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FACTORIZATION INTO SYMMETRIES
AND TRANSVECTIONS OF GIVEN CONJUGACY CLASSES

FRIEDER KNUPPEL

ABSTRACT.  The u-invariant u(K) of a field K is the smallest number k € N U {oo}
such that every k-dimensional regular quadratic form over K is universal. Let O(V, f)
be the orthogonal group of a finite-dimensional regular metric vector space over a field
K of characteristic distinct from 2. Let 7 € O(V), B(n) := V(r — 1), dim[B(7) N
kernel(m — 1)] > u(K). Given A4, ..., Am € K* where m := dim B(w) — u(K) + 1. Then
m= 0] --- -0, where k := dim B(m) and o; is a symmetry with negative space Ka;
and f(a;,a;) = N fori € {1,..., m}. We prove similar theorems also for symplectic
groups where transvections are taken as generators.

The present paper emerged from an attempt to provide short self-contained proofs of
the results [1] and [2] within a more general frame. Let G be the orthogonal or
symplectic group of an n-dimensional vector space V over a field. Call ¢ € G simple
if dim(kemel(a — 1)) = n — 1. We want to write a given 7 € G as a product of sim-
ple elements of G such that the number of factors is small and certain factors belong to
prescribed conjugacy classes of G. Background material for reading this paper may be
found in [3].

1. Prerequisites, notations and basic facts. Let K be a field with char K # 2. Let
u := u(K) denote the u-invariant of K. By definition u is the smallest number k € N (co
if such a number k does not exist) with the following property: If Q is a regular quadratic
form on a K-vector space W and dim W > u then Q(W) = K, i.e. Q is universal. Observe
that u(K) = 2 when K is finite.

Let V be an n-dimensional vector space (n € N)andf: VXV — K aregular symmetric
or skew-symmetric bilinear form. Let G := {r € GL(V) | f(am, br) = f(a, b) for all
a,b € V}. When f is symmetric then G is called an orthogonal group O(V), when f is
skew-symmetric then G is a symplectic group Sp(V).

For m € End(V) let B(m) := V(m — 1) be the path, F(r) := kernel(r — 1) the fix
and N(m) := F(—m) the negative space of 7. Clearly, dim B(m) + dim F(w) = n and
N(m) C B(r). Call 7 simple if dimB(r) = 1. If 7 € G then F(m)- = B(w). We use
frequently the path rule:

(1) Let ¢, 7 € End(V). Then B(pm) C B(p) + B(m).

In particular this rule yields
) Letm=0y----- o, for simpleelements 0, ..., 0, € End(V). Then dim B(m) <'s.
If dim B(7) = s then B(m) = B(o1) @ - - - ® B(oy).
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The simple elements in O(V) are the symmetries o, where a € V is anisotropic. The
symmetry o, is defined by the property B(g,) = Ka. The simple elements of Sp(V) are
the (symplectic) transvections 7,,,,: v +— v + puf (v, w)w where w € V\O and pp € K*.
Observe that B(r,,) = Kw and T,;,lv = T_uw. For A € K* call 0, a A-symmetry
if AK*? = d(B(oa)) = f(a,a)K*% call 7, a A-transvection if AK*? = uK*?. Let
Q:0(V) — K* / K*? denote the spinorial norm. Then O(o,) = f(a, a)K*? for each sym-
metry o,.

We will frequently use the following elementary lemma.

LEMMA 1.1. Let G be an orthogonal or symplectic group. Let ¢ € G and T a simple
element of G. The following statements are equivalent.
(i) dim F(pT1) = dim F(p) + 1.
(ii) B(r) ¢ B(gr);
(iii) B(p) = B(1) & B(y7);
(iv) B(pT) is properly contained in B(p);
(v) F(yp) is properly contained in F(pT).

The following facts are well-known and easy to prove.

