FACTORIZATION INTO SYMMETRIES AND TRANSVECTIONS OF GIVEN CONJUGACY CLASSES

FRIEDER KNÜPPEL

ABSTRACT. The *u*-invariant u(K) of a field *K* is the smallest number $k \in \mathbb{N} \cup \{\infty\}$ such that every *k*-dimensional regular quadratic form over *K* is universal. Let O(V, f) be the orthogonal group of a finite-dimensional regular metric vector space over a field *K* of characteristic distinct from 2. Let $\pi \in O(V)$, $B(\pi) := V(\pi - 1)$, dim $[B(\pi) \cap \text{kernel}(\pi - 1)] \ge u(K)$. Given $\lambda_1, \ldots, \lambda_m \in K^*$ where $m := \dim B(\pi) - u(K) + 1$. Then $\pi = \sigma_1 \cdot \cdots \cdot \sigma_k$ where $k := \dim B(\pi)$ and σ_i is a symmetry with negative space Ka_i and $f(a_i, a_i) = \lambda_i$ for $i \in \{1, \ldots, m\}$. We prove similar theorems also for symplectic groups where transvections are taken as generators.

The present paper emerged from an attempt to provide short self-contained proofs of the results [1] and [2] within a more general frame. Let G be the orthogonal or symplectic group of an n-dimensional vector space V over a field. Call $\sigma \in G$ simple if dim(kernel($\sigma - 1$)) = n - 1. We want to write a given $\pi \in G$ as a product of simple elements of G such that the number of factors is small and certain factors belong to prescribed conjugacy classes of G. Background material for reading this paper may be found in [3].

1. **Prerequisites, notations and basic facts.** Let K be a field with char $K \neq 2$. Let u := u(K) denote the *u*-invariant of K. By definition *u* is the smallest number $k \in \mathbb{N}$ (∞ if such a number k does not exist) with the following property: If Q is a regular quadratic form on a K-vector space W and dim $W \ge u$ then Q(W) = K, *i.e.* Q is universal. Observe that u(K) = 2 when K is finite.

Let *V* be an *n*-dimensional vector space $(n \in \mathbb{N})$ and $f: V \times V \to K$ a regular symmetric or skew-symmetric bilinear form. Let $G := \{\pi \in GL(V) \mid f(a\pi, b\pi) = f(a, b) \text{ for all } a, b \in V\}$. When *f* is symmetric then *G* is called an *orthogonal group O(V)*, when *f* is skew-symmetric then *G* is a symplectic group Sp(*V*).

For $\pi \in \text{End}(V)$ let $B(\pi) := V(\pi - 1)$ be the path, $F(\pi) := \text{kernel}(\pi - 1)$ the fix and $N(\pi) := F(-\pi)$ the negative space of π . Clearly, dim $B(\pi) + \dim F(\pi) = n$ and $N(\pi) \subset B(\pi)$. Call π simple if dim $B(\pi) = 1$. If $\pi \in G$ then $F(\pi)^{\perp} = B(\pi)$. We use frequently the path rule:

(1) Let $\varphi, \pi \in \text{End}(V)$. Then $B(\varphi\pi) \subset B(\varphi) + B(\pi)$. In particular this rule yields

(2) Let $\pi = \sigma_1 \cdots \sigma_s$ for simple elements $\sigma_1, \ldots, \sigma_s \in \text{End}(V)$. Then dim $B(\pi) \le s$. If dim $B(\pi) = s$ then $B(\pi) = B(\sigma_1) \oplus \cdots \oplus B(\sigma_s)$.

Received by the editors April 5, 1991; revised December 19, 1991.

AMS subject classification: 51N30, 11E57, 15A23, 14L35.

[©] Canadian Mathematical Society 1992.

The simple elements in O(V) are the symmetries σ_a where $a \in V$ is anisotropic. The symmetry σ_a is defined by the property $B(\sigma_a) = Ka$. The simple elements of Sp(V) are the (symplectic) transvections $\tau_{\mu,w}: v \mapsto v + \mu f(v, w)w$ where $w \in V \setminus O$ and $\mu \in K^*$. Observe that $B(\tau_{\mu,w}) = Kw$ and $\tau_{\mu,w}^{-1} = \tau_{-\mu,w}$. For $\lambda \in K^*$ call σ_a a λ -symmetry if $\lambda K^{*2} = d(B(\sigma_a)) = f(a, a)K^{*2}$; call $\tau_{\mu,w}$ a λ -transvection if $\lambda K^{*2} = \mu K^{*2}$. Let $\Theta: O(V) \to K^*/K^{*2}$ denote the spinorial norm. Then $\Theta(\sigma_a) = f(a, a)K^{*2}$ for each symmetry σ_a .

We will frequently use the following elementary lemma.

LEMMA 1.1. Let G be an orthogonal or symplectic group. Let $\varphi \in G$ and τ a simple element of G. The following statements are equivalent.

- (i) dim $F(\varphi \tau) = \dim F(\varphi) + 1$.
- (*ii*) $B(\tau) \not\subset B(\varphi \tau)$;
- (*iii*) $B(\varphi) = B(\tau) \oplus B(\varphi\tau)$;
- (iv) $B(\varphi\tau)$ is properly contained in $B(\varphi)$;
- (v) $F(\varphi)$ is properly contained in $F(\varphi \tau)$.

The following facts are well-known and easy to prove.

- (3) Let $\lambda \in K^*$. The set $S(\lambda)$ of λ -symmetries in O(V) is a conjugacy class in O(V). The set $T(\lambda)$ of λ -transvections is a conjugacy class in Sp(V).
- (4) Let $\pi \in O(V)$ and $B(\pi) \not\subset F(\pi)$ (*i.e.* $B(\pi)$ is not totally isotropic). Then π is a product of dim $B(\pi)$ symmetries.
- (4') Let $\pi \in \text{Sp}(V)$ and $B(\pi) \not\subset N(\pi)$ (*i.e.* $\pi^2 \neq 1$). Then π is a product of dim $B(\pi)$ transvections.

