ2i
b2i
<∞.

https://doi.org/10.1112/S1461157012000010 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157012000010


ON STABILITY–INSTABILITY OF THE θ-MARUYAMA METHOD 75

Then

lim
n→∞

Sn − E[Sn]
bn

= 0 almost surely.

The same technique appears earlier in the numerical analysis literature. In [11, Lemma 5.1],
Higham characterises the almost sure asymptotic stability of the equilibrium of the θ-Maruyama
discretisation of a scalar linear test equation in exactly this way.

More recently, Higham, Mao and Yuan [12] have shown that, when the scalar test equation
is almost surely asymptotically stable, the θ-Maruyama discretisation preserves that stability
for small step sizes. They do so by (as above) characterising almost sure asymptotic stability
in terms of the expectation of the logarithm of a stochastic sequence, applying the inequality

ln(1 + u) 6 u− 1
2u

2 + 1
3u

3, u>−1 (2.2)

and exploiting the moment properties of normal random variables. They also show how their
results generalise to nonlinear systems of stochastic differential equations.

In this paper, instead of using equation (2.2) to estimate the logarithm function and hence
showing that for sufficiently small h

Equilibrium of equation (1.4) almost surely asymptotically stable
⇒ Equilibrium of equation (1.6) almost surely asymptotically stable,

we employ the discrete Itô formula from [2] to show that for sufficiently small h this statement
is in fact necessary and sufficient.

By restricting attention to the test system equation (1.4) and its discretisation equation (1.6),
our analysis shows that the θ-Maruyama method captures the effects of almost sure stabilising
and destabilising perturbations when the step size is small. This complements the main result
in [5] on almost sure asymptotic stability, which may be stated as follows.

Theorem 2.2. The equilibrium solution of equation (1.6) is globally almost surely asymp-
totically stable if

λ+ 1
2 (σ2 + ε2) + 1

2h(1− 2θ)λ2 < 0.

The statement of Theorem 2.2 gives a sufficient condition which is unlikely to be sharp, due
to the positive sign in front of the σ2 term. However, it demonstrates that A-stability is not
ruled out for systems of SDEs with more than one dimension and a stochastic perturbation
which is purely almost surely destabilising. We refer the reader to [5] for further discussion.

2.2. A discrete form of the Itô formula

An introduction to discrete forms of the Itô formula may be found in Shiryaev [16, Chapter VII,
p. 389]; note also the papers by Akahori [1], Kannan and Zhang [13] and the survey of discrete
stochastic calculus presented in Gzyl [9]. Although [1] demonstrated the use of a discrete Itô
formula to prove convergence of the Euler–Maruyama method, to the best of our knowledge
such a formula has never been used to perform an almost sure linear stability analysis.

The particular discrete Itô formula that we are interested in was developed in [2] and is
reproduced here in Theorem 2.3.

Assumption 1. {ζn} is a sequence of Fn-measurable random variables, where

Eζn = 0, Eζ2
n = 1, E|ζn|3 are uniformly bounded (2.3)

and each ζn has density function y = pn(x) satisfying

x3pn(x)→ 0 as |x| →∞ uniformly in n. (2.4)
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Theorem 2.3. Consider φ : R→ R such that there exist δ > 0 and φ̃ : R→ R satisfying:
(i) φ̃≡ φ on Uδ = [1− δ, 1 + δ];

(ii) φ̃ ∈ C3(R) and |φ̃′′′(x)|6M for some M and all x ∈ R;
(iii)

∫
R |φ− φ̃| dx <∞.

For each n, let fn and gn be Fn-measurable uniformly bounded random variables, |fn|, |gn|<K,
and let ζn+1 be an Fn-independent random variable satisfying (2.3) and (2.4) in Assumption 1.
Then

E[φ(1 + fnh+ gn
√
hζn+1)|Fn]

= φ(1) + φ′(1)fnh+
φ′′(1)

2
g2
nh+ hfnO(h) + hg2

nO(h), (2.5)

where the error term O(h)→ 0 as h→ 0, uniformly in n, fn and gn.