(3) Let A € K*. The set S()\) of A-symmetries in O(V) is a conjugacy class in O(V).
The set T(A\) of A-transvections is a conjugacy class in Sp(V).

(4) Let 7 € O(V) and B(n) ¢ F(r) (i.e. B(m) is not totally isotropic). Then  is a
product of dim B(7) symmetries.

(4") Let m € Sp(V) and B() ¢ N(r) (i.e. ™ # 1). Then = is a product of dim B(r)

transvections.
2. Results.
PROPOSITION 1. Let K # GF3, 7 € O(V), s := dim(B(r) N F(m)) + 1 and
Alse s ds € L(m) == {Q) | v € B(m)} \ {0}. Then 7 = o1+ -+ - OdimBm for

symmetries o; such that oy € S(\1),...,05 € S(A).

THEOREM 1. Let K # GF3 and © € O(V) such that dim B(r) / (B(7r) N F(7r)) > u.
Let m := dimB(m) —u + 1. Given \|,..., A, € K*. Then ™1 = 01 - -+ * OdimB(n) fOr
symmetries o; such that 0, € S(A\1),...,0m € S(Am).

THEOREM 2. Let K # GF3 and m € O(V). Let
m := max{dimB(r) — u + 1,dimrad B(r) + 1}.

Given \,...,Am € L(m) ;== {Q() | v € B(m)} \ {0}. Then m = 01 - - - - OdimB(m) for
symmetries o; such that 01 € S(A\1),...,0m € S(Ap).

COROLLARY 1. Let K # GF3 and r € O(V) such that dim B(r) / (B(m)\F(m)) > u.
Letm := dimB(w)—u+1. Thenm =0y - - OdimB(r) fOor symmetries o; witho1,...,0m €
kernel ©.

The following two corollaries apply in particular to finite fields.
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COROLLARY 2. Letu <2andK # GF3. Let 7 € O(V), dim B(r)/ (B(rr)ﬁF(vr)) >
uand X, ... ’)\dimB(w) € K such that \y - - - - )\dimB(W)K*z =0O(n). Thenm =0y -+ -
OdimB(m) for N\i-symmetries 0;, i € {1,...,dimB(m)}.

COROLLARY 3. Letu <2 and K # GF3 and 7 € kernel(©).

a) If dim B(W)/(B(W) N F(7r)) > uthenm =0 -+ OdimB(n) for I-symmetries (i.e.
symmetries in kernel ©).

b) If dim B(m)/ (B(m) N F(m)) < uand m # 1 then m is a product of dim B(r) + 2
1-symmetries, but not a product of less than dim B(m)+2 1-symmetries, with the following
exception: If dim B(r) /(B(m) N F(m)) = 1 and Q(a) = 1 for some a € B(r) then  is a
product of dim B(r) 1-symmetries.

c) kernel © is generated by the set of 1-symmetries.

PROPOSITION 2. Let K # GF3, m € Sp(V), s := dimN(m) + 1 and \y,...,\s €
L(m) := {—f(v,vm) | v € V}\ {0}. Then m =71 - - - - TaimB() for transvections 7; such
thatt) € T(\y),...,7Ts € T(\).

THEOREM 3. Let K # GF3 and m € Sp(V) such that diimB(r)/N(1) > u. Let
m := dimB(r) —u+ 1. Given A\j,..., A\, € K*. Then m = 7| - -+ - T4imB(r) fOr some
transvections 1; such that 1y € T(A\y),...,Tm € T(\).

THEOREM 4. Let K # GF 3 and w € Sp(V). Let
m := max{dim B(7) — u + 1,dim N(m) + 1}.

Given Ay, ..., Am € L(m) := {—f(v,vm) | v € V} \ {0}. Then m =11 - - -+ - TaimB(m) foOr
some transvections 7; such that Ty € T(A\1),...,Tm € T(\p).

The following two corollaries apply in particular to finite fields.
For m € Sp(V) let d(m) denote the discriminant of the bilinear form f;: B(m) X B(m) —
K,f,,(v(7r -1, b) := —f(v, b). For more details on f; see 4.1.