2. Results.

PROPOSITION 1. Let $K \neq \text{GF} 3$, $\pi \in O(V)$, $s := \dim(B(\pi) \cap F(\pi)) + 1$ and $\lambda_1, \ldots, \lambda_s \in L(\pi) := \{Q(v) \mid v \in B(\pi)\} \setminus \{0\}$. Then $\pi = \sigma_1 \cdot \cdots \cdot \sigma_{\dim B(\pi)}$ for symmetries σ_i such that $\sigma_1 \in S(\lambda_1), \ldots, \sigma_s \in S(\lambda_s)$.

THEOREM 1. Let $K \neq \text{GF } 3$ and $\pi \in O(V)$ such that $\dim B(\pi)/(B(\pi) \cap F(\pi)) \geq u$. Let $m := \dim B(\pi) - u + 1$. Given $\lambda_1, \ldots, \lambda_m \in K^*$. Then $\pi = \sigma_1 \cdot \cdots \cdot \sigma_{\dim B(\pi)}$ for symmetries σ_i such that $\sigma_1 \in S(\lambda_1), \ldots, \sigma_m \in S(\lambda_m)$.

THEOREM 2. Let $K \neq \text{GF 3}$ and $\pi \in O(V)$. Let

$$m := \max \{\dim B(\pi) - u + 1, \dim \operatorname{rad} B(\pi) + 1\}.$$

Given $\lambda_1, \ldots, \lambda_m \in L(\pi) := \{Q(v) \mid v \in B(\pi)\} \setminus \{0\}$. Then $\pi = \sigma_1 \cdot \cdots \cdot \sigma_{\dim B(\pi)}$ for symmetries σ_i such that $\sigma_1 \in S(\lambda_1), \ldots, \sigma_m \in S(\lambda_m)$.

COROLLARY 1. Let $K \neq \text{GF 3}$ and $\pi \in O(V)$ such that $\dim B(\pi)/(B(\pi) \cap F(\pi)) \ge u$. Let $m := \dim B(\pi) - u + 1$. Then $\pi = \sigma_1 \cdots \sigma_{\dim B(\pi)}$ for symmetries σ_i with $\sigma_1, \ldots, \sigma_m \in \text{kernel } \Theta$.

The following two corollaries apply in particular to finite fields.

COROLLARY 2. Let $u \leq 2$ and $K \neq$ GF 3. Let $\pi \in O(V)$, dim $B(\pi)/(B(\pi) \cap F(\pi)) \geq u$ and $\lambda_1, \ldots, \lambda_{\dim B(\pi)} \in K$ such that $\lambda_1 \cdot \cdots \cdot \lambda_{\dim B(\pi)} K^{*2} = \Theta(\pi)$. Then $\pi = \sigma_1 \cdot \cdots \cdot \sigma_{\dim B(\pi)}$ for λ_i -symmetries σ_i , $i \in \{1, \ldots, \dim B(\pi)\}$.

COROLLARY 3. Let $u \leq 2$ and $K \neq \text{GF} 3$ and $\pi \in \text{kernel}(\Theta)$.

a) If dim $B(\pi)/(B(\pi) \cap F(\pi)) \ge u$ then $\pi = \sigma_1 \cdot \cdots \cdot \sigma_{\dim B(\pi)}$ for 1-symmetries (i.e. symmetries in kernel Θ).

b) If dim $B(\pi)/(B(\pi) \cap F(\pi)) < u$ and $\pi \neq 1$ then π is a product of dim $B(\pi) + 2$ 1-symmetries, but not a product of less than dim $B(\pi)+2$ 1-symmetries, with the following exception: If dim $B(\pi)/(B(\pi) \cap F(\pi)) = 1$ and Q(a) = 1 for some $a \in B(\pi)$ then π is a product of dim $B(\pi)$ 1-symmetries.

c) kernel Θ is generated by the set of 1-symmetries.

PROPOSITION 2. Let $K \neq \text{GF 3}$, $\pi \in \text{Sp}(V)$, $s := \dim N(\pi) + 1$ and $\lambda_1, \ldots, \lambda_s \in L(\pi) := \{-f(v, v\pi) \mid v \in V\} \setminus \{0\}$. Then $\pi = \tau_1 \cdot \cdots \cdot \tau_{\dim B(\pi)}$ for transvections τ_i such that $\tau_1 \in T(\lambda_1), \ldots, \tau_s \in T(\lambda_s)$.

THEOREM 3. Let $K \neq \text{GF} 3$ and $\pi \in \text{Sp}(V)$ such that $\dim B(\pi)/N(\pi) \ge u$. Let $m := \dim B(\pi) - u + 1$. Given $\lambda_1, \ldots, \lambda_m \in K^*$. Then $\pi = \tau_1 \cdot \cdots \cdot \tau_{\dim B(\pi)}$ for some transvections τ_i such that $\tau_1 \in T(\lambda_1), \ldots, \tau_m \in T(\lambda_m)$.

THEOREM 4. Let $K \neq \text{GF 3}$ and $\pi \in \text{Sp}(V)$. Let

 $m := \max\{\dim B(\pi) - u + 1, \dim N(\pi) + 1\}.$

Given $\lambda_1, \ldots, \lambda_m \in L(\pi) := \{-f(v, v\pi) \mid v \in V\} \setminus \{0\}$. Then $\pi = \tau_1 \cdot \cdots \cdot \tau_{\dim B(\pi)}$ for some transvections τ_i such that $\tau_1 \in T(\lambda_1), \ldots, \tau_m \in T(\lambda_m)$.