Remark 2. Theorem 2.3 provides an explicit expression for the conditional expectation of
a transformed stochastic mapping typically found in θ-Maruyama discretisations of stochastic
differential equations. Hence, the authors of [2] refer to it as a discrete Itô formula. The
requirement for the auxiliary function φ̃ satisfying Conditions (i)–(iii) arises from [2, Proof of
Theorem 2.3], to which we refer interested readers.

Theorem 2.3 may be reformulated as a corollary more appropriate for the analysis in this
paper, as follows.

Corollary 2.4. Let the assumptions of Theorem 2.3 hold and additionally let the terms
of {ζn}n∈N be identically distributed random variables. Let fn = Fh and gn =Gh depend on
h and have the following representation:

Fh = f(h) +O(h), G2
h = g2(h) +O(h), where O(h)→ 0 as h→ 0.

Then equation (2.5) takes the form

E[φ(1 + hFh +
√
hGhζn+1)|Fn] = φ(1) + hφ′(1)f(h) + h

φ′′(1)
2

g2(h) + hO(h). (2.6)

2.3. Tail behaviour of probability distributions

In order to apply Corollary 2.4, we will transform the system equation (1.6) into a linear scalar
stochastic difference equation in § 2.4. However, the stochastic perturbation of the transformed
system will no longer be normal, and we will have to prove that the density functions of the
transformed perturbations satisfy the conditions of Assumption 1. In this section we present
Lemmas 2.5 and 2.6, which will be necessary to achieve this.

Lemma 2.5 is a collection of standard results which may be proved by applying the change
of variable technique. See Grimmett and Stirzaker [8] for details.

Lemma 2.5. Let U and V be independent random variables with probability density
functions y = fU (x) and y = fV (x), respectively.

(i) Let fU2(x) be the probability density function of U2. Then

fU2(x) =
1√
x
fU (
√
x), x > 0.

(ii) Let a, b ∈ R, and a 6= 0. Let faU+b(x) be the probability density function of aU + b. Then

faU+b(x) =
1
|a|
fU

(
x− b
a

)
, x ∈ R.
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(iii) Let fU+V (x) be the probability density function of U + V . Then

fU+V (x) =
∫∞
−∞

fU (u)fV (x− u) du, x ∈ R.

Lemma 2.6 below requires the following assumption.

Assumption 2. Z is a random variable with probability density function y = fZ(x)
satisfying

|x|kZfZ(x)→ 0 as |x| →∞,

uniformly in x, for some kZ > 1.

Lemma 2.6. Let U and V be independent random variables with probability density
functions y = fU (x) and y = fV (x) satisfying Assumption 2 with kU > 1 and kV > 1,
respectively.

(1) Let c ∈ R. Then

|x|kU fU+c(x)→ 0 as |x| →∞.

(2) Let k1 <min{kU , kV }. Then

|x|k1fU+V (x)→ 0 as |x| →∞.

(3) Let k2 < (kU + 1)/2. Then

xk2fU2(x)→ 0 as x→∞.

Proof. Part (i).
By part (ii) of Lemma 2.5, we have

|x|kU fU+c(x) = |x− c+ c|kU fU (x− c)
6 |x− c|kufU (x− c) + |c|kU fU (x− c)
= |y|kU fU (y) + |c|kU fU (y),

where y = x− c. Now, by Assumption 2,

0 6 lim
|x|→∞

|x|kU fU+c(x) 6 lim
|y|→∞

(|y|kU fU (y) + |c|kU fU (y)) = 0,

giving the result.

