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FACTORIZATION INTO SYMMETRIES 
AND TRANSVECTIONS OF GIVEN CONJUGACY CLASSES 

FRIEDER KNÛPPEL 

ABSTRACT. The «-invariant u(K) of a field K is the smallest number/: GNU {oo} 
such that every /c-dimensional regular quadratic form over K is universal. Let 0(V,f) 
be the orthogonal group of a finite-dimensional regular metric vector space over a field 
K of characteristic distinct from 2. Let 7r G 0{V), B(n) := V(ir - 1), dim[fl(7r) n 
kernel(7r - 1)] > u(K). Given Ai , . . . , Am G K* where m := dimB(ir) - u(K) + 1. Then 
7T = G\ (jk where k := dim#(7r) and ai is a symmetry with negative space Kai 
and/(a,, a,-) = A, for * G { 1 , . . . , m}. We prove similar theorems also for symplectic 
groups where transvections are taken as generators. 

The present paper emerged from an attempt to provide short self-contained proofs of 
the results [1] and [2] within a more general frame. Let G be the orthogonal or 
symplectic group of an «-dimensional vector space V over a field. Call a G G simple 
if dim(kernel(cr — 1)) = n — 1. We want to write a given IT G G as a product of sim­
ple elements of G such that the number of factors is small and certain factors belong to 
prescribed conjugacy classes of G. Background material for reading this paper may be 
found in [3]. 

1. Prerequisites, notations and basic facts. Let K be a field with char K ^ 2. Let 
u := u(K) denote the «-invariant of K. By definition u is the smallest number k G N (oo 
if such a number k does not exist) with the following property: If Q is a regular quadratic 
form on a AT-vector space W and dim W > u then Q(W) = K, i.e. Q is universal. Observe 
that u(K) — 2 when K is finite. 

Let Vbe an n-dimensional vector space (n G N) and/: Vx V —> K a regular symmetric 
or skew-symmetric bilinear form. Let G := {IT G GL(V) | /(cnr^bn) = f(a,b) for all 
a,b G V}. When/ is symmetric then G is called an orthogonal group O(V), when/ is 
skew-symmetric then G is a symplectic group Sp(V)-

For 7T G End(V) let £(TT) := V(TT - 1) be the path, F(TT) := kernel^ - 1) the fix 
and N(n) := F(—ir) the negative space of 7r. Clearly, dimZ?(7r) + dimF(7r) = n and 
N(TT) C £(TT). Call ?r «mpte if dimB(Tr) = 1. If TT G G then Ffr)1- = £(TT). We use 
frequently the path rule: 

(1) Let ip, ir G End(V). Then B(^TT) C B(<p) + B(ir). 
In particular this rule yields 

(2) Let 7T = G\ a s for simple elements a\,...,as G End( V). Then dim #(7r) < s. 
If dim£(7r) = s then £(TT) = # O 0 0 • • • 0 fi(a5). 
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The simple elements in 0(V) are the symmetries aa where a G V is anisotropic. The 

symmetry aa is defined by the property B(aa) = Ka. The simple elements of Sp(V) are 

the (symplectic) transvections T^W: V ^ V + fjf(v, W)W where w G V\0 and fj, e K*. 

Observe that B(r^w) = Kw and r~^ = T-^w. For À G A'* call aa a A-symmetry 

if A#*2 = d(B(aaj) = f(a,a)K*2; call r^w a A-transvection if A/T2 = fiK*2. Let 

0 : O(V) —» # * / £ * 2 denote the spinorial norm. Then 0(<rfl) = f(a,a)K*2 for each sym­

metry cra. 

We will frequently use the following elementary lemma. 

LEMMA 1.1. Let G be an orthogonal or symplectic group. Let (p G G and r a simple 

element ofG. The following statements are equivalent, 

(i) dimF(<pr) = dim F(<p) + 1. 

(ii) B(r) (fL B(ipr); 

(Hi) B(<p) = B(T) 0 B(<pr); 

(iv) B((pr) is properly contained in B((f); 

(v) F((f) is properly contained in F(ipr). 

The following facts are well-known and easy to prove. 

(3) Let X e K*. The set 5(A) of A-symmetries in 0(V) is a conjugacy class in 0(V). 

