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Abstract. A conference on the interaction of ergodic theory, differential geometry
and the theory of Lie Groups was held at the Mathematical Sciences Research
Institute from May 24 to June 1, 1984. This is a report of the problem session
organized by A. Katok and R. Zimmer and held on May 25, 1984 dealing with the
topics in the title. Another problem session was centred on the rigidity of manifolds
of non-positive curvature and related topics concerning their geodesic flows. This
is reported on by K. Burns and A. Karok separately [2].

The list of problems given here was compiled from those presented at the session
and from suggestions made during the conference, and later refined by comments
from the participants. A name next to a problem indicates that this person proposed
it during the conference. Some of the problems given below are venerable, but many
others reflect the current state of affairs in the topic at hand.

These notes, together with those of K. Burns, are to be considered as a sequel to
the problem list compiled by R. Spatzier at the A.M.S. Meeting at Amherst, October
1981 {29].

The problems are organized as follows, which is roughly the order of their
presentation:

(1) Rigidity of smooth actions of lattices and Kazhdan groups.

(2) Rigidity of smooth actions of discrete subgroups of ‘soft’ Lie groups and
horocycle flows.

(3) Rigidity of foliations.

(4) Classification of smooth cocycles and rigidity.

(5) e-rigidity and e-classification of cocycles.

(6) Rigidity and e-rigidity of cocycles associated to smooth distal group actions.

(7) L'-classification of cocycles.

(8) Miscellaneous problems on ergodic theory in differential geometry.

A reference beside an italicized word indicates where the appropriate definition
may be found.

1. A basic problem is to construct non-algebraic examples of smooth volume-
preserving actions of ‘large’ groups (e.g. lattices in semi-simple groups of higher
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rank) on manifolds of finite volume. Conversely, given a specific manifold one might
try to show that all such actions must be algebraic.

Problem 1 (Zimmer). Are all volume-preserving analytic actions of SL (n, R) for
n =3 describable in algebraic terms? Same question for a lattice in SL (n, R)? For
results along these lines, see [35].

Problem 2 (Zimmer). Can the natural action of SL (n, Z) on the n-torus T", for
n =3, be perturbed to a non-algebraic action? Suppose an action of SL (n,Z) on
T" preserves an affine connection (cf. [37]). Does this imply the action is algebraic?

Remark (Mostow). One possible approach to problem 1 is to consider groups I'
which decompose into a free product, or more generally an amalgamated product
of finite groups and then construct for each of the finite groups an exotic action on
the Euclidean sphere S” < E"*! which is not conjugate to a linear action. Such exotic
actions of finite groups exist by the work of Cappell and Shaneson [3]. One difficulty
to be overcome is that while each finite group preserves a volume on E"*', an
invariant volume for their free product must be constructed.

Remark (Weissfeiler). Millson and Johnson [21] have constructed perturbations of
lattices in SO (n, 1) which are discrete but not algebraic (so they must have infinite
covolume by rigidity.) Possibly these can be used as a starting point for constructing
non-algebraic actions on a manifold of finite volume.

Problem 3 (Fried). Show the action of SL (n,Z) on T" is structurally stable [28].

Note that for y € SL (n, Z) hyperbolic, the action of y on T" is structurally stable,
so this may give an approach to a proof.

Problem 4 (Zimmer). There is a natural action of SL (n, Z) on the real projective
space RP"'. Does this action admit perturbations to non-algebraic actions? Note
that the action in this case is not volume preserving.

A group I' is Kazhdan if the trivial representation is isolated in the left regular
representation of I'. For further discussions, see [32], [37].

Problem 5 (Zimmer). Every sufficiently small perturbation of an isometric action of
a Kazhdan group I" must leave a smooth metric invariant [35]. Therefore, every
sufficiently small perturbation of the action acts through the compact group of
isometries of the corresponding invariant metric. Are such perturbations structurally
stable? That is, does the compact group in question depend only upon I'" and the
1aanifold on which T acts, or does it vary with the perturbation?