The following two corollaries apply in particular to finite fields.

For $\pi \in \operatorname{Sp}(V)$ let $d(\pi)$ denote the discriminant of the bilinear form $f_{\pi}: B(\pi) \times B(\pi) \to K$, $f_{\pi}(v(\pi - 1), b) := -f(v, b)$. For more details on f_{π} see 4.1.

COROLLARY 4. Let $u \leq 2$ and $K \neq GF 3$. Let $\pi \in Sp(V)$, dim $B(\pi)/N(\pi) \geq u$ and $\lambda_1, \ldots, \lambda_{\dim B(\pi)} \in K$ such that

$$\lambda_1 \cdot \cdots \cdot \lambda_{\dim B(\pi)} (-1)^{\dim B(\pi)} K^{*2} = d(\pi).$$

Then $\pi = \tau_1 \cdot \cdots \cdot \tau_{\dim B(\pi)}$ for λ_i -transvections τ_i , $i \in \{1, \ldots, \dim B(\pi)\}$.

COROLLARY 5. Let $u \leq 2$ and $K \neq \text{GF} 3$. Given $\lambda \in K^*$ and $\pi \in \text{Sp}(V)$. a) If dim $B(\pi)/N(\pi) \geq u$ and $d(\pi) = (-\lambda)^{\dim B(\pi)}K^{*2}$ then $\pi = \tau_1 \cdot \cdots \cdot \tau_{\dim B(\pi)}$ for λ -transvections τ_i .

b) If dim $B(\pi)/N(\pi) \ge u$ and $d(\pi) \ne (-\lambda)^{\dim B(\pi)+1} K^{*2}$ then $\pi = \tau_1 \cdots \tau_{\dim B(\pi)+1}$ for some λ -transvections τ_i and π is not a product of less than dim $B(\pi) + 1$ λ -transvections.

c) If dim $B(\pi)/N(\pi) < u$ then $\pi = \tau_1 \cdot \cdots \cdot \tau_{\dim B(\pi)+1}$ for λ -transvections τ_i and π is not a product of less than dim $B(\pi) + 1$ λ -transvections, with the following exception: If

dim $B(\pi)/N(\pi) = 1$ and $f(w, w\pi) = \lambda$ for some $w \in V$ then $\pi = \tau_1 \cdot \cdots \cdot \tau_{\dim B(\pi)}$ for some λ -transvections τ_i .

REMARKS. 1. Corollary 3 includes the main result of [1] and Corollary 5 improves the main result of [2]. We need not consider normal forms. The procedure when proving Theorems 3 and 4 on symplectic groups and the corresponding Theorems 1 and 2 on orthogonal groups is essentially the same. This is achieved with the help of E. T. Wall's bilinear form.

2. We have proved similar Theorems within the more general approach when K is a local ring. However, in the present exposition we want to avoid difficulties due to such a generalization.

3. In our Theorems we must exclude K = GF3. Let K = GF3. It is fairly easy to find out when kernel Θ is generated by its symmetries; this is *e.g.* always true when $n \ge 5$; *cf.* 3.7. But we guess it is difficult to determine the *minimal* number of factors in a representation of a given $\pi \in \text{kernel } \Theta$ as a product of 1-symmetries (as it is achieved in Corollary 3 when $K \neq GF3$). Our arguments to this point are lengthy and involved. The analogue gap appears in Corollary 5 for symplectic groups.

3. The orthogonal case. We assume that f is symmetric and write Q(v) := f(v, v).

3.1. Let $K \neq GF3$ and $w \in V$ with $Q(w) \neq 0$. There is a basis $C = \{c_1, \ldots, c_n\}$ for V such that Q(c) = Q(w) for every $c \in C$. Furthermore, we can achieve that $c_i \perp c_j$ for $i, j \in \{1, \ldots, n - u + 1\}$ and $i \neq j$.

PROOF BY INDUCTION. Let $n \ge 2$. Choose an n-1-dimensional regular subspace T of V with $w \in T$. By our hypothesis we obtain a basis C for T such that Q(c) = Q(w) for each $c \in C$. Since $K \neq GF3$ we find some anisotropic $z \in V \setminus (T \cup T^{\perp})$. Then $T\sigma_z \neq T$, hence $c'\sigma_z \notin T$ for some $c' \in C$. Clearly, $C \cup \{c'\sigma_z\}$ is a basis for V with the desired property. The "furthermore" statement follows now immediately from the definition of u.

3.2. Theorem 1 holds under the additional assumption that $B(\pi)$ is regular and $m := \dim B(\pi) - u + 1 \le 2$.

PROOF. Using 1.(4) we can assume that $m \ge 1$, hence $m \in \{1, 2\}$. Observe that $\pi - 1 \in GL(V)$.

Let m = 1 and $\lambda_1 \in K^*$. Then dim $B(\pi) = u$. Choose $c \in B(\pi)$ with $Q(c) = \lambda_1$. Let $\sigma_1 := \sigma_c$ and $\varphi := \pi \sigma_1$. Then dim $B(\pi) = \dim B(\varphi) \oplus B(\sigma_c)$. If dim $B(\varphi) = 1$ then φ is a symmetry. Else dim $B(\varphi) > \frac{1}{2} \dim B(\pi)$, hence $B(\varphi)$ is not totally isotropic. In both cases φ is a product of dim $B(\varphi)$ symmetries and the assertion follows. Now let m = 2 and $\lambda_1, \lambda_2 \in K^*$. We claim that

(*)
$$Q(b(\pi-1)^{-1}) \neq 0$$
 and $Q(b) = \lambda_1$ for some $b \in B(\pi)$.