COROLLARY 4. Letu < 2and K # GF3. Let m € Sp(V), dim B(w) /N(m) > u and
Aoseons AdimB(W) € K such that

Al AdimB(— D™ EBOK? = d().

Thenm =1y« -+ - TdimB(r) for Ni-transvections 7;, i € {1,...,dim B(m)}.

COROLLARY 5. Let u <2 and K # GF3. Given A € K* and 7 € Sp(V).

a) If dim B(r) /N(m) > u and d(m) = (—\)™BMK*2 then m = 71 - -+ - TaimBp(n) for
\-transvections Ti.
b) Ifdim B(m) /N(m) > uand d(r) # (=) B K2 thep v =71+ - - Tdim B(r)+1 fOr

some A-transvections T; and w is not a product of less than dimB(m) + 1
A-transvections.

c) If dim B(m) / N(m) < uthen T =T - -+ - TdimB(n)+1 fOr A\-transvections 1; and 7 is
not a product of less than dim B(m) + 1 A-transvections, with the following exception: If
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dim B(7r)/N(7r) = 1 and f(w,wm) = X for somew € Vthen ™ = T| - -+ - TgimB(m) fOr
some \-transvections T;.

REMARKS. 1. Corollary 3 includes the main result of [1] and Corollary 5 improves
the main result of [2]. We need not consider normal forms. The procedure when proving
Theorems 3 and 4 on symplectic groups and the corresponding Theorems 1 and 2 on
orthogonal groups is essentially the same. This is achieved with the help of E. T. Wall’s
bilinear form.

2. We have proved similar Theorems within the more general approach when X is a
local ring. However, in the present exposition we want to avoid difficulties due to such
a generalization.

3. In our Theorems we must exclude K = GF3. Let K = GF3. It is fairly easy to
find out when kernel © is generated by its symmetries; this is e.g. always true when
n > 5; ¢f. 3.7. But we guess it is difficult to determine the minimal number of factors in
a representation of a given 7 € kernel © as a product of 1-symmetries (as it is achieved
in Corollary 3 when K # GF 3). Our arguments to this point are lengthy and involved.
The analogue gap appears in Corollary 5 for symplectic groups.

3. The orthogonal case. We assume that f is symmetric and write Q(v) := f(v, v).

3.1. LetK # GF3 and w € V with Q(w) # 0. There is a basis C = {cy,...,c,} for
V such that Q(c) = Q(w) for every ¢ € C. Furthermore, we can achieve that ¢; L ¢; for
Lhje{l,....n—u+1}andi#j.

PROOF BY INDUCTION. Let n > 2. Choose an n — 1-dimensional regular subspace T
of V with w € T. By our hypothesis we obtain a basis C for T such that Q(c) = Q(w) for
each ¢ € C. Since K # GF 3 we find some anisotropicz € V \ (TUT*). Then To, # T,
hence ¢’o, ¢ T for some ¢’ € C. Clearly, CU {c’s,} is a basis for V with the desired
property. The “furthermore” statement follows now immediately from the definition of
u.

3.2. Theorem 1 holds under the additional assumption that B(r) is regular and m :=
dimB(m) —u+1<2.

PROOF. Using 1.(4) we can assume that m > 1, hence m € {1,2}. Observe that
m— 1€ GL(V).

Let m = 1 and \; € K*. Then dim B(7) = u. Choose ¢ € B(m) with Q(c) = A;. Let
01 := o, and ¢ := woy. Then dim B(7) = dim B(p) & B(o.). If dim B(p) = 1 then ¢
is a symmetry. Else dim B(yp) > % dim B(m), hence B(y) is not totally isotropic. In both
cases ¢ is a product of dim B(y) symmetries and the assertion follows. Now let m = 2
and A1, A\, € K*. We claim that

(%) Q(b(r—1)"") # 0 and Q(b) = A; for some b € B().