2. A group I' is soft if it is not expected to have any rigidity property. For example,
a lattice in a semi-simple Lie group of rank =2 is not soft, nor is I" having Kazhdan’s
Property T. Lattices in solvable groups are soft, as well as lattices in SL (2, R). For
a soft group T, the relevant rigidity problems often involve the ergodic flows defined
on the compact manifolds X /T, where X is simply connected. These vague notions
are made precise by the following remarks, results and problems.

Remark (Mostow). Let T, =m(Z,) be the fundamental group of the compact
orientable surface of genus g. Each metric of constant negative curvature on X,
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determines an action of I'; on S' via the action on the Poincaré disc. All such actions
of I', on S' are topologically conjugate, but if the actions are smoothly conjugate,
then the metrics must be equivalent. In this case, the problems of smooth rigidity
and topological rigidity are strikingly different.

As an example of a rigidity problem arising in this context, one can ask whether
new C”-actions of I', on S' can be obtained by using a metric h on =, which has
negative curvature, but it is not constant. Such a metric yields an action of I', on
the hyperbolic disc, and the induced action on the boundary is always C'. The
following rigidity theorem is due to E. Ghys.

THEOREM [11]. Let ¢:T', > PSL (2, R) < Diff” (S') be the representation coming from
a metric with curvature —1. Let ' :T, > Diff’ (S') for 2= r < w be another representa-
tion which is C*-close to . Then there is a diffeomorphism h, of class C" 2, such that
hy'h™" consists of projective transformations in PSL (2, R).

For r =2, this result is just the fact that ¢ is structurally stable.

Problem 6. Can the conclusion of the theorem above be improved to obtain h is
C'™'? In particular, for a C*-perturbation ¢’ of ¢, is it C'-conjugate to ¢?

Let M be the unit tangent bundle of a surface X, with negative curvature. Let ¢
denote the geodesic flow on M and 7 the horocycle flow [24]. If the curvature of
the metric is constant, then we can metrically identify M =f‘g\SL (2, R), where
SL (2, R) has the normalized left-invariant metric which descends to the given metric
on £, =T,\SL (2, R)/SO,. The group I, fits into an extension 1> Z - [,»>T,>1.
The flow & on M is defined by right multiplication with

(e‘ 0
0 e_')

onf ¢\SL (2, R) and 7, is defined by multiplication with

(3

For measure spaces (X, u) and (Y, v) a flow ¢ on X is measurably conjugate [24]
to a flow ¢ on Y if there exists a measure preserving bijection ®: X > Y such that
P, oP(x)=Dog,(x) for all ¢t and a.e. xe X.

M. Ratner proved a rigidity theorem for the horocycle flow which became a
starting point for many other developments.

THEOREM [24]. Suppose M, and M, are the unit tangent bundles associated to surfaces
2, and X, with constant negative curvature. Suppose the horocycle flow n, on M, is
measurably conjugate to the horocycle flow m, on M,. Then g, = g,, and there exists
an isometry ®:3, >3 inducing the conjugation.

There is more than one natural parametrization for the horocycles on a surface of
variable negative curvature. Accordingly the horocycle flow may be defined differ-
ently. Let us fix the Margulis parametrization which is expanded uniformly by the
geodesic flow (cf. [8]).
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Problem 7 (Feldman, Ornstein). Generalize Ratner’s theorem to horocycle flows
with Margulis parametrization on surfaces of variable negative curvature.

Feldman and Ornstein [8] proved that the measurable conjugacy of the horocycle
flows implies C' conjugacy of geodesic flows. However, it is not known whether
the conjugating diffeomorphism between the tangent bundles can always be modified
to be generated by an isometry between the surfaces. See ([2, § 3]) for a discussion
of questions related with this problem.

In his thesis [31], D. Witte generalized Ratner’s theorem to the case of two flows
¥, i=1,2, on quotients I'\ G; of semi-simple Lie groups, where ¢, is defined by
right multiplication with a unipotent 1-parameter subgroup of G. The key point is
that each flow is affine and has zero entropy.

Problem 8 (Witte). Let G be a connected Lie group and A< G a lattice. For ge G
let ¢, denote the flow induced on A\G by right multiplication with a 1-parameter
subgroup of G containing g. Show that if ¢, is an ergodic action with zero entropy,
then the action on A\G is rigid. That is, if G', A’, ¥ is another such system with
(A\G, ¢,) measurably conjugate to (A"\G’, ¢.) then there is an algebraic isomorph-
ism between them.