Indeed (*) yields the assertion: Let $a := b(\pi-1)^{-1}$ and $\sigma_1 := \sigma_b$. Then $\varphi := \pi\sigma_1$ satisfies $F(\varphi) = Ka$, hence $B(\varphi) = a^{\perp}$ is regular. The previous case m = 1 supplies symmetries $\sigma_2, \ldots, \sigma_{\dim B(\pi)}$ such that $\varphi = \sigma_2 \cdot \cdots \cdot \sigma_{\dim B(\pi)}$ and $Q(v_2) = \lambda_2$. The assertion follows.

403

FRIEDER KNÜPPEL

PROOF OF (*). Using $l := \dim B(\pi) \ge u$ and 3.1 we obtain a basis $\{b_1, \ldots, b_1\}$ for $B(\pi)$ such that $Q(b_i) = \lambda_1$ for $i \in \{1, \ldots, l\}$.

First let us assume

(+) For each *i*, *j* with $1 \le i < j \le l$ there is some $b_{ij} \in Kb_i + Kb_j$ such that $Q(b_{ij}) = \lambda_1$ and Kb_i , Kb_j , Kb_{ij} are distinct.

At least one of the vectors $w_i := b_i(\pi - 1)^{-1}$ and $w_{ij} := b_{ij}(\pi - 1)^{-1}$ is anisotropic: Else each subspace $Kw_i + Kw_j$ $(1 \le i < j \le l)$ would be totally isotropic as it contains three distinct singular 1-dimensional subspaces; hence $B(\pi)$ would be totally isotropic. Therefore (*) holds true.

Now let us assume that (+) is not valid. Then $\frac{1}{2}|K^*| \le 2$, in particular |K| = 5 and l = u + 1 = 3. We may assume that the subspace $Kb_1 + Kb_2$ is anisotropic, hence $Q(b_{12}) = \lambda_1$ and Kb_1 , Kb_2 , Kb_{12} are distinct for some $b_{12} \in Kb_1 + Kb_2$. At least one of the vectors $b_1(\pi - 1)^{-1}$, $b_2(\pi - 1)^{-1}$ and $b_{12}(\pi - 1)^{-1}$ is isotropic; else $B(\pi)$ would contain a 2-dimensional totally isotropic subspace. Thus we proved (*) also in this case.

3.3. Let $K \neq GF3$ and $\pi \in O(V)$ such that $B(\pi)$ is singular. Let $\lambda \in L(\pi)$ where

$$L(\pi) := \{ Q(v) \mid v \in B(\pi) \} \setminus \{ 0 \}$$

(Observe that $L(\pi) = K^*$ whenever dim $B(\pi)/\operatorname{rad} B(\pi) \ge u$). There is a λ -symmetry σ such that $B(\pi) = B(\pi\sigma) \oplus B(\sigma)$ and dim rad $B(\pi\sigma) = \operatorname{dim rad} B(\pi) - 1$; hence rad $B(\pi\sigma) = B(\pi\sigma) \cap \operatorname{rad} B(\pi)$ and $L(\pi\sigma) = L(\pi)$.

PROOF. As $B^2(\pi) := V(\pi - 1)^2$ is properly contained in $B(\pi)$ we can find a subspace U such that $B(\pi) = U \oplus \operatorname{rad} B(\pi)$ and $U \not\subset B^2(\pi)$. Then $Q(w) = \lambda$ for some $w \in U$. Statement 4.1 supplies a basis for U whose vectors c fulfill $Q(c) = \lambda$. At least one element of the basis, say a, is not contained in $B^2(\pi)$. Simple arguments show that $\sigma := \sigma_a$ meets the requirements.

3.4 Proof of Proposition 1. Using 3.3 s - 1 times we obtain λ_i -symmetries σ_i $(i \in \{1, \ldots, s - 1\})$ such that $B(\pi \sigma_1 \cdot \cdots \cdot \sigma_{s-1})$ is regular and

$$B(\pi) = B(\pi \sigma_1 \cdot \cdots \cdot \sigma_{s-1}) \oplus B(\sigma_1) \oplus \cdots \oplus B(\sigma_{s-1})$$
 and $L(\pi \sigma_1 \cdot \cdots \cdot \sigma_{s-1}) = L(\pi)$.

We can choose a λ_s -symmetry σ_s such that $B(\sigma_s) \subset B(\pi\sigma_1 \cdots \sigma_{s-1})$. Then dim $B(\pi\sigma_1 \cdots \sigma_s) = \dim B(\pi) - s$ and dim $(\operatorname{rad} B(\pi\sigma_1 \cdots \sigma_s)) \leq 1$. 1.(4) completes the proof.

3.5 *Proof of Theorems 1 and 2.* Since Theorem 2 is just a combination of Proposition 1 and Theorem 1 we need only consider Theorem 1. Suppose that the assumptions in Theorem 1 are valid.

If $m \le 0$ the assertion follows from 1.(4). So we can assume that $m \ge 1$. We proceed by induction. If dim $B(\pi) = 1$ then u = 1 and m = 1; hence $K^{*2} = K^*$ and π is a λ_1 -symmetry.

Let dim $B(\pi) \ge 2$.

404

CASE I. $B(\pi)$ is regular. If $m \le 2$ then 3.2 yields the assertion. Now let $m \ge 3$. Choose $a \in B(\pi)$ with $Q(a) = \lambda_1$; this is possible since dim $B(\pi)/\operatorname{rad} B(\pi) \ge u$. Then $\sigma_1 := \sigma_a$ fulfills $B(\pi) = B(\pi\sigma_1) \oplus B(\sigma_1)$ and dim rad $B(\pi\sigma_1) \le 1$. Thus

$$\dim B(\pi\sigma_1)/\operatorname{rad} B(\pi\sigma_1) \geq \dim B(\pi) - 2 \geq u.$$

Hence $\pi\sigma_1$ fulfills the requirements of the theorem and the induction hypothesis applies.