Indeed (x) yields the assertion: Let a := b(m—1)"! and 0} := 05. Then ¢ := 7o satisfies
F(¢) = Ka, hence B(p) = a™ is regular. The previous case m = 1 supplies symmetries
072, 0dimB(r) such that @ =02 " *0dimB(r) and Q(v;) = A;. The assertion follows.
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PROOF OF (x). Using [ := dimB(r) > u and 3.1 we obtain a basis {b,,..., b} for
B(m) such that Q(b;) = A\ fori € {1,...,1}.

First let us assume

(+) Foreachi,jwith 1 <i < j < [thereissome b; € Kb;+Kb; suchthat Q(b;) = A

and Kb;, Kb;, Kb;; are distinct.
At least one of the vectors w; := bi(m — 1)~! and wij 1= by(m — 1)~! is anisotropic:
Else each subspace Kw; + Kw; (1 <i < j <) would be totally isotropic as it contains
three distinct singular 1-dimensional subspaces; hence B(m) would be totally isotropic.
Therefore (%) holds true.

Now let us assume that (+) is not valid. Then §|K*| < 2, in particular |K| = 5 and
| = u+1 = 3. We may assume that the subspace Kb; + Kb, is anisotropic, hence
Q(b12) = A and Kb, Kb;, Kb, are distinct for some by, € Kb, + Kb;. At least one
of the vectors by (m — 1)~!, by(mr — 1)~ and by(r — 1)7! is isotropic; else B(r) would
contain a 2-dimensional totally isotropic subspace. Thus we proved () also in this case.

3.3. LetK # GF3 and m € O(V) such that B(r) is singular. Let A € L(w) where

L(m) := {Q() | v € B(m} \ {0}

(Observe that L(r) = K* whenever dim B(r)/ rad B(w) > u). There is a A-symmetry o
such that B(w) = B(no)®B(c) and dimrad B(wo) = dimrad B(w)— 1; hence rad B(mo) =
B(mo) Mrad B(m) and L(no) = L(m).

PROOE. As B*(m) := V(r—1)%is properly contained in B() we can find a subspace
U such that B(m) = U @ rad B(m) and U ¢ B?(7). Then Q(w) = X for some w € U.
Statement 4.1 supplies a basis for U whose vectors c fulfill Q(c) = . Atleast one element
of the basis, say a, is not contained in B?(m). Simple arguments show that o := o, meets
the requirements.

3.4 Proof of Proposition 1. Using 3.3 s — 1 times we obtain \;-symmetries o; (i €
{1,...,5 — 1}) such that B(wro| - - - - - 0s_y) is regular and

B(m) = B(moy + - -+ - 05-1) © B(o1) ® -+ - © Blos—1) and L(moy - -+ - - 05-1) = L(7).

We can choose a A;-symmetry o, such that B(o,) C B(moy - - - - -0,_1). Then dim B(no, -
- - 0g) = dimB(mw) — s and dim(rad B(moy -+ - -+ - os)) < 1. 1.(4) completes the proof.

3.5 Proof of Theorems 1 and 2. Sincg Theorem 2 is just a combination of Proposition 1
and Theorem 1 we need only consider Theorem 1. Suppose that the assumptions in The-
orem 1 are valid.

If m < 0 the assertion follows from 1.(4). So we can assume that m > 1. We proceed
by induction. If dimB(7) = 1thenu = 1 and m = 1; hence K*> = K* and 7 is a
Al-symmetry.

Let dim B(m) > 2.
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CASE 1. B(m) is regular. If m < 2 then 3.2 yields the assertion. Now let m > 3.
Choose a € B(m) with Q(a) = Ay; this is possible since dim B(r) / rad B(m) > u. Then
o1 := g, fulfills B(w) = B(woy) @ B(op) and dimrad B(no;) < 1. Thus

dim B(rro1)/ rad B(ro) > dimB(m) — 2 > u.