A factor of a flow ¢ on a measure space (X, ) is a flow ¢ on a measure space
(Y, v) and a measure-class preserving map ®: X - Y such that ®o¢,(x) = ¢, P(x)
for all t and a.e. xe X. If ® has a measurable inverse, then ® is a trivial factor.

For the horocycle flow 7 on a surface 2, with constant negative curvature, Ratner
has classified the factors of 5 by showing they are all algebraic [25]. This implies
that (Y, ¢) is a factor of (M, n) if and only if Y is the unit tangent bundle of a
surface 2, where X, covers 2, and the flow on Y is the horocycle flow.

Ratner has posed the problem of whether the factor theorem can be extended to
manifolds with variable negative curvature [25, p. 283] and Feldman raised a related
question at the conference.

Problem 9. Classify factors of the horocycle flow on a surface of variable negative
curvature. Specifically, show that all such factors are discrete and come from
isometric symmetries of the surface.

One approach to this problem is to follow Ratner’s proof for the constant curvature
case: First prove that any factor is discrete and the factor-space has the natural
structure of a manifold. Then prove that a factor of the horocycle flow is also a
factor of the geodesic flow. This requires an analogue of the Feldman-Ornstein
result, namely to show that the projection map is continuous and projects geodesics
into geodesics. The remaining steps are similar to problem 7.

3. Gromov gave a remarkable proof of the Mostow rigidity theorem for cocompact
lattices in SO(n, 1) acting on H" = SO (n, 1)/SO,, which used properties of bounded
cohomology groups {12] and ideal simplices in H" to deduce that measurable maps
given on the Furstenberg boundary of SO (n, 1) were actually conformal; (cf. [30,
Chapter 6]).

https://doi.org/10.1017/50143385700003084 Published online by Cambridge University Press


https://doi.org/10.1017/S0143385700003084

Rigidity of group actions 477

Problem 10. Extend Gromov’s proof to deduce the Margulis rigidity theorem [32]
for other cocompact lattices.

Problem 11 (Hurder). Use Gromov’s method to prove a generalized rigidity theorem:
Let I be a discrete subgroup of a simple Lie group G which is not locally isomorphic
to SL (2, R). Suppose G is the algebraic hull of I' and for some p> 2 the bounded
cohomology group HE.y(I') # 0. Then show that for all discrete actions of I on a
contractible homogeneous p-manifold X with X/I" compact, the action of I' on X
is rigid.

Remark. If we allow in problem 11 that X is an arbitrary contractible space of
dimension p, then this is a special case of Borel’s question [6]. Connes’ work in [5]
shows that the algebraic obstructions to rigidity (i.e. to the Kasparov reduction of
the problem) vanish if H{;4(I') is large enough to detect all of the classes in the
K-homology group K, (BI') of the classifying space BI'. For a homogeneous space
X, problem 11 asks whether it is just the cohomology classes in H¥;4(I') of top
dimension = dimension X which determine everything.

A measurable foliation F on a finite measure space (X, u) is a measurable partition
of X into smooth submanifolds of constant dimension satisfying a local triviality
condition (cf. [16] and [34]). On such % we can define a measurable family, g, of
Riemannian metrics on the leaves of #. Let du, denote the corresponding Rieman-
nian volume form on the leaves, and define a transverse measure dur for ¥ by
setting du = du, X dur We will call (X, &, u, g) a measurable Riemannian foliation
[16], [34].

We say that (X, &, u, g) is isomorphic to (X', ¥, u', g') if there is a measurable
isomorphism ®: X - X’ which maps the leaves of ¥ diffeomorphically onto the
leaves of ', and they are isometrically isomorphic if the leaf maps are isometries.
We say that (X, %, u, g) is rigid if for any (X', %, u', g’} with (X, %, u) orbit
equivalent to (X', %', u'), then the foliations are isomorphic. Zimmer has shown:

THEOREM [33], [34]. Let (X, %, u,g) be a measurable Riemannian foliation, and
suppose that each leaf of & is isometric to a complete locally symmetric space of rank
=2, du is a non-atomic invariant measure for F with finite total mass (so ¥ is type
I1,) and % is ergodic with respect to ur. If (X, %, u, g) is orbit equivalent to another
such (X', F', u', g') then they are isometrically isomorphic.