CASE II. $B(\pi)$ is singular. Then 3.3 supplies a λ_1 -symmetry σ_1 such that $B(\pi) = B(\pi\sigma_1) \oplus B(\sigma_1)$ and dim rad $B(\pi\sigma_1) = \dim \operatorname{rad} B(\pi) - 1$. Then dim $B(\pi\sigma_1) / \operatorname{rad} B(\pi\sigma_1) = \dim B(\pi) / \operatorname{rad} B(\pi) \geq u$. The assertion follows by induction.

3.6 Proof of Corollaries 1, 2, and 3. All assertions are obvious from Theorem 1, apart from Corollary 3b). First assume that dim $B(\pi)/\operatorname{rad} B(\pi) = 1$. Let \varkappa denote the discriminant of $B(\pi)/\operatorname{rad} B(\pi)$ with respect to f. Then $\Theta(\sigma_a) = Q(a)K^{*2} = \varkappa$ for each anistropic vector $a \in B(\pi)$. Now 1.(4) and (2) imply:

(i) π is a product of dim $B(\pi)$ 1-symmetries if and only if $\varkappa = K^{*2}$.

Now let $\varkappa \neq K^{*2}$. As $1 \leq \dim B(\pi) < n$ we can choose some $a \in V$ such that Q(a) = 1. Then $B(\pi\sigma_a) = B(\pi) \oplus Ka$ and $\dim(B(\pi\sigma_a)/\operatorname{rad} B(\pi\sigma_a)) \geq 1$; cf. 1.1. Using the previous case or Corollary 3a) we conclude that $\pi\sigma_a$ is a product of $\dim B(\pi\sigma_a)$ 1-symmetries. Hence we obtain

(ii) If $\varkappa \neq K^{*2}$ then π is a product of dim $B(\pi) + 2$ 1-symmetries and not a product of less than dim $B(\pi) + 2$ 1-symmetries.

The last statement follows from (i) and since every symmetry σ has det $\sigma = -1$.

Now let $B(\pi)$ be totally isotropic. Then $2 \leq \dim B(\pi) < n$. Choose some $a \in V$ such that Q(a) = 1. Then $B(\pi\sigma_a) = B(\pi) \oplus Ka$, $\dim(B(\pi\sigma_a)/\operatorname{rad} B(\pi\sigma_a)) = 1$ and $d(B(\pi\sigma_a)/\operatorname{rad} B(\pi\sigma_a)) = Q(a)K^{*2} = K^{*2}$. Using (i) we obtain the assertion.

3.7. Having in mind K = GF3 where our previous arguments do not apply we include the following proposition.

PROPOSITION. Let $u \leq 2$ and let $\mathfrak{S} \subset O(V)$ be the set of 1-symmetries.

a) Let $n \ge 5$ and σ_a , σ_b distinct symmetries such that $\sigma_a \sigma_b \in \text{kernel } \Theta$. Then $\sigma_a \cdot \sigma_b$ is a product of four elements of \mathfrak{S} .

b) Let $u \leq 2$ and $K \neq GF3$ or $n \geq 5$. Then kernel Θ is generated by \mathfrak{S} .

PROOF. a) Let T := Ka + Kb. If T is regular choose $c \in T$ such that Q(c) = 1. Then dim $B(\sigma_a \sigma_b \sigma_c) = 1$ and $\Theta(\sigma_a \sigma_b \sigma_c) = K^{*2}$, hence $\sigma_a \sigma_b \sigma_c \in \mathfrak{S}$ and $\sigma_a \sigma_b \in \mathfrak{S} \cdot \mathfrak{S}$. If T is singular then dim $T^{\perp} = n - 2$ and dim(rad T^{\perp}) = dim(rad T) = 1. Hence T^{\perp} contains a 2-dimensional regular subspace D, and we can choose some anisotropic $d \in D$ such that Q(d) = Q(a). Then Ka + Kd and Kd + Kb are regular. Hence $\sigma_a \sigma_d, \sigma_d \sigma_b \in \mathfrak{S} \cdot \mathfrak{S}$ by the previous case and finally $\sigma_a \cdot \sigma_b = \sigma_a \sigma_d \sigma_d \sigma_d \sigma_b \in \mathfrak{S} \cdot \mathfrak{S}$.

b) By Corollary 3 we can assume that K = GF 3 and $n \ge 5$. Every $\pi \in \text{kernel }\Theta$ is a product of 1-symmetries and -1-symmetries where the number of -1-symmetries is even; *cf.* 1.(4). Hence a) yields the assertion.

4. The symplectic case.

4.1 A brief look at E. T. Wall's bilinear form. As in 1. let G be an orthogonal group O(V) or a symplectic group Sp(V) given by the regular form f. Every $\pi \in G$ supplies a bilinear form

$$f_{\pi}: B(\pi) \times B(\pi) \longrightarrow K, \quad f_{\pi}(v(\pi-1), b) := -f(v, b)$$

where $v \in V$ and $b \in B(\pi)$; *cf.* [4]. Wall's form f_{π} is regular (but usually not symmetric). We write $M \perp_{\pi} N$ when $M, N \subset B(\pi)$ and $f_{\pi}(m, n) = 0$ for every $m \in M$ and $n \in N$. Let $d(\pi)$ denote the discriminant of f_{π} . The mapping $Q_{\pi}: B(\pi) \to K$, $b \mapsto f_{\pi}(b, b)$ is a quadratic form and the associated symmetric bilinear form is $g_{\pi}: B(\pi) \times B(\pi) \to K$, $g_{\pi}(a,b) := \frac{1}{2}[Q_{\pi}(a+b) - Q_{\pi}(a) - Q_{\pi}(b)]$. It is easy to verify that elements π, φ of *G* are conjugate if and only if their forms f_{π} and f_{φ} are equivalent, *i.e.* there is a linear bijection $\omega: B(\pi) \to B(\varphi)$ such that $f_{\pi}(a, b) = f_{\varphi}(a\omega, b\omega)$ holds for all $a, b \in B(\pi)$. This yields

- (2) If $\pi^{\gamma} = \varphi$ then $d(\pi) = d(\varphi)$ for all $\pi, \varphi, \gamma \in G$, and
- (2') Suppose that $\pi, \varphi \in G$ are simple. Then $\pi^{\gamma} = \varphi$ for some $\gamma \in G$ if and only if $d(\pi) = d(\varphi)$.