Hence 7oy fulfills the requirements of the theorem and the induction hypothesis applies.

CASE II.  B(m) is singular. Then 3.3 supplies a A;-symmetry o; such that B(r) =
B(mo,)® B(o) and dimrad B(mo;) = dimrad B(7) — 1. Then dim B(7o )/ rad B(mo,) =
dim B(r) / rad B(r) > u. The assertion follows by induction.

3.6 Proof of Corollaries 1, 2, and 3. All assertions are obvious from Theorem 1, apart
from Corollary 3b). First assume that dim B() / rad B(m) = 1. Let x denote the discrim-
inant of B() / rad B(r) with respect to f. Then ©(0,) = Q(a)K *2 = x for each anistropic
vector a € B(m). Now 1.(4) and (2) imply:

(i) 7 is a product of dim B(7) 1-symmetries if and only if » = K*2.

Now let x # K*2. As 1 < dimB(r) < n we can choose some a € V such that
Q(a) = 1. Then B(no,) = B(m) ® Ka and dim(B(waa) / rad B(ﬁoa)) > 1; ¢f. 1.1. Using
the previous case or Corollary 3a) we conclude that 7o, is a product of dim B(no,) 1-
symmetries. Hence we obtain

(i) If x # K*? then T is a product of dim B(r) + 2 1-symmetries and not a product of
less than dim B(7) + 2 1-symmetries.

The last statement follows from (i) and since every symmetry o has deto = —1.

Now let B(r) be totally isotropic. Then 2 < dimB(m) < n. Choose some a € V
such that Q(a) = 1. Then B(no,) = B(r) ® Ka, dim(B(mra) / radB(waa)) = 1 and
d (B(?TUa) / rad B(mf,,)) = Q(a)K*? = K*2. Using (i) we obtain the assertion.

3.7. Having in mind K = GF 3 where our previous arguments do not apply we include
the following proposition.

" PROPOSITION. Let u < 2 and let & C O(V) be the set of 1-symmetries.
a) Let n > 5 and o,, oy, distinct symmetries such that 0,0, € kernel ©. Then o, - 0p
is a product of four elements of ©.
b) Letu <2 and K # GF3 orn > 5. Then kernel © is generated by ©.

PROOE. a)Let T := Ka+ Kb. If T is regular choose ¢ € T such that Q(c) = 1. Then
dim B(6,050.) = 1 and O(0,0,0.) = K*?, hence 0,050 € G and 0,0, € &-&. If Tis
singular then dim T+ = n — 2 and dim(rad T+) = dim(rad T) = 1. Hence T* contains a
2-dimensional regular subspace D, and we can choose some anisotropic d € D such that
Q(d) = Q(a). Then Ka + Kd and Kd + Kb are regular. Hence 0,0,4,0,0, € & - & by the
previous case and finally o, - 0 = 0,040,0, € 6-6-6 - 6.

b) By Corollary 3 we can assume that K = GF3 and n > 5. Every 7 € kernel O is
a product of 1-symmetries and —1-symmetries where the number of —1-symmetries is
even; ¢f. 1.(4). Hence a) yields the assertion.
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4. The symplectic case.
4.1 A brieflook at E. T. Wall’s bilinear form. As in 1. let G be an orthogonal group O(V)
or a symplectic group Sp(V) given by the regular form f. Every m € G supplies a bilinear
form '
fri B(m) X B(m) — K, f,,(v(w — 1), b) = —f(v,b)

where v € V and b € B(); ¢f- [4]. Wall’s form f; is regular (but usually not symmetric).
We write M 1, N when M,N C B(n) and f;(m,n) = Oforeverym € Mandn € N.
Let d(m) denote the discriminant of f,. The mapping Q.: B(m) — K, b + fx(b,b) is
a quadratic form and the associated symmetric bilinear form is g,: B(m) X B(m) — K,
gr(a,b) := %[Q,,(a +b) — O(a) — Q(b)]. It is easy to verify that elements 7, ¢ of G are
conjugate if and only if their forms f; and f,, are equivalent, i.e. there is a linear bijection
w: B(m) — B(yp) such that f(a, b) = f,(aw, bw) holds for all a,b € B(w). This yields

(2) If ©' = ¢ then d(nr) = d(y) forall w, p,7 € G, and

(2') Suppose that 7, ¢ € G are simple. Then 7' = ¢ for some ¥ € G if and only if

d(m) = d(y).