The set T(X) of A-transvections is a conjugacy class in Sp( V). 

(4) Let TT G 0(V) and B(TT) (£ F(TT) (i.e. B(TT) is not totally isotropic). Then TT is a 

product of dim B(TT) symmetries. 

(40 Let TT G Sp(V) and B(TT) (£ N(TT) (i.e. TT2 ^ 1). Then TT is a product of dim£(7r) 

transvections. 

2. Results. 

PROPOSITION 1. Let K ^ GF3, TT G O(V), 5 := dim(#(7r) n F(?r)) + 1 and 

XU...,XS G L(?r) := {Q(v) | v G B(TT)} \ {0}. 77ié>n TT = a\ OtimBirt for 

symmetries Oi such that o\ G 5(Ai) , . . . , os G S(XS). 

THEOREM 1. Let K ^ GF 3 and TT G 0(V) such that dim B(TT)/ {B(TT) H F(TT)) > u. 

Let m :— dim#(7r) — u + 1. Given A i , . . . , Xm G K*. Then TT — G\ 0"dimfl(7r) for 

symmetries <7; such that o\ G S(X\),..., crm G S(Xm). 

THEOREM 2. Lef # ^ GF 3 am/ TT G 0(V). £ef 

m := max{dim/?(7r) — u+ l,dimrad#(7r) + 1}. 

Given A i , . . . , Am G L(7r) := {Q(v) \ v G B(TT)} \ {0}. 77ien 7r = o\ o-&mB{*)far 

symmetries 0{ such that o\ G S(X\), ...,om £ S(Xm). 

COROLLARY 1. LetK^ GF3 andn G 0(V) such that aim B(TT) / (B(TT)C\F(TT)) > u. 

Let m := dim#(7r)—w+1. 77ie« 7r = a\ VdimBin) far symmetries at with a\,...,am G 

kernel 0 . 

The following two corollaries apply in particular to finite fields. 
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COROLLARY 2. Let u < 2 andK^ GF3. Let TT G 0(V), dimB(TT)/(B(TT)nF(TT)) > 
u and Ai , . . . , Adimfl(Tr) £ K such that X\ Adim^)^*2 = 0(?r). Then TT = o\ 
d̂imfi(Tr) for Xi-symmetries aif i G { 1 , . . . , dimB(TT)}. 

COROLLARY 3. Letu<2 and K^GF3 and TT G kernel(0). 
a) If dim B(TT)/(B(TT) n F(TT)) > M r/ze« TT = a\ <7dimfi(7r)/̂ ^ 1 -symmetries (i.e. 

symmetries in kernel 0). 
£J If dim£(7r)/(5(7r) H F(7r)) < M am/ 7r ^ 1 then TT is a product of dim B(TT) + 2 

1 -symmetries, but not a product ofless than dim B(TT)-\-2 1-symmetries, with the following 
exception: If dim B(TT)/ (B(TT) H F(7r)) = 1 and Q(a) — 1 for some a G #(7r) then TT is a 
product of dim B(TT) 1 -symmetries. 

c) kernel 0 is generated by the set of 1 -symmetries. 

PROPOSITION 2. Let K ^ GF3, TT G Sp(V), s := dimN(7r) + 1 and Xu..., A, G 
L(7r) := {—/(v, V7r) I v G V} \ {0}. 77zen TT = T\ T^mB(n) far transvections T[ such 
thatrx G T(Ai),...,r, G F(A,). 

THEOREM 3. Létf # ^ GF3 arcd TT G Sp(V) ^MC/Z f t o dimB(rr) / N(TT) > u. Let 
m := dim#(7r) — u + 1. G/verc Ai, . . . , Xm G A'*. Then TT — T\ Tdim#(7r)jfor some 
transvections Tt such thatr\ G T(X\),...,rm G T(Xm). 

THEOREM 4. L^ £ ^ GF 3 and TT G Sp(V). Let 

m := max{dim#(7r) — w + l,dim7V(7r) + 1}. 

G/verc Ai, . . . , Xm G L(TT) : = {—/(v, VÎT) | v G V} \ {0}. 77ie>n 7r = n r^mB^)far 
some transvectionsTi such thatr\ G F(Ai),... ,rm G T(Xm). 