Problem 12. Extend Zimmer’s theorem above to conclude that such (X, %, u, g) are
actually rigid in the broader sense defined above.

Problem 13. Let (X, %, u, g) be a measurable Riemannian foliation, and assume the
transverse measure dur is not invariant. Find additional hypotheses on (X, %, u, g)
which will guarantee that the foliation is rigid in either of the above senses. Zimmer
has given one set of sufficient additional conditions in [32, § 7]. Note that the above
theorem is false without the hypothesis du is invariant and no additional hypotheses
are made.

A foliation & on (X, u) defines an equivalence relation (%)< X XX, where
(x,y)e R(%) iff x and y are on the same leaf. A cocycle ¢ on & is a measurable
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map ¢: R(F)~ G such that ¢(x, z) = ¢(x, y)d(y, z) for (x, y), (y, z) € R(F), where
G is a Polish group.

Problem 14. (Generalized super-rigidity [32].) Find conditions on a Riemannian
foliation (X, %, u, g) which are sufficient to allow a good classification of the cocycles
over ¥ (up to cohomology).

Problem 15 (Hurder). Let (X, %, u) and (X', #', u') be measurable foliations, and
suppose there are given cocycles ¢: B(F) > G and ¢': R(F') > G whose algebraic
hull [32] is a simple Lie group G of rank =2. Let ®:(X, %, u)~> (X', F, 1') be an
orbit equivalence such that ®*(¢') is cohomologous to ¢. If almost every leaf of
F and &' is contractible, and &% and %’ are irreducible in an appropriate sense,
show that (X, %, u) is isomorphic to (X', F', u').

Remark. For & a smooth foliation of a compact manifold, the results of [16) imply
that % will have a cocycle ¢ as in problem 15 whenever ¥ has a non-vanishing
higher degree residual secondary class. The above problems 14 and 15 are the key
steps towards showing that such foliations must be rigid.

4. Rigidity theorems for cocycles are very important for the proofs of the geometric
rigidity theorems of Margulis and Zimmer. Cocycles arise in many geometric
contexts, and these contexts also suggest corresponding rigidity problems.

Problem 16 (Katok). Let v be a C™-vector field on a compact manifold M. We say
that v is C*-rigid if for all smooth functions p>0 on M, the flow of the vector
field p - v is C*-conjugate to the flow of v ([18, Chapter 10]). Describe all C*-rigid
flows on a given manifold.

Kolmogorov [20] shows that the flow on T? with irrational rotation angle 6, where

0 satisfies an arithmetic condition, is C*-rigid. What flows on T" are C®-rigid?
There is a discrete version of problem 16 in terms of cocycles:

Problem 17 (Katok). Let f: N> N be a C™-diffeomorphism. We say condition (*)

holds for f if every smooth function on N is cohomologous to a constant. That is:
(*) For each C”-function ¢: N >R, there exists a smooth function h=h,: N>R

and a constant ¢, so that

@ (x)=@o+ h(f(x))—h(x) for all xe N.

For a given manifold N, what diffeomorphisms of N satisfy (*)?

The irrational rotation of the circle S' by angle 6 satisfies (*) if @ has at most
polynomial approximation speed by rationals [20], [18].

The connection between the two problems is via the suspension construction:
Given f: N> N, define a new manifold M = N xR/(x, r) ~ (f(x), r+1). The unit
tangents to the lines {x} XR define a flow v on M. A solution to problem 17 for N
and f then yields a solution to problem 16 for M and v.

Remark (Katok). If f: N - N satisfies condition (*) then f is strictly ergodic. There
are obstructions, in the form of invariant distributions on N, which must be zero
for a solution to (*) to exist. In many cases it suffices to consider only invariant
measures (e.g. [13]). On the other hand, as it is shown in [18, § 10.5] for a strictly
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ergodic affine map of the 2-torus T2, there is a countable family of invariant
distributions which are not measures and which completely determine whether one
can solve the cocycle equation (*).