Part (ii).
By Assumption 2, there exist sufficiently large constants H > 0 and a0 > 0 such that

fU (u)≤Hu−kU , fV (v)≤Hu−kV , when |u|> a0. (2.7)

Let z > 2a0, and decompose the density function of U + V as

fU+V (z) =
∫∞
−∞

fU (u)fV (z − u) du

=
∫z/2
−∞

fU (u)fV (z − u) du︸ ︷︷ ︸
J1

+
∫∞
z/2

fU (u)fV (z − u) du︸ ︷︷ ︸
J2

. (2.8)
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Since z/2> a0, for J1 we have u < z/2 and z − u > z − z/2 = z/2> a0, while for J2 we have
u > z/2> a0. Thus, equations (2.7) and (2.8) yield∫∞

−∞
fU (u)fV (z − u) du ≤

∫z/2
−∞

fU (u)H2kV z−kV du+
∫∞
z/2

H2kU z−kU fV (z − u) du

= H

(
2kV z−kV

∫z/2
−∞

fU (u) du+ 2kU z−kU

∫∞
z/2

fV (z − u) du

)
6 H

(
2kV z−kV + 2kU z−kU

)
,

since fU and fV are density functions. Thus, for k1 <min{kU , kV } and z→∞,

zk1
∫∞
−∞

fU (u)fV (z − u) du→ 0.

Similarly we can prove that, for k1 <min{kU , kV } and z→−∞,

|z|k1
∫∞
−∞

fU (u)fV (z − u) du→ 0.

Part (iii). Since k2 < (kU + 1)/2, part (i) of Lemma 2.5 gives

xk2fU2(x) = xk2
1√
x
fU (
√
x) = (

√
x)2k2−1fU (

√
x)→ 0 as x→∞. 2

2.4. Transformation of system equation (1.6)

In order to apply Corollary 2.4, we must transform it into a scalar stochastic difference equation
with a trivial solution possessed of equivalent almost sure asymptotic stability properties to
those of equation (1.6).

Lemma 2.7. Let {ξ1,n}n∈N and {ξ2,n}n∈N be independent sequences of mutually
independent standard normal random variables. Define the sequence of random variables
{ηn}n∈N by

ηn :=
2(1 + (1− θ)λh)σξ1,n +

√
hσ2(ξ21,n − 1) +

√
hε2(ξ22,n − 1)

(1− θλh)2
. (2.9)

Then E(η2
n)<∞ for each n ∈ N.

Proof. We can write

E
(
η2
n

)
=

1
(1− θλh)4

(4σ2(1 + (1− θ)λh)2

+ hσ4(Eξ41,n − 1) + hε4(Eξ42,n − 1) + 4
√
h(1 + (1− θ)λh)σ3Eξ31,n)

=
4σ2

(1− θλh)2

(
(1 + (1− θ)λh)2

(1− θλh)2

)

+
hσ4(Eξ41,n − 1) + hε4(Eξ42,n − 1) + 4

√
h(1 + (1− θ)λh)σ3Eξ31,n

(1− θλh)4

=
4σ2

(1− θλh)2

(
(1 + (1− θ)λh)2

(1− θλh)2

)
+

2h(σ2 + ε2)
(1− θλh)4

,

< ∞. (2.10)
2
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Lemma 2.8. Let {ηn}n∈N be the sequence defined in (2.9). Define the sequence of random
variables {ζn}n∈N by

ζn :=
ηn√

E (η2
n)
. (2.11)

Then ζn satisfies Conditions (2.3) and (2.4) of Assumption 1, for each n ∈ N.

Proof. Since the terms of the sequences {ξ1,n}n∈N and {ξ2,n}n∈N are independent random
variables with common density function

ϕ(x) =
1√
2π
e−x

2/2, x ∈ R,

we see that xkϕ(x)→ 0 as |x| →∞ for any k ∈ N. In particular, take k = 3. Now denote

αh =
1√

E(η2
n)(1− θλh)2

,

and note that αh <∞ by equation (2.10). Then from (2.9) and (2.11) we have

ζn = αh[
√
hσ2ξ21,n + 2(1 + (1− θ)λh)σξ1,n +

√
hε2ξ22,n − 2

√
h(σ2 + ε2)]. (2.12)

Clearly, each ζn satisfies Condition (2.3) of Assumption 1. It remains to show that
Condition (2.4) is also satisfied.