If G is orthogonal and o, denotes the symmetry with B(o,) = Ka then d(o,) =
QOs(a,a) = 20(a)K*? where Q(a) := f(a,a).If G is symplectic and 7,,,,, is a transvection
then d(1,,») = O-(w, w)K*? = —puK*? and d(TIj,‘lv) = puK*2.

In the sequel we shall consider a symplectic group Sp(V) = Sp(V. f).

Let 7 € Sp(V) and a,b = w(m—1) € B(m). Then 2g(a,b) = —f (a(r+1),v7). Hence
we obtain

©) rad(B(m), Qr) := rad(B(r), g) = N(m).
We shall repeatedly use the following lemma.

LEMMA 4.1.1. Let ¢ € Sp(V) and T a transvection. The following statements are
equivalent.

(i) dimF(pT1) = dim F(p) + 1.
(ii) B(r) ¢ B(e7);
(iii) B(p) = B(1) ® B(yp1);
(iv) There is some z € B(p) such thatT= T, where |1 := Qw(z)"l.
If these conditions hold then the following properties are true.
(j) B(m) L, B(pT);
(J) folpey = —fr and fo|Bor) = fors
(i) d(p) = —d(7) - d(p7).

PROOF. The equivalence of (i), (ii) and (iii) is part of 1.1. If (i) is valid then
v(ig — 1) = zand v € F(em)\F(p) for some v, hence (i) = (iv). Conversely, a short
computation shows (iv) = (i). Statements (j) and (jj) follow almost immediately from
the definitions; (j) and (jj) entail (jjj). '

COROLLARY 4.1.2. Let m € Sp(V) and T a transvection such that B(wt) = B(1) ®
B(7). Then d(nt) = d(7) - d(m).

PROOF. 4.1.1(jjj) implies that d(rr) = —d(r~") - d(rr =) = d(7) - d().

https://doi.org/10.4153/CMB-1992-053-5 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-1992-053-5

FACTORIZATION INTO SYMMETRIES AND TRANSVECTIONS 407

COROLLARY 4.1.3.  IfTq,...,Tpare Ay, ..., A-transvections such that  := Ty -+ - -y
and k < dim B(7) [hence k = dim B(r) and B(m) = B(11) @ - - - ® B(7y) by 1.(2)] then

dim) = (=)A< - N - K

In [2] a mapping called p is used. We want to mention that p is closely related to the
discriminant mapping of Wall’s bilinear form:

DEFINITION/COROLLARY 4.1.4. Given some A € K*. For 1 € Sp(V) we define
p(m) = (—=\)4mB® . d(r). Then p(1,,) = A\uK*?; hence 1,,, is a \-transvection if
and only if p(T,,,) = K. If 1 € Sp(V) is a product of dim B(m) A-transvections then
p(m) = K*2.

42. Letw € Sp(V) and z € B(m)\B(—) such that Q,(z) # 0.Let A := Q.(2)~" and
T := Ty,. Then B(m) = B(t) ® B(nr) and dim F(n7) = dimF(m) + 1 and dim N(77) =
dim N(7) — 1; hence N(71) = B(wr) N N(m) and L(7T) = L(m).

PROOF. This is immediate from 4.1.1 since N(nr) = F(—7T).