Problem 18 (Katok). Let 8 be an irrational number with at most polynomial
approximation speed by rationals, and R, the corresponding rotation of S'. Does
the C™-cocycle equation with values in GL (n,R) for R, always have a solution?
That is, prove:

(*,) For each C>*-function ¢:S'>GL (n,R), there exists a smooth function
h=H,:S'>GL (n,R) and a constant ¢,€ GL (n, R) so that

@(x)=h(Rex) - @o h(x)™" for all xe S*.

S. For a given I' and Lie group G, the rigidity of G-cocycles over all possible
finite-measure-preserving ergodic actions of I' is an extremely strong condition on
(I', G). Zimmer has proved this for the case when I' is a Kazhdan group and G is
real algebraic [37].

For a soft group TI', rigidity for cocycles over I' cannot be expected. This is
especially true for I' amenable. The surprising fact is that e-rigidity can often be
proved, and this property extends to the cases of cocycles over foliations and
groupoids. The first seeds of e-rigidity appeared in the proofs of the Pesin theory
of dynamical systems [22], [23], and there are now numerous open questions.

Let I' be a finitely generated group, with generators {v,, ..., v,}, (X, u) a standard
measure space with probability measure w, and suppose I' acts ergodically on X
preserving u. A cocycle ®:I'x X > G is e-rigid if there exists a homomorphism
¢o:T'> G such that for all £ >0, there is a cocycle ¢, cohomologous to ¢ such that

||¢s(7i, x) - ¢o(%)‘l”o< £ forl=i<n.

Problem 19 (Katok). Find conditions on the group T, the action I' x X » X and the
cocycle ¢ which implies that ¢ is e-rigid.

Remarks. (A) For '=2Z and ¢:T XX - G tempered ([16] and see below; here we
mean J|¢(y;, x}|| g < k for some k and all 1< i= n) the Oseledec theorem [22] implies
¢ is always e-rigid for G=R™. In this context, the e-rigidity of ¢ is a refined form
of the Birkhoff ergodic theorem. More generally, problem 19 asks for which groups
I" and classes of cocycles over I' does there exist an ergodic theorem?

(B) For I'=2", every L”-cocycle for p >n has the e-rigidity preperty [19], but
there are L"-cocycles which are not e-rigid. (The difficulty which arises for p<n
is in obtaining asymptotic estimates on the cocycle.)

(C) For I nilpotent, every tempered cocycle has the e-rigidity property [19].

Problem 20. For I of polynomial growth rate p,, show that every L”-cocycle over
T for p> p, has the e-rigidity property. For I of subexponential growth, show that
every tempered cocycle over I is £-rigid. Can anything be said for I' amenable?
A concept closely related to s-rigidity is the e-classification property, which is in fact
a key ingredient in establishing e-rigidity. We formulate this in a very general context.
Let (X, 1) be a measure space and R < X x X a measurable equivalence relation
on X. Let d: R->R" be a measurable family of metrics on the orbits of R: d(x, y) =
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d(y, x)=0 for (x, y) € R and is measurable in x and y. We say (X, R, d) is a metric
equivalence relation of exponential type [16] if each ball

B(x,r)={(x,y)e R|d(x,y)<r}

has at most finitely many points, and the limit

1
¢(x)=1lim sup M< 00

r»oo r

a.e. xe€ X.

We say (X, R, d) has subexponential type if c(x)=0 for a.e. x € X. This means the
number of elements in a.e. ball along the orbits of R grows subexponentially with
the radius.

Let G be a Lie group with a left-invariant Riemannian metric, and let | |ls
denote the corresponding distance to the identity element. A cocycle ¢: R—-> G is
e-tempered if

[¢(x, y)c<e-d(x,y) ae.(x,y)eR

We say ¢ has moderate growth if

1

0 a.e. x€ X.
d(xy)-oo  d(x,y)

A Lie group G has the e-classification property [19] if for every metric equivalence
relation (X, R, d) with subexponential type, for every G-cocycle ¢ over R with
moderate growth and for every £ > 0, there exists an e-tempered cocycle ¢.: R-> G
which is cohomologous to ¢.