If G is orthogonal and σ_a denotes the symmetry with $B(\sigma_a) = Ka$ then $d(\sigma_a) = Q_{\sigma}(a, a) = 2Q(a)K^{*2}$ where Q(a) := f(a, a). If G is symplectic and $\tau_{\mu,w}$ is a transvection then $d(\tau_{\mu,w}) = Q_{\tau}(w, w)K^{*2} = -\mu K^{*2}$ and $d(\tau_{\mu,w}^{-1}) = \mu K^{*2}$.

In the sequel we shall consider a symplectic group Sp(V) = Sp(V, f).

Let $\pi \in \text{Sp}(V)$ and $a, b = v(\pi - 1) \in B(\pi)$. Then $2g_{\pi}(a, b) = -f(a(\pi + 1), v\pi)$. Hence we obtain

(3)
$$\operatorname{rad}(B(\pi), Q_{\pi}) := \operatorname{rad}(B(\pi), g_{\pi}) = N(\pi)$$

We shall repeatedly use the following lemma.

LEMMA 4.1.1. Let $\varphi \in Sp(V)$ and τ a transvection. The following statements are equivalent.

(i) dim $F(\varphi \tau) = \dim F(\varphi) + 1$.

(*ii*)
$$B(\tau) \not\subset B(\varphi \tau)$$
;

(*iii*) $B(\varphi) = B(\tau) \oplus B(\varphi\tau)$;

(iv) There is some $z \in B(\varphi)$ such that $\tau = \tau_{\mu,z}$ where $\mu := Q_{\varphi}(z)^{-1}$.

If these conditions hold then the following properties are true.

- (j) $B(\tau) \perp_{\varphi} B(\varphi \tau);$
- (jj) $f_{\varphi}|_{B(\tau)} = -f_{\tau} and f_{\varphi}|_{B(\varphi\tau)} = f_{\varphi\tau};$ (jjj) $d(\varphi) = -d(\tau) \cdot d(\varphi\tau).$

PROOF. The equivalence of (i), (ii) and (iii) is part of 1.1. If (i) is valid then $v(\varphi - 1) = z$ and $v \in F(\varphi \tau) \setminus F(\varphi)$ for some v, hence (i) \Rightarrow (iv). Conversely, a short computation shows (iv) \Rightarrow (i). Statements (j) and (jj) follow almost immediately from the definitions; (j) and (jj) entail (jjj).

COROLLARY 4.1.2. Let $\pi \in \text{Sp}(V)$ and τ a transvection such that $B(\pi\tau) = B(\tau) \oplus B(\pi)$. Then $d(\pi\tau) = d(\tau) \cdot d(\pi)$.

PROOF. 4.1.1(jjj) implies that $d(\pi \tau) = -d(\tau^{-1}) \cdot d(\pi \tau \tau^{-1}) = d(\tau) \cdot d(\pi)$.

COROLLARY 4.1.3. If τ_1, \ldots, τ_k are $\lambda_1, \ldots, \lambda_k$ -transvections such that $\pi := \tau_1 \cdots \tau_k$ and $k \leq \dim B(\pi)$ [hence $k = \dim B(\pi)$ and $B(\pi) = B(\tau_1) \oplus \cdots \oplus B(\tau_k)$ by 1.(2)] then

$$d(\pi) = (-1)^k \lambda_1 \cdot \cdots \cdot \lambda_k \cdot K^{*2}.$$

In [2] a mapping called ρ is used. We want to mention that ρ is closely related to the discriminant mapping of Wall's bilinear form:

DEFINITION/COROLLARY 4.1.4. Given some $\lambda \in K^*$. For $\pi \in \text{Sp}(V)$ we define $\rho(\pi) := (-\lambda)^{\dim B(\pi)} \cdot d(\pi)$. Then $\rho(\tau_{\mu,w}) = \lambda \mu K^{*2}$; hence $\tau_{\mu,w}$ is a λ -transvection if and only if $\rho(\tau_{\mu,w}) = K^{*2}$. If $\pi \in \text{Sp}(V)$ is a product of dim $B(\pi)$ λ -transvections then $\rho(\pi) = K^{*2}$.

4.2. Let $\pi \in \operatorname{Sp}(V)$ and $z \in B(\pi) \setminus B(-\pi)$ such that $Q_{\pi}(z) \neq 0$. Let $\lambda := Q_{\pi}(z)^{-1}$ and $\tau := \tau_{\lambda,z}$. Then $B(\pi) = B(\tau) \oplus B(\pi\tau)$ and dim $F(\pi\tau) = \dim F(\pi) + 1$ and dim $N(\pi\tau) = \dim N(\pi) - 1$; hence $N(\pi\tau) = B(\pi\tau) \cap N(\pi)$ and $L(\pi\tau) = L(\pi)$.

PROOF. This is immediate from 4.1.1 since $N(\pi\tau) = F(-\pi\tau)$.

4.3. Let $K \neq$ GF3, $\pi \in$ Sp(*V*) such that $N(\pi) \neq 0$ and $\lambda \in L(\pi) := \{Q_{\pi}(z) \mid z \in B(\pi)\} \setminus \{0\}$ (clearly dim $B(\pi)/N(\pi) \geq u$ implies that $L(\pi) = K^*$; *cf.* 4.1(3)). There is a λ -transvection τ such that dim $F(\pi\tau) = \dim F(\pi) + 1$ and dim $N(\pi\tau) = \dim N(\pi) - 1$ and $L(\pi\tau) = L(\pi)$.