The following two corollaries apply in particular to finite fields. 
For 7T G Sp(V) let d(7r) denote the discriminant of the bilinear form/^: 2?(7r) X B(TT) —> 

^»/7r(v(7r — 1), &) := —/(v, Z?). For more details onfn see 4.1. 

COROLLARY 4. Letu <2andK ^ GF3. L^ TT G Sp(V), dimfl(7r)/W(7r) > u and 
X\,..., Adimfl(Tr) G AT swc/i f t o 

Ai xdïmB(7T)(-if™
B^K*2 = d(TT). 

Then TT = T\ ^dimBi-n) far X[-transvections 77, / G { 1 , . . . , dimi?(7r)}. 

COROLLARY 5. Letu<2 and K ^ GF 3. G/verc A G F ami 7r G Sp( V). 
a) If dim B(TT)/N(TT) > u and d(jr) = (_A)dim*<*>£*2

 thm ^ = Tj rd[mB(7r)for 
X-transvections T;. 

b) If dim B(TT)/N(TT) > uandd(jr) ± (_A)dimfi^)+1A:*2 ^ n TT = n Tdim^Hi/or 
swwtf X-transvections T[ and TT is not a product of less than dimi?(7r) + 1 
X-transvections. 

c) If dim B(TT)/N(TT) < u then TT — T\ 7dim #(*-)+1 far X-transvections Tt and TT is 
not a product of less than dim#(7r) + 1 X-transvections, with the following exception: If 
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dim#(7r)/7V(7r) = 1 andf(w, WTT) — Xfor some w G V then IT — T\ T&mB^for 
some X-transvections 77. 

REMARKS. 1. Corollary 3 includes the main result of [1] and Corollary 5 improves 
the main result of [2]. We need not consider normal forms. The procedure when proving 
Theorems 3 and 4 on symplectic groups and the corresponding Theorems 1 and 2 on 
orthogonal groups is essentially the same. This is achieved with the help of E. T Wall's 
bilinear form. 

2. We have proved similar Theorems within the more general approach when K is a 
local ring. However, in the present exposition we want to avoid difficulties due to such 
a generalization. 

3. In our Theorems we must exclude K = GF3. Let K = GF3. It is fairly easy to 
find out when kernel 0 is generated by its symmetries; this is e.g. always true when 
n>5;cf. 3.7. But we guess it is difficult to determine the minimal number of factors in 
a representation of a given 7r G kernel 0 as a product of 1-symmetries (as it is achieved 
in Corollary 3 when K ^ GF 3). Our arguments to this point are lengthy and involved. 
The analogue gap appears in Corollary 5 for symplectic groups. 

3. The orthogonal case. We assume that/ is symmetric and write Q(v) :=/(v, v). 

3.1 . Let K ^ GF3 and w G V with Q(w) ^ 0. There is a basis C = {cu... ,cn} for 
V such that Q(c) = Q(w) for every c G C. Furthermore, we can achieve that c, _L c, for 
ij G { l , . . . , / i - i i + Ijandi^j. 

PROOF BY INDUCTION. Let n>2. Choose an n — 1-dimensional regular subspace T 
of V with w G T. By our hypothesis we obtain a basis C for T such that Q(c) = Q(w) for 
each c G C. Since K ^ GF 3 we find some anisotropic z G V \ (TU T1). Then Taz ^ T, 
hence c'oz $ T for some c' G C. Clearly, C U {c'az} is a basis for V with the desired 
property. The "furthermore" statement follows now immediately from the definition of 
u. 

3.2 . Theorem 1 holds under the additional assumption that B(TT) is regular and m := 
dim£(7r)-w + l < 2 . 

PROOF. Using 1.(4) we can assume that m > 1, hence m G {1,2}. Observe that 
7T - 1 G GL(V). 

Let m = 1 and Ai G K*. Then dim#(7r) = u. Choose c G B(n) with Q(c) = X\. Let 
a\ := oc and ip := irai. Then dim#(7r) = dimB((f) 0 B(ac). If dimB((p) = 1 then <p 
is a symmetry. Else dim#((/?) > ^ dim#(7r), hence B(<p) is not totally isotropic. In both 
cases cp is a product of dim #((/?) symmetries and the assertion follows. Now let m = 2 
and Ai, À2 G A'*. We claim that 

(*) Q(b(ir - l)"1) ^ 0 and Q(b) = Xx for some b G B(ir). 