Define the independent random variables

An :=
[
ξ1,n +

(1 + (1− θ)λh)√
hσ

]2
; Bn := ξ22,n. (2.13)

Applying parts (i) and (iii) of Lemma 2.6, we see that the density function of An and Bn must
satisfy Condition (2.4); moreover, we can rewrite equation (2.12) as a linear combination of
An and Bn:

ζn = αh
√
hσ2An + αh

√
hε2Bn − αh

[
(1 + (1− θ)λh)2

hσ2
− 2
√
h(σ2 + ε2)

]
. (2.14)

A final application of parts (i) and (ii) of Lemma 2.6 gives the result. 2

Lemma 2.9. Let {(X1,n, X2,n)}n∈N be a solution of equation (1.6), and set

Zn :=X2
1,n +X2

2,n, n ∈ N. (2.15)

Then the sequence {Zn}n∈N satisfies almost surely

Zn+1 = Zn(1 + hFh +
√
hGhζn+1), n ∈ N, (2.16)

where each ζn is defined by (2.11). Moreover:

(i) Fh can be represented in the form

Fh = f(h) +O(h) :=
2λ+ σ2 + ε2

(1− θλh)2
+O(h); (2.17)

(ii) Gh can be represented in the form

G2
h = g2(h) +O(h) :=

4σ2

(1− θλh)2
+O(h); (2.18)

where O(h)→ 0 as h→ 0 in each case.
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Proof. Part (i).
Squaring out the individual components of equation (1.6) and summing yields

equation (2.16), where

Fh :=
2λ

(1− θλh)
+

σ2 + ε2

(1− θλh)2
+

λ2h

(1− θλh)2
(2.19)

and
Gh :=

√
E(η2

n), (2.20)

each ηn being defined by (2.9). Clearly, (2.17) follows from (2.19).

Part (ii).
Note that Gh is independent of n since terms of the sequence {ηn} are mutually independent

and identically distributed. It remains to show that equation (2.18) holds. Recall from the
proof of Lemma 2.7 that, since {ξ1,n}n∈N and {ξ2,n}n∈N are mutually independent sequences
of mutually independent standard normal random variables,

G2
h = E(η2

n) =
4σ2

(1− θλh)2

(
(1 + (1− θ)λh)2

(1− θλh)2

)
+

2h(σ2 + ε2)
(1− θλh)4

.

The statement of the lemma now follows from the fact that
(1 + (1− θ)λh)2

(1− θλh)2
= 1 + 2

λh

(1− θλh)
+

λ2h2

(1− θλh)2
.

2

3. Main results

Our stability analysis takes place in two stages. First, Theorem 3.1 expresses the stability of
the transformed system in equation (2.16) (and therefore of the test system equation (1.6)) in
terms of the sign of the following quantity.

Definition 1. Let {ζn}n∈N, Fh and Gh be as defined in (2.11), (2.19) and (2.20),
respectively. Then we can define

b := E ln(1 + hFh +
√
hGhζn+1). (3.1)

Remark 3. By (2.9) and (2.11), the terms of {ηn}, and therefore {ζn}, are identically
distributed, and consequently b does not depend on n for all n ∈ N.

Second, and following Berkolaiko and Rodkina [4], we apply the discrete Itô formula in
Theorem 3.2 to express this condition in terms of the test system parameters for sufficiently
small values of the step size h.

Theorem 3.1. Let {Zn}n∈N be a solution of equation (2.16). Then:
(1) limn→∞ Zn = 0 almost surely if and only if b < 0;
(2) limn→∞ Zn =∞ almost surely if and only if b > 0.