PROOF. ${}^{*}B(\pi^{2}) = B(\pi) \cap B(-\pi)$ is a proper subspace of $B(\pi)$. Hence $B(\pi) = A \oplus N(\pi)$ and $A \not\subset B(\pi^{2})$ for some subspace A. Then A is regular with respect to the quadratic form Q_{π} ; cf. 4.1(3). We have $N(\pi) = \operatorname{rad}(B(\pi), g_{\pi})$; cf. 4.1(3). Hence $Q_{\pi}(z) = \lambda$ for some $z \in A$. By 3.1 A has a basis whose vectors c fulfill $Q_{\pi}(c)^{-1} = \lambda$. Clearly, $a \in B(\pi) \setminus B(\pi^{2})$ holds for at least one of them. Finally, 4.2 shows that $\tau := \tau_{\lambda,a}$ meets the requirements.

4.4. Let $\pi \in \text{Sp}(V)$ and $\tau = \tau_{\mu,z}$ such that $N(\pi) = 0$ and $\dim F(\pi\tau) = \dim F(\pi) + 1$. Then $N(\pi\tau) = 0$ if and only if $Q_{\pi}(z(\pi+1)^{-1}) \neq 0$.

PROOF. We have $\mu^{-1} = Q_{\pi}(z) = -f(w, w\pi)$ where $z = w(\pi - 1)$; cf. 4.1.1. Let $d := w(\pi + 1)^{-1}$. If $N(\pi\tau) \neq O$ is true then $\mu \cdot f(d(\pi - 1), d(\pi - 1)\pi) = 1$. This entails $f(d(\pi - 1), d(\pi - 1)\pi) = -f(d(\pi + 1), d(\pi + 1)\pi)$. We conclude that $0 = f(d, d\pi) = -Q_{\pi}(z(\pi + 1)^{-1})$. If conversely $Q_{\pi}(z(\pi + 1)^{-1}) = 0$ holds then $d(\pi - 1) = z(\pi + 1)^{-1} \in N(\pi\tau)$.

4.5. Theorem 2 holds under the additional assumption that $N(\pi) = 0$ and $m := \dim B(\pi) - u + 1 \le 2$.

PROOF. We can assume that $m \ge 1$, hence $m \in \{1, 2\}$; cf. 1.4'.

Let m = 1 and $\lambda_1 \in K^*$. Then dim $B(\pi) = u$. Choose $c \in B(\pi)$ with $Q_{\pi}(c) = -\lambda_1^{-1}$. Let $\tau_1 := \tau_{-\lambda_1,c}$ and $\varphi := \pi \tau_1$. Then dim $B(\pi) = \dim B(\varphi) \oplus B(\tau_1)$ and τ_1^{-1} is a λ_1 -transvection; *cf.* 4.1.1. If dim $B(\varphi) = 1$ then φ is a transvection. Else dim $B(\varphi) >$

 $\frac{1}{2} \dim B(\pi)$, hence $B(\varphi)$ is not totally isotropic with respect to Q_{π} . This means that $\varphi^2 \neq 1$. In both cases φ is a product of dim $B(\varphi)$ transvections; cf. 1.(4').

Now let m = 2 and $\lambda_1, \lambda_2 \in K^*$. We claim that

(*)
$$Q_{\pi}(b(\pi+1)^{-1}) \neq 0 \text{ and } Q_{\pi}(b) = -\lambda_1^{-1} \text{ for some } b \in B(\pi).$$

Replacing λ_1 by $-\lambda_1^{-1}$, Q by Q_{π} and $\pi - 1$ by $\pi + 1$ in the proof of (*) in 3.2 we obtain a proof of the present statement (*). Indeed (*) yields the assertion: Let $\tau_1 := \tau_{-\lambda_1,b}$. Then $\varphi := \pi \tau_1$ satisfies $B(\pi) = B(\tau_1) \oplus B(\varphi)$ and $N(\varphi) = 0$; *cf.* 4.1.1 and 4.4. Furthermore, τ_1^{-1} is a λ_1 -transvection. The previous case m = 1 supplies transvections $\tau_2, \ldots, \tau_{\dim B(\pi)}$ such that $\varphi = \tau_2, \ldots, \tau_{\dim B(\pi)}$ and τ_2 is a λ_2 -transvection. The assertion follows.

4.6 *Proof of Proposition 2.* The proof is a consequence 4.3. To carry out the details replace in the proof of Proposition 1 Q by Q_{π} and rad $B(\pi)$ by $N(\pi)$ and symmetries by transvections.

4.7 Proof of Theorems 3 and 4. As in 3.5 it suffices to prove Theorem 3. If $m \le 0$ then 1.(4') yields the assertion. So we assume that $m \ge 1$. We proceed by induction on dim $B(\pi)$. If dim $B(\pi) = 1$ then u = 1 and m = 1; hence $K^{*2} = K^*$ and π is a transvection. Clearly the assertion holds in this case.

Let dim $B(\pi) \ge 2$.

CASE I. $N(\pi) = 0$. If $m \le 2$ then 4.5 applies. Now let $m \ge 3$, *i.e.* dim $B(\pi) \ge u + 2$. Take an arbitrary vector $a \in B(\pi)$ with $Q_{\pi}(a) = -\lambda_1^{-1}$; this is possible since dim $B(\pi) \ge u$ and $B(\pi)$ is regular with respect to Q_{π} . Then $\tau_1 := \tau_{-\lambda_1,a}$ fulfills $B(\pi) = B(\pi\tau_1) \oplus B(\tau_1)$ and dim $N(\pi\tau_1) \le 1$. Furthermore, τ_1^{-1} is a λ_1 -transvection. Thus dim $B(\pi\tau_1)/N(\pi\tau_1) \ge$ dim $B(\pi) - 2 \ge u$. Hence $\pi\tau_1$ meets the requirements of the Theorem and the induction hypothesis applies.