43 . Let K # GF3, m € Sp(V) such that N(m) # Oand A € L(m) := {Q,(2) | z €
B(m} \ {0} (clearly dim B(m)/N(m) > u implies that L(m) = K*; cf. 4.1(3)). There is a
A-transvection 7 such that dim F(77) = dim F(7) + 1 and dim N(7t) = dim N(7) — 1 and
L(rr) = L(7).

PROOF. *B(n?) = B(m)NB(—) is a proper subspace of B(r). Hence B(r) = A®N()
and A ¢ B(r?) for some subspace A. Then A is regular with respect to the quadratic form
QO cf. 4.1(3). We have N(7) = rad(B(7r),g,,); ¢f. 4.1(3). Hence Q,(z) = A for some
z € A. By 3.1 A has a basis whose vectors ¢ fulfill Q,(c)~! = \. Clearly, a € B(r) \B(1r2)
holds for at least one of them. Finally, 4.2 shows that 7 := 7 , meets the requirements.

44. Letw € Sp(V) and 7 = 7,, such that N(r) = 0 and dim F(n7) = dim F(7) + 1.
Then N(r7) = 0 if and only if Qr(z(r + 1)~') # 0.

PROOF. We have p1~! = Q,(z) = —f(w,wn) where z = w(r — 1); ¢f. 4.1.1. Let
d := w(m+ 1)"L If N(n7) # O is true then p1 - f (d(r — 1),d(r — 1)m) = 1. This entails
f(d(m — 1),d(r — D)m) = —f(d(r + 1), d(x + 1)r). We conclude that 0 = f(d,dm) =
—Qx(2(m+1)7"). If conversely Qr(2(w+1)"') = Oholds then d(r — 1) = z(r+ )" €
N(7T).
4.5 . Theorem 2 holds under the additional assumption that N(m) = 0 and m :=
dimB(m) —u+1 <2.

PROOE. We can assume that m > 1, hence m € {1,2}; ¢f. 1.4'.

Let m = 1 and Ay € K*. Then dimB(nr) = u. Choose ¢ € B(w) with Q.(c) =
—A7!. Let 7 := 7_),. and ¢ := 7ry. Then dimB(m) = dimB(p) @ B(r;) and 7" is
a \j-transvection; cf. 4.1.1. If dim B(¢) = 1 then ¢ is a transvection. Else dim B(p) >
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% dim B(m), hence B() is not totally isotropic with respect to Q. This means that 902 %
1. In both cases ¢ is a product of dim B(yp) transvections; cf. 1.(4").
Now let m = 2 and )\, A\, € K*. We claim that

) Qx(b(m+1)"") #0and Qr(b) = —\; ' for some b € B(m).

Replacing \; by —AT!, Q by O and m — 1 by 7+ 1 in the proof of (x) in 3.2 we obtain a
proof of the present statement (*). Indeed (x) yields the assertion: Let 7y := 7_j ;. Then
¢ := mr satisfies B(m) = B(1) @ B(p) and N(p) = 0; ¢f. 4.1.1 and 4.4. Furthermore,
Tl_l is a Aj-transvection. The previous case m = 1 supplies transvections 7z, . . ., Tdim B(r)
such that ¢ = 73, ...,TasimB(m and 72 is a A,-transvection. The assertion follows.

4.6 Proof of Proposition 2. The proof is a consequence 4.3. To carry out the details
replace in the proof of Proposition 1 Q by O, and rad B(m) by N(r) and symmetries by
transvections.

4.7 Proof of Theorems 3 and 4. As in 3.5 it suffices to prove Theorem 3. If m < 0
then 1.(4’) yields the assertion. So we assume that m > 1. We proceed by induction on
dim B(r). If dim B(r) = 1 thenu = 1 and m = 1; hence K*?> = K* and 7 is a transvection.
Clearly the assertion holds in this case.

Let dimB(m) > 2.