Indeed (*) yields the assertion: Let a := Z?(7r—1)_1 andai := o^.Then (/? := TTG\ satisfies 
F(<p) — Ka, hence B((f) = a^ is regular. The previous case m — 1 supplies symmetries 
02» • • • > 0dimfl(7r) such that (f = Gi <7dimfi(7r) %&& Q(vi) = X2. The assertion follows. 
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PROOF OF (*). Using / := dim#(7r) > u and 3.1 we obtain a basis {b\,..., b\} for 
B(ir) such that Q(bt) = Ai for / G { 1 , . . . , /} . 

First let us assume 
(+) For each ij with 1 < / <j < I there is some by G Kbt+Kbj such that Q(by) = X\ 

and Kb» Kbj, Kbij are distinct. 
At least one of the vectors w, := bi(n — 1)_1 and w// := bij(jr — 1)_1 is anisotropic: 
Else each subspace Kwi + KWJ (1 < / <j < I) would be totally isotropic as it contains 
three distinct singular 1-dimensional subspaces; hence B(ir) would be totally isotropic. 
Therefore (*) holds true. 

Now let us assume that (+) is not valid. Then ^\K*\ < 2, in particular \K\ — 5 and 
/ = u + 1 = 3. We may assume that the subspace Kb\ + Kb2 is anisotropic, hence 
QQ>n) — Ai and Kb\, Kb^, Kb 12 are distinct for some b\2 G Kb\ + Kb2. At least one 
of the vectors b\{ix — 1)_1, biin — l ) - 1 and b\2(n — l ) - 1 is isotropic; else B(TT) would 
contain a 2-dimensional totally isotropic subspace. Thus we proved (*) also in this case. 

3.3 . Let K ^ GF 3 and TT G 0(V) such that B(ir) is singular. Let A G L(TT) where 

UÏÏ := {Qiy) I v G £(TT)} \ {0} 

(Observe that L(n) = K* whenever dim#(7r)/ rad#(7r) > u). There is a A-symmetry a 
such that B(TT) = B(-KG) 0#(a) and dim rad5(7ra) = dim rad 2?(7r) — 1 ; hence rad B(7ra) = 
B{ixo) nrad5(?r) and L(?ra) = L(TT). 

PROOF. AS Z?2(7T) := V(n — l)2 is properly contained in B(TT) we can find a subspace 
U such that B(ir) = U 0 rad£(?r) and £/ <£ £2(TT). Then Q(w) = A for some w e t / . 
Statement 4.1 supplies a basis for £/ whose vectors c fulfill Q(c) = A. At least one element 
of the basis, say a, is not contained in B2(n). Simple arguments show that a :— aa meets 
the requirements. 

3.4 Proof of Proposition L Using 3.3 s — 1 times we obtain Arsymmetries a, (/ G 
{ 1 , . . . , s — 1}) such that B{KG\ <Js-\) is regular and 

B(IT) = B(TT(TI as-\) 0 B(a{) 0 • • • 0 B(as-i) and L(irox os-\) = L(ir). 

We can choose a A^-symmetry as such that B(as) C B(ixo\ os-\). Then dim#(7rcri • 
• • • • as) — dim#(7r) — s and dim(rad#(7r<7i os)) < 1. 1.(4) completes the proof. 

3.5 Proof of Theorems 1 and 2. Sincç Theorem 2 is just a combination of Proposition 1 
and Theorem 1 we need only consider Theorem 1. Suppose that the assumptions in The­
orem 1 are valid. 

If m < 0 the assertion follows from 1.(4). So we can assume that m > 1. We proceed 
by induction. If dimJ5(7r) = 1 then u = 1 and m = 1; hence K*2 — K* and TT is a 
A1-symmetry. 

Let dim£(7r) > 2. 
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CASE I. B(ir) is regular. If m < 2 then 3.2 yields the assertion. Now let m > 3. 
Choose a G B(n) with Q(a) = X\; this is possible since dimB(ir)/ rad#(7r) > u. Then 
ai := aa fulfills B(TT) = B{<KO{) 0 B(a{) and dimrad#(7rcri) < 1. Thus 

dim#(7r<Ti)/ mdB(7rai) > dim£(7r) - 2 > u. 