Problem 21. Which Lie groups have the e-classification property?

Remarks. R" has the e-classification property for all n=1 by theorem 3.2 of [16].

A Lie group G has the cone property if the set {g*g|g € G} is a cone. That is for all
a, >0 and g,, g:€ G, we can find g;€ G so that
a-gigi+B-gfg=gig

The groups G =GL (n,R), GL (n,C), SO* (4n), R", SO (n, 1) and one of the real
forms of Eq all have the cone property.

Theorem 3.2 of [16] actually shows that if G has the cone property, then G has
the e-classification property.

A maximal amenable subgroup of GL (n, R) or GL (n, C) has the e-classification
property [16].

No examples are known of either nilpotent, solvable or simple Lie groups which
do not have the e-classification property. The case for G nilpotent is the first
important case to consider.

6. Let X be a metric space with metric d: X X X >R". A continuous action of a
group I' on X is distal if for all x# y in X,
inﬁmrum d(yx, yy)>0.
ve

The action is minimal if for each x € X, the orbit I'x is dense in X. Generalizing a
fundamental theorem of Furstenberg, M. Rees showed in her thesis [26] that a
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minimal distal action on a compact manifold X is always obtained, up to homeo-
morphism, by a finite number of isometric extensions [9], where the structure groups
involved are compact Lie groups, but the fibrations need not be smooth. An extensive
analysis of minimal actions is given in 1. Bronstein’s book [38]. When I’ is a Kazhdan
group, Zimmer has proved a related result.

THEOREM [37]. Let T' be a Kazhdan group acting smoothly on a compact manifold X
and which preserves a smooth distal structure [37] on TX. Then I acts via isometries
on X for some smooth metric on X.

Problem 22 (Zimmer). Suppose I" is a Kazhdan group, X a compact manifold and
suppose [" acts smoothly, minimally and distally on X. Show that I' preserves a
smooth measure on X and thus acts isometrically.

For I' a soft group, the conclusion of problem 22 is known to be false. The simplest
counterexample to this weaker requirement is to take a diffeomorphism f:S'-> S’
with irrational rotation angle and so that f is not C'-conjugate to a rotation of S'.
This defines a distal action Z x §' > 8" which is minimal, but admits no absolutely
continuous invariant measure.

The concept of e-classification provides a substitute for the above problem. Let
I' be a finitely generated group with generators {vy;, - * -, v4}. Assume that I' acts
smoothly on a compact n-dimensional manifold M. Choose a measurable framing
of TM and let

dy:T xM - GL (n,R)

be the associated Jacobian cocycle of the action. The additive Radon-Nikodyn
cocycle is obtained from dy by setting

dv =log (det (dy)):I' x M - R*.
Problem 23 (Hurder). Let I' act smoothly on M as above and suppose the action

is minimal and distal. Show the cocycle dv has the e-classification property. That
is, for all £ >0 there is a cocycle ¢, cohomologous to dv with

|be (v, x)| <€ forall 1=i<d ae. xeM.

Note that ¢, is just the divergence of the I'-action with respect to a new choice of
Lebesgue density on A"TM.

Remark. If T acts equicontinuously on M, then lemma 4.7 and theorem 4.8 of [14]
show that the conclusion of problem 23 holds.

If T has subexponential growth, then for all smooth actions of I' on M the

conclusion that dv has e-classification is proved in theorem 4.10 of [15]. This suggests
asking whether I amenable implies that for all smooth I'" actions, dv has e-classifica-
tion?
Problem 24 (Hurder). Let I" act smoothly on M, and suppose the action is minimal
and distal. Show that the cocycle dy is e-distal: There exists a distal subgroup
D<=GL (n,R) such that for all >0, there is a cocycle ¢.:I' XM - GL (n, R)
cohomologous to dy for which

distg nm (&:(vs x), D) <e¢ all 1=i=d ae.xe M.
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Remark (Katok). For ' x M > M as in problem 24, each yeI" must have zero
exponents on TM by results in [17]. The problem is thus to obtain a field over M
of flags in the tangent spaces T,M which are ‘almost invariant’ under the action of T.