CASE II. $N(\pi) \neq 0.4.3$ supplies a $-\lambda_1$ -transvection τ_1 such that $B(\pi) = B(\pi\tau_1) \oplus B(\tau_1)$ and dim $N(\pi\tau_1) = \dim N(\pi) - 1$. Then dim $B(\pi\tau_1)/N(\pi\tau_1) = \dim B(\pi)/N(\pi) \ge u$ and τ_1^{-1} is a λ_1 -transvection. The assertion follows by induction.

4.8 Proof of Corollaries 4 and 5.

LEMMA 4.8.1. Let $l \ge u, \tau \in Sp(V)$ a transvection and $\lambda_1, \ldots, \lambda_l \in K^*$. Then $\tau = \tau_1 \cdot \cdots \cdot \tau_l$ where τ_i is a λ_i -transvection and $B(\tau_i) = B(\tau)$, or $\tau_i = 1$, for each *i*.

PROOF. Let $\tau = \tau_{\mu,z}$. By assumption, $\mu = \lambda_1 \delta_1 + \cdots + \lambda_1 \delta_1$ for suitable squares $\delta_i \in K^2$. Let $\tau_i := \tau_{\lambda_i \delta_i, z}$ if $\delta_i \neq 0$, else $\tau_i := 1$.

Corollary 4 follows immediately from Theorem 2, 1.(2) and 4.1.3. Statement a) in Corollary 5 is a special case of Corollary 4.

Corollary 5b) and c) will follow from the following statements (i), (ii) and (iii). Let $u \le 2, K \ne \text{GF}3, \pi \in \text{Sp}(V)$ and $\lambda \in K^*$. Let $k := \dim B(\pi)$. If $d(\pi) \ne (-\lambda)^k K^{*2}$ then 4.1.3 entails that π is not a product of less than k + 1 λ -transvections.

First let us assume that $\dim B(\pi)/N(\pi) = 1$. Due to 4.1(3) each $z \in B(\pi) \setminus N(\pi)$ yields the same value $\varkappa := Q_{\pi}(z)K^{*2}$.

408

By 1.(4') π is a product of k transvections; each factor $\tau = \tau_{\mu,z}$ in such a product satisfies $-\mu K^{*2} = -d(\tau^{-1}) = -Q_{\tau^{-1}}(z)K^{*2} = Q_{\pi}(z) \cdot K^{*2} = \kappa$; cf. 1.(2) and 4.1.1(jj). Furthermore, 4.1.3 yields that $d(\pi) = \kappa^k$. We conclude:

(i) Let dim $B(\pi)/N(\pi) = 1$. Then π is a product of $k \lambda$ -transvections if and only if $\lambda K^{*2} = -\kappa$.

Now let $\pi \in \text{Sp}(V)$ and $\pi^2 \neq 1$. Using 1.(4') we obtain a product φ of k-1 transvections and a transvection τ such that $\pi = \varphi \cdot \tau$. By 4.8.1 we have $\tau = \tau_1 \tau_2$ where τ_1 is a λ -transvection with $B(\tau_1) = B(\tau)$ and τ_2 is a λ -transvection or $\tau_2 = 1$. Then $\varphi \tau_1$ is a product of k transvections. If dim $B(\varphi \tau_1)/N(\varphi \tau_1) \geq 2$ then Corollary 5a) yields that $\varphi \tau_1$ is a product of k λ -transvections; hence π is a product of k + 1 transvections. Else dim $B(\varphi \tau_1)/N(\varphi \tau_1) = 1$ and $\varphi \tau_1$ is a product of k transvections such that one factor is a λ -transvection. Thus (i) yields that each factor is a λ -transvection. So π is a product of $k + 1 \lambda$ -transvections. Hence we proved

(ii) Let $\pi^2 \neq 1$. Then π is a product of at most $k + 1 \lambda$ -transvections.

(iii) Let $B(\pi) = N(\pi)$ and $\pi \neq 1$. Then π is a product of k + 1 but not less than k + 1 λ -transvections.

PROOF OF (iii). The not-less-statement follows from 1.(2) and 4.1.1(jj). If dim $B(\pi) = 1$ then 4.8.1 yields the assertion. Let dim $B(\pi) \ge 2$. An elementary argument shows: If τ is a transvection with $B(\tau) \subset B(\pi)$ then $B(\pi) = N(\pi) = B(\pi\tau) = N(\pi\tau) \oplus Kz$ for some $z \in V \setminus 0$. We can choose a $-\lambda$ -transvection τ such that $B(\tau) \subset B(\pi)$. Then $Q_{\pi\tau}(z)K^{*2} = -\lambda K^{*2}$ by a simple calculation. In (i) we ascertained that $\pi\tau$ is a product of $k \lambda$ -transvections. This completes the proof.

REFERENCES

- 1. E. W. Ellers and J. Malzan, Products of Reflections in the Kernel of the Spinorial Norm, Geom. Ded. 36(1990), 279–285.
- **2.** _____, Products of λ -Transvections in Sp(2n, q), Linear Algebra and Appl. **146**(1991), 121–132.
- 3. J. Hahn and O. T. O'Meara, The Classical Groups and K-Theory, Springer, 1989.
- **4.** G. E. Wall, On the Conjugacy Classes in the Unitary, Symplectic and Orthogonal Groups, J. Austral. Math. Soc. **III**(1963), 1–62.

Mathematisches Seminar Universität Kiel Olshausenstraße 40 23 Kiel Germany