Hence 7rai fulfills the requirements of the theorem and the induction hypothesis applies. 

CASE II. B(TT) is singular. Then 3.3 supplies a Ai-symmetry G\ such that B(TT) = 
B(7rai)($B(cr\)and dimrad2?(7rcri) = dim rad B(TT) — 1. Then dimj5(7r<7i)/ rad#(7R7i) = 
dimZ?(7r)/ radi?(7r) > u. The assertion follows by induction. 

3.6 Proof of Corollaries 1, 2, and 3. All assertions are obvious from Theorem 1, apart 
from Corollary 3b). First assume that dim#(7r)/ rad#(7r) = 1. Let x denote the discrim­
inant of B(TT)/ rad#(7r) with respect to/ . Then Q(aa) = Q(a)K*2 = x for each anistropic 
vector a G B(TT). NOW 1.(4) and (2) imply: 

(i) 7T is a product of dim#(7r) 1-symmetries if and only if x = K*2. 
Now let x ^ K*2. As 1 < dim#(7r) < « w e can choose some a G V such that 

Q(a) = 1. Then B(7rcja) = B(n) 0 Ka and dim(B(iraa)/ radB(7raa)) > 1; c/ 1.1. Using 
the previous case or Corollary 3a) we conclude that 7raa is a product of dimB(7raa) 1-
symmetries. Hence we obtain 

(ii) If x ^ K*2 then 7r is a product of dim#(7r) + 2 1-symmetries and not a product of 
less than dim#(7r) + 2 1-symmetries. 

The last statement follows from (i) and since every symmetry a has det a = — 1. 
Now let B(ir) be totally isotropic. Then 2 < dim#(7r) < n. Choose some a G V 

such that Q(a) = 1. Then B(7rcTa) = B(ir) 0 Ka, dim(#(7RTa)/rad£(7R7a)) = 1 and 
d(B(naa)/ mdB(7raa)) - Q(a)K*2 = K*2. Using (i) we obtain the assertion. 

3.7 . Having in mind K — GF 3 where our previous arguments do not apply we include 
the following proposition. 

PROPOSITION. Letu<2 and let S C 0( V) be the set of1-symmetries. 
a) Let n > 5 and aa, Ob distinct symmetries such that aaai, G kernel 0. Then aa • (?b 

is a product of four elements of 6. 
b) Let u < 2 and K ^ GF 3 or n > 5. Then kernel 0 is generated by S. 

PROOF, a) Let T := Ka + Kb. If T is regular choose c G T such that Q(c) = 1. Then 
dimB(aaab&c) = 1 and Q(aacrb&c) — K*2, hence Ga^b^c £ © and 0^07, G 6 • 6. If T is 
singular then dim T1 — n — 2 and dim(rad T1) — dim(rad T) = 1. Hence T 1 contains a 
2-dimensional regular subspace D, and we can choose some anisotropic d G D such that 
<2(<i) = Q(a). Then Ka + ATd and Kd + AT? are regular. Hence aaa^ Gdab G S • S by the 
previous case and finally oa • crb — aaadadGij G S • S • 6 • 6. 

b) By Corollary 3 we can assume that # = GF 3 and AI > 5. Every n G kernel 0 is 
a product of 1-symmetries and —1-symmetries where the number of —1-symmetries is 
even; cf. 1.(4). Hence a) yields the assertion. 
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4. The symplectic case. 
4.1 A brief look at E. T. Wall's bilinear form. As in 1. let G be an orthogonal group 0{ V) 
or a symplectic group Sp( V) given by the regular form/. Every TT G G supplies a bilinear 
form 

U B(TT) x fi(7T) -> tf, A(v(7r - 1), ft) := - / (v, ft) 

where v G V and ft G B(7r); cf. [4]. Wall's form/^ is regular (but usually not symmetric). 
We write M _U TV when M,N C 5(7r) and/^ra, n) = 0 for every m G M and n e N. 
Let d(7r) denote the discriminant of/^. The mapping Q^.B^) —> ^ , ft »—* f>n(b,b) is 
a quadratic form and the associated symmetric bilinear form is g^: 2?(7r) X 2?(TT) —•» Â , 
g7r(<z, ft) := ^ [<2TT(« + ft) — ÔTT(Û)