CASEL. N(m) =0.If m < 2then 4.5 applies. Now letm > 3, i.e. dim B(7) > u + 2.
Take an arbitrary vector a € B(m) with Q(a) = —)\1‘1 ; this is possible since dim B(m) >
u and B(r) is regular with respect to Q.. Then 7y := 7_,, , fulfills B(7) = B(w7) ® B(1))
and dim N(7r;) < 1. Furthermore, T,“ is a Aj-transvection. Thus dim B(rr) /N(77) >
dim B(m) — 2 > u. Hence 77y meets the requirements of the Theorem and the induction
hypothesis applies.

CASEII.  N(m) # 0. 4.3 supplies a —\-transvection 7y such that B(r) = B(mr) ©
B(r) and dim N(7r;) = dimN(m) — 1. Then dim B(77) /N(7ri) = dim B(m) /N(7) > u
and 77! is a \;-transvection. The assertion follows by induction.

4.8 Proof of Corollaries 4 and 5.

LEMMA 4.8.1. Let!l > u, 7 € Sp(V) a transvection and Ay, ..., \; € K*. Then
T=T - -+ - T where T; is a \;-transvection and B(t;) = B(7), or 1; = 1, for each i.

PROOF. Let T = 7,,. By assumption, p = A6; +--- + A16; for suitable squares
b € K?. Let Ti =TSz if 6; 75 0,else 1; := 1.

Corollary 4 follows immediately from Theorem 2, 1.(2) and 4.1.3. Statement a) in
Corollary 5 is a special case of Corollary 4.

Corollary 5b) and c) will follow from the following statements (i), (ii) and (iii). Let
u<2,K#GF3,me€Sp(V)and A € K*. Let k := dim B(n). If d(1) # (—A\)*K*? then
4.1.3 entails that 7 is not a product of less than k + 1 A-transvections.

First let us assume that dim B(m) /N(7) = 1.

Due to 4.1(3) each z € B(m)\N(n) yields the same value x := Q.(2)K*>.
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By 1.(4")  is a product of k transvections; each factor 7 = 7, in such a product
satisfies —uK*? = —d(r7") = -0, 1 (2)K*? = 0.(2) - K*?* = x; ¢f. 1.(2) and 4.1.1(jj).
Furthermore, 4.1.3 yields that d(m) = x*. We conclude:

(i) Let dim B(m) /N(m) = 1. Then 7 is a product of k A-transvections if and only if
A2 = —x.

Now let 7 € Sp(V) and 7> # 1. Using 1.(4") we obtain a product ¢ of k — 1 transvec-
tions and a transvection 7 such that 7 = ¢ - 7. By 4.8.1 we have 7 = 77, where 7} is
a A-transvection with B(t;) = B(7) and 7, is a A-transvection or 7, = 1. Then 7 is
a product of k transvections. If dim B(yT)) / N(pT11) > 2 then Corollary 5a) yields that
Ty is a product of k A-transvections; hence 7 is a product of k + 1 transvections. Else
dim B(71)/N(pm1) = 1 and o7 is a product of k transvections such that one factor is a
A-transvection. Thus (i) yields that each factor is a A-transvection. So 7 is a product of
k + 1 A-transvections. Hence we proved

(i) Let 7* # 1. Then 7 is a product of at most k + 1 \-transvections.

(iii) Let B(w) = N(n) and 7 # 1. Then 7 is a product of k + 1 but not less than k + 1
A-transvections.

PROOF OF (iii). The not-less-statement follows from 1.(2) and 4.1.1(j). If
dim B(m) = 1 then 4.8.1 yields the assertion. Let dim B(7) > 2. An elementary argument
shows: If 7 is a transvection with B(t) C B(w) then B(m) = N(mw) = B(nt) = N(n1) ® Kz
for some z € V\0. We can choose a —\-transvection 7 such that B(r) C B(r). Then
0 ()K*? = —\K*? by a simple calculation. In (i) we ascertained that 77 is a product of
k A-transvections. This completes the proof.
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