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A SIMPLER METHOD FOR GETTING SOME EXACT 
DISTRIBUTIONS 

BY 

LUC CHAPUT 

In [1] Anderson uses a simple random sample of /?-component vectors from 
iV(/z, S) to test the hypothesis H9 £ = cr2/, where / is the identity matrix and a2 is 
unknown. Let W= \2IN

9 where A is the likelihood ratio criterion for testing H. We 
have 

where JVis the sample size. For/? = 2, the distribution of Wis given in [1]. Consul 
[3] obtained the distribution of W for p = 2, 3, 4 and 6 using the Inverse Mellin 
Transform and Operational Calculus. By using simple algebraic transformations, 
the exact distributions of Wforp = 2, 3, 4, 5, 6, and 8 are obtained in this article. 

Since 0< W< 1, a moment sequence will uniquely determine the density of W. 
We will use this fact and apply simple algebraic methods to obtain the density 
of W in some particular cases. 

We will illustrate the method by considering the case /?=3. Using Gauss's 
Multiplication Formula 

m - l 

(A) Y(mZ) = (27r)(1-^2mmZ-1/2n ^(Z+k/m), 
fc = 0 

we obtain, 

m FW» = rfr/2~ 1 +A)r(n/2-j+A)r(n/2+j)r(ii/2+f) 
K) r(»/2-i)r(/i/2- i)r(n/2+i+A)r(/i/2+i+A) 
Let W= UV, where t/and Fare independent Beta variâtes with parameters (al9 px) 
and (a2, jS2) respectively. Let/(w, v) denote the joint density U and F, that is 
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(3) f(u9 v) = Kuai-\l-uYi- V a - ^ l - i ? ) ' » - 1 

where 

r(a1+p1)T(a2+p2) 
^(a1)^(a2)^(i31)^(is2), 

Consider the transformation w = uv and H>2 = t>. The density of Wis obtained as, 

(4) h(w) = Kwai -1 f w2 ~
a*+ a2 -^i(w2 - w)^ " HI - w2)*a "x rfw2. 

Let w2 = (w- l)t+1. By using Euler's formula, 

(B) Ffa&;c;z) - r ( 6 ) r ( ^ 

we obtain, 

where fl = a 1 -a 2 +f t> 6=02» c==p±+p2, z=l-w and F(a,b;c;z) is Gauss's 
hypergeometric series. Substituting the actual values of a± a2, pu fi2 and using the 
relation 

(C) F(a, b; c; z) = (1 -z)c~a~bF{c-a9 c-b; c; z), 

we obtain 

ea\ if ^ T(n/2 + i)T(n/2 + i)w^-3)l2
 fl . 3 / 2_, 4 5 5 t , 

(6) A(w) = V r ( i , / 2 4 r ( n / 2 - l ) r ( i ) ( ^ ^ ^ ^ *> ^ 

which agrees with Consul's result. 
The case ^ = 2 is trivial. The case p = A can be worked out exactly like the case 

p = 3, since we find that W112 = i?rwhere JR and Tare independent, R~B(n-1,1) 
and T~B(n — 3, 7/2), where i?(., .) means a Beta variate with parameters (•, •)• 

For p = 6, we find that Wll2 = X^X2X3 where A"l5 A^, and X3 are independently 
distributed as B(n — 5, V)» B(n-3, x

3~), B(n—l, 1) respectively. Consider the trans­
formation w2 = w1x3 and £ = &! where w1=x1x2. The joint density of U1 and X3 

is given as, using the case p = 3, 

(7) g(ul9 x3) = k'uli-^l-UiYi + ^- i x§3- 1 ( l -x 3 ) / ?3-i 
xjF(a1-a2+ i81 ,^2 ; i81 + /32; 1 - n J 

where 

rca^rca^ix^rc^r^+fe)' 
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Hence the density is obtained as : 

(8) f(u2) = k'ua
23-1 f ««i-«8-»a(l_j)»i+*.-i(j-«a)»8-i 

Let s=(u2— l)t+1, then by applying the Monotone convergence theorem we ob­
tain, 

(9) /(«a) = fc'ag."*(1 -«a)*i +*.+*,-* f 60*0 -" 2 ) f c 

fc = 0 

X f ^l + ^ + *-l(l-<)«3-ltl-(l-M2)/]al-a3-^^, 

where 

and 

60* («i-«3+ft)fc(ffa)fc 

(a) f c-(aKa+l)-••(«+*-!)• 

Now, apply B and we get: 

(10) f(u2) = CM!3-i(i_„2)«x+«2^3-i ^ (<4(l-«2)fc 

fc = 0 

where 

and 

xF(-a1+a3+p39p1+p2+k;P1+p2+p9+k;l-u<d 

(ai-a2+^i)fc(P2)fc 
(«)fc = 

C = 

(Pi+Ai+Ai)**! 

r(«1)r(aa)r(aa)ro31+i8a+i83)' 

Now substitute the values for