 — Qn(b)]. It is easy to verify that elements 7r, (/? of G are 
conjugate if and only if their forms f^ and/^ are equivalent, i.e. there is a linear bijection 
UJ: B(TT) —> #(</?) such that/^a, ft) = f^{auj, buj) holds for all a, ft G #(7r). This yields 

(2) If 7T7 = (f then J(TT) = d(<p) for all TT, </?, 7 G G, and 
(2') Suppose that TT, ip G G are simple. Then 7r7 = <̂  for some 7 G G if and only if 

d(7T) = d(ip). 

If G is orthogonal and aa denotes the symmetry with B(aa) = Ka then d(aa) — 
QG(a, a) = 2Q(a)K*2 where Q(a) :=f(a, a). If G is symplectic and T^W is a transvection 
thend(r^w) = QT(w,w)K*2 = -^iK*2 and d(r~l) = \iK*2. 

In the sequel we shall consider a symplectic group Sp(V) = Sp(V,/). 
Let TT G Sp(V) and a, ft = v(?r- 1) G £(TT). Then 2^(0, ft) = -/(û(7r+1), VTT) . Hence 

we obtain 

(3) rad(fl(7T), Qv) := rad(Z?(7r),^) = iV(7r). 

We shall repeatedly use the following lemma. 

LEMMA 4.1.1. Let ip G Sp(V) andr a transvection. The following statements are 
equivalent. 

(i) dimfX^r) = dimF(p) + 1. 
(ii) B(T) <t B(^r); 

(Hi) B(ip) = B(T) 0 B(ipr); 
(iv) There is some z G B((p) such thatr — r^z where \i := Q^(z)-1. 
If these conditions hold then the following properties are true. 
(j) B(r) _L̂  B(ipr); 

(jj) ftpWr) — —fr andf^B^r) =f<fT,' 

(W) d(ip) = -d(r) • d(ipr). 

PROOF. The equivalence of (i), (ii) and (iii) is part of 1.1. If (i) is valid then 
v((p — 1) = z and v G F((pr)\F(p) for some v, hence (i) => (iv). Conversely, a short 
computation shows (iv) => (i). Statements (j) and (jj) follow almost immediately from 
the definitions; (j) and (jj) entail (jjj). 

COROLLARY 4.1.2. Let IT G Sp(V) andr a transvection such that B(TTT) = B(T) ® 
B(TT). Then d(wf) = d(f) • d(ix). 

PROOF. 4.1.1(jjj) implies that d(i\r) = -d(r~x) • d(^rr~x) = d(r) • d(ir). 
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COROLLARY4.1.3. Ifr\,... ,T> are Ai, . . . , X^-transvectionssuch thatir :=T\ r* 
and k < dim£(7r) [hence k = dim£(7r) andB(n) = B(T\) 0 • • • 0 B(rk) by 1.(2)] then 

d(n) = (-l)kXl \k.K*2. 

In [2] a mapping called p is used. We want to mention that p is closely related to the 
discriminant mapping of Wall's bilinear form: 

DEFINITION/COROLLARY 4.1.4. Given some A G K*. For TT G Sp(V) we define 
P(TT) := (-A)^"1^) • £/(TT). r t e p0>,w) = A/i/T2; /zence T^W w a X-transvection if 
and only if p(r^w) = A'*2. IfirE Sp(V) w a product of dim B(n) X-transvections then 
P(7T) = K*\ 

4.2 . Let 7T G Sp(V) and z G 5(7r)\5(-7r) such that Qn(z) ^ 0. Let A := Qv(z)~l and 
r := rAz. Then 2?(7r) = B(r) 0 #(7rr) and dimF(7rr) = dimF(7r) + 1 and dimN(TTT) = 
dimA (̂7r) — 1; hence N(TTT) = B(TTT) D N(TT) and L(ITT) = L(TT). 

PROOF. This is immediate from 4.1.1 since N(TTT) = F(—7TT). 