7. Let R be a hyperfinite equivalence relation [7] on a measure space (X, p). It is
well-known that every cocycle ¢: R-> G is then in the weak closure of the co-
boundaries (e.g. see [27]). The topology on cocycles is defined to be convergence
in measure. If (X, u, R, d) is a metric equivalence relation (see § 5 or [16]) and G
is given a left-invariant norm || ||, then we can define LP-norms on the cocycles
and ask whether a similar result holds.

Let T< X be a full discrete transversal to R, [16], and let dur be the induced
measure on T from u. For a cocycle ¢: R—> G and all p>0, set

1/p
“‘b"p:{I Sup ||¢(x,y)||’<';dur} .

T |xy|=1
(x,y)eR

The norm ||¢||, depends on the choice of T and d; another choice of T, or another
choice of metric d’ which is quasi-isometric [16] to d will result in equivalent norms.

We say ¢ is in the L?-closure of the coboundaries if for all € > 0, there exists a
cocycle ¢, cohomologous to ¢ with ||¢. |, <e.

Problem 25 (Hurder). Given a metric equivalence relation (X, u, R, d) with R
hyperfinite, given a Lie group G and fix 0< p =00, characterize the cocycles over
R which are in the L”-closure of the coboundaries.

The subspace of the cocycles over R obtained by taking the L’-closure of the
coboundaries is an invariant of the quasi-isometry type of the metric d, and is
apparently a very sensitive invariant. For example, theorem 4.10 of [15] implies that
for I' of subexponential growth acting on a measure space (X, u), such that the
Radon-Nikodym cocycle dv:T' x X >R™ is tempered, then dv has e-classification.
Thus, for the word metric [16] on R =T x X, the cocycle dv is in the L’-closure of
the coboundaries for all 0 < p = 0. On the other hand, for ', = m, X, a surface group
acting smoothly on S’ via the action of I'; on the Poincaré disc and for the groupoid
R =T, x S" with the word metric, the cocycle dv:T', X S' >R" is not in the L”-closure
of the coboundaries for all p=1. (The Godbillon- Vey invariant [15] of the action
is an obstruction.) The action of ', on S' is hyperfinite, so is orbit equivalent to
any ergodic action of type III, on S' by a group I with subexponential growth.
Thus, within a given orbit equivalence class, the property that dv be in the L?-closure
of the coboundaries is a non-trivial invariant of the quasi-isometry type of R.

8. We conclude with a folklore problem from Spatzier [29], with some updated
remarks:

Problem 26. What differential geometric or Riemannian properties of a foliation
depend upon its ergodic theory and transverse measure theory?

Some recent results are:
(A) (Zimmer). The rigidity of negatively-curved foliations (see § 3 above) [34].
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(B) (Brooks). A leaf L has iso-perimetric constant zero if and only if the essential
spectrum of the leaf Laplacian contains zero [1].

(C) (Garnett). Let u be a finite harmonic measure for F. A set X < M is saturated
if it is a union of leaves, and type 1 if it has a measurable subset which intersects
a.e. leaf of X precisely once (a cross-section). Then for X a saturated set of type I
in the support of u, the u-measure of X must be zero [10].

(D) (Connes). Let F be a foliation by surfaces which admits a finite invariant
transverse measure u. Then the average Gaussian curvature of the leaves in the
support of u is non-positive [4].

(E) (Ghys). Let F be a foliation by surfaces with curvature function k. Let u be
any harmonic measure for F. (There always exists at least one harmonic measure
[10].) Then { k du <0. That is, Connes’ theorem in (D) always holds for harmonic
measures.

(F) (Hurder and Katok). If the equivalence relation determined by F on M is
amenable (so hyperfinite), then all of the higher degree residual secondary charac-
teristic classes of F are zero [16].

(G) (Hurder). If all leaves of F have subexponential growth, then all Godbillon-
Vey secondary classes of F are zero [15].

(H) (Zimmer). Let F be a measurable Riemannian foliation with an invariant
transverse measure having finite total volume. If F is amenable and almost every
leaf is a complete simply connected manifold of non-positive sectional curvature,
then a.e. leaf of F must be flat [36].
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