Proof. By (2.15) and equation (2.16), both Zn and (1 + hFh +
√
hGhζn+1) are almost

surely non-negative for all n ∈ N. Hence, we can write

Zn+1 = Z0e
Sn , (3.2)

where

Sn :=
n∑
i=0

ln(1 + hFh +
√
hGhζn+1).
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By (3.1), we see that ESn = nb and, applying Theorem 2.1, we have

lim
n→∞

Sn
n

= b, almost surely. (3.3)

Part (i), sufficiency.
Let b < 0 and set ε=−b/2. By equation (3.3), we can find, for almost all ω ∈ Ω, N1 =

N1(ω, ε), where n >N1 gives
Sn(ω)
n
− b6− b

2
and, therefore, for n >N1,

Sn(ω) 6
b

2
n

and

lim
n→∞

Sn =−∞, almost surely. (3.4)

By equation (3.2), this is equivalent to limn→∞ Zn = 0, almost surely.

Part (i), necessity.
We proceed by contradiction, assuming that b> 0. Suppose that equation (3.4) holds, and

again choose ε=−b/2. Then, for almost all ω ∈ Ω, there is N2 =N2(ω, ε) such that

Sn(ω)− nb
n

>− b
2
, n > N2,

and therefore
b

2
n6 Sn(ω), n > N2.

So, if b > 0,

lim
n→∞

Sn =∞, almost surely

and, if b= 0,

lim
n→∞

Sn > 0, almost surely,

both of which statements contradict equation (3.4). We therefore conclude that b < 0. Part (ii)
is proved similarly. 2

Finally we apply Corollary 2.4 to express the stability conditions of Theorem 3.1 in terms
of the coefficients of equation (1.6), for sufficiently small step size h.

Theorem 3.2. Let {Zn}n∈N be a solution of equation (2.16). Then there exists h0 =
h0(λ, ε, θ, σ) such that for all h≤ h0:

(i) limn→∞ Zn = 0 almost surely if and only if

2λ− σ2 + ε2 < 0;

(ii) limn→∞ Zn =∞ almost surely if and only if

2λ− σ2 + ε2 > 0.

Proof. Set φ(u) = ln u, for u ∈ (0,∞), and define φ̃ as follows:

φ̃(x) =

{
ln |x|, |x|> 1/e,

− 1
4e

4x4 + e2x2 − 7
4 , |x|6 1/e.
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Clearly, φ̃ is continuous, bounded and has a bounded third derivative on [0,∞). Moreover,
since ∫1/e

0

ln u du <∞,

we have ∫∞
0

|ln u− φ̃(u)| du <∞.

Since the coefficients Fh, Gh are independent of n and, by Lemma 2.8, each ζi satisfies the
conditions of Assumption 1, all conditions of Theorem 2.3 hold. Therefore, we may apply
equation (2.6) in Corollary 2.4 to obtain

E[ln(1 + hFh +
√
hGhζn)] =

h

(1− θλh)2

(
2λ+ σ2 + ε2 − 1

2
4σ2 + (1− θλh)2O(h)

)
. (3.5)

The right-hand side of equation (3.5) is negative (respectively positive) if and only if

2λ− σ2 + ε2 + (1− θλh)2O(h)< 0 (respectively> 0),

and the statement of the theorem follows. 2

4. Conclusions and future work

In this paper we apply the discrete form of the Itô formula developed in [2] to a linear almost
sure asymptotic stability analysis of the θ-Maruyama numerical method, using a particular
test system of SDEs proposed in [5] that captures the almost sure stabilising and destabilising
effects of stochastic perturbation on a diagonal drift coefficient.

The main result shows that, for sufficiently small step sizes, the almost sure asymptotic
stability properties of the equilibrium of the test system are captured by the stochastic
difference equation that results from the discretisation.

Future work will seek to refine our technique to relax the limitations on the step size, to
investigate the threshold case where 2λ− σ2 + ε2 = 0 and to allow for more complex drift
structures to be treated.
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