4.3 . Let K ^ GF3, TT G Sp(V) such that 7V(TT) ^ 0 and A G L(TT) := {(Mz) | Z e 
BM] \ {°} (clearly dimJ5(7r)/A (̂7r) > u implies that L(TT) = K*\ cfi 4.1(3)). There is a 
A-transvectionr such that dimF(7rr) = dimF(7r) + 1 and dimA (̂7rr) = dimAf(7r) — 1 and 
L(TTT) = L(TT). 

PROOF. %B{K2) = B(ir)nB(-7r) is a proper subspace of B(ir). Hence B(TT) = A07V(7r) 
and A (£ B(TT2) for some subspace A. Then A is regular with respect to the quadratic form 
Qn; cfi 4.1(3). We have N(n) = rad(^(7r),^); cfi 4.1(3). Hence Q^z) = A for some 
z G A. By 3.1 A has a basis whose vectors c fulfill (Mc) - 1 = A. Clearly, a G B(ir)\B(7r2) 
holds for at least one of them. Finally, 4.2 shows that r := T\A meets the requirements. 

4.4 . Let 7T G Sp(V) and r = r^z such that 7V(7r) = 0 and dimF(7rr) = dimF(7r) + 1. 
Then N(irr) = 0 if and only if Q*{Z(TÏ + l)"1) ^ 0. 

PROOF. We have p,~l = Qn(z) = -f(w,w7r) where z = w(7r — 1); cfi 4.1.1. Let 
d := VV(TT + 1)_1. \£N{wr) ^ <9 is true then jz •/(*/(# - 1), d(ir - 1)TT) = 1. This entails 
f(d(7T - 1),d(7T - 1)TT) = -/(d(?r + 1), J(TT + 1)TT). We conclude that 0 = f(d,dix) = 
-Ô7r(z(7T+ l)"1) . If conversely 2 ^ ^ + l)"1) = 0 holds then d(?r - 1) = Z(TT + l )" 1 G 
7V(7rr). 

4.5 . Theorem 2 holds under the additional assumption that N(ir) = 0 and m := 
dim£(7r)-w + l < 2 . 

PROOF. We can assume that m > 1, hence m G {1,2}; c/ 1.4'. 
Let m — \ and Ai G K*. Then dim#(7r) = w. Choose c G Z?(7r) with Q^{c) — 

—Aj"1. Let ri := T_A1>C and 99 := 7rri. Then dim#(7r) = dimZ?((£) 0 B(T\) and Tf1 is 
a Ai-transvection; c/ 4.1.1. If dim #((£>) — 1 then <p is a transvection. Else dim #(</?) > 
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^ dim J3(7T), hence B((f) is not totally isotropic with respect to Q^. This means that (f2 ^ 
1. In both cases (p is a product of dim B(ip) transvections; cf. 1.(4'). 

Now let m = 2 and Ai, A2 G Ar*. We claim that 

(*) Ô7r(£(7r + l)"1) ^ 0 and &(£) = -Af1 for some Z? G £(TT). 

Replacing Ai by —A]"1, g by G^ and 7r — 1 by 7r+ 1 in the proof of (*) in 3.2 we obtain a 
proof of the present statement (*). Indeed (*) yields the assertion: Let T\ :— T_A,,^. Then 
if := 7TTI satisfies #(7r) = B(TI) 0 B(y) and M » = 0; cf. 4.1.1 and 4.4. Furthermore, 
T\X is a Ai-transvection. The previous case m — 1 supplies transvections T2,... ,7dimfl(7r) 
such that (f — T2,... ,Tdimfl(7r) and T2 is a A2-transvection. The assertion follows. 

4.6 Proof of Proposition 2. The proof is a consequence 4.3. To carry out the details 
replace in the proof of Proposition 1 Q by Qn and rad B(ir) by N(TT) and symmetries by 
transvections. 

4.7 Proof of Theorems 3 and 4. As in 3.5 it suffices to prove Theorem 3. If m < 0 
then 1.(4') yields the assertion. So we assume that m > 1. We proceed by induction on 
dim#(7r).IfdimB(7r) = 1 thenw = 1 andm = l;henceAT*2 = Â* and ir is a transvection. 
Clearly the assertion holds in this case. 

Letdim£(7r) > 2. 

CASE I. N(n) = 0. If m < 2 then 4.5 applies. Now let m > 3, i.e. dim#(7r) > u + 2. 
Take an arbitrary vector a G B(TT) with (^(tf) = — Af1 ; this is possible since dim#(7r) > 
M and B(ir) is regular with respect to Q^. Then ri : = r^\ua fulfills B(TT) = B(TTT\ ) 0 B(T\ ) 
and dimA^TTTi) < 1. Furthermore, rj -1 is a A1-transvection. Thus dim5(7rri)/A^(7rri) > 
dimi?(7r) — 2 > u. Hence TTTI meets the requirements of the Theorem and the induction 
hypothesis applies. 

CASE II. N(n) 7̂  0. 4.3 supplies a — Ai -transvection T\ such that B(TT) = B{IXT\) 0 
B(T\) and dimN(7rri) = dimN(ir) — 1. Then dim2?(7rTi)/N(7TTi) = dim#(7r)/Af(7r) > u 
and rj -1 is a A1-transvection. The assertion follows by induction. 

4.8 Proof of Corollaries 4 and 5. 

LEMMA 4.8.1. Let I > u, r G Sp(V) a transvection and Ai,...,A/ G AT*. 7/7£H 
T — T\ 77 where 77 w a Xi-transvection and #(77) = #(r), or 77 = 1,/or eac/î /. 

PROOF. Let r = 77^. By assumption, /i = A 1̂ 1 + • • • + \\b\ for suitable squares 
et G A'2. Let 77 := T\.èhZ if 6/ 7̂  0, else 77 := 1. 

Corollary 4 follows immediately from Theorem 2, 1.(2) and 4.1.3. Statement a) in 
Corollary 5 is a special case of Corollary 4. 

Corollary 5b) and c) will follow from the following statements (i), (ii) and (iii). Let 
u<2,K^ GF3, TT G Sp(V) and A G A*. Let fc := dim£(7r). If d(ir) ^ (-\)kK*2 then 
4.1.3 entails that 7r is not a product of less than k + 1 A-transvections. 

First let us assume that dimfi(7r)/N(7r) = 1. 
Due to 4.1(3) each z G B(TT)\N(TC) yields the same value % := QAz)K*2. 
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By 1.(4') TT is a product of k transvections; each factor r = T^Z in such a product 
satisfies - / i /T 2 = -d(T~l) = -<2r-,(z)/r2 = Q^z) • AT*2 = x; c/ 1.(2) and 4.1.1(jj). 
Furthermore, 4.1.3 yields that d(7r) = xk. We conclude: 

(i) Let dimZ?(7r)/Af(7r) = 1. Then TT is a product of & A-transvections if and only if 
XK*2 = -%. 

Now let TT € Sp(V) and TT2 ^ 1. Using l.(4/) we obtain a product <£> of k— 1 transvec­
tions and a transvection r such that TT — ip • r. By 4.8.1 we have r = T1T2 where ri is 
a A-transvection with #(TI) = B{r) and T2 is a A-transvection or r2 = 1. Then ipr\ is 
a product of k transvections. If dim B((pr\) / N((fT\) > 2 then Corollary 5a) yields that 
(fT\ is a product of k A-transvections; hence TT is a product of k + 1 transvections. Else 
dim B((fT\) / N((fT\) = 1 and <̂ ri is a product of A: transvections such that one factor is a 
A-transvection. Thus (i) yields that each factor is a A-transvection. So TT is a product of 
k + 1 A-transvections. Hence we proved 

(ii) Let TT2 ^ 1. Then 7r is a product of at most k + 1 A-transvections. 
(iii) Let Z?(7r) = Af(7r) and TT ^ 1. Then 7r is a product of A: + 1 but not less than k + 1 

A-transvections. 

PROOF OF (iii). The not-less-statement follows from 1.(2) and 4.1.1(jj). If 
dim#(7r) = 1 then 4.8.1 yields the assertion. Let dim#(7r) > 2. An elementary argument 
shows: If r is a transvection withZ?(r) C B(TT) then B(TT) — N(TT) = B(TTT) = N(TTT) 0 Kz 
for some z G V\0. We can choose a —A-transvection r such that B(r) C B(TT). Then 
QnAzW*2 — —XK*2 by a simple calculation. In (i) we ascertained that TTT is a product of 
k A-transvections. This completes the proof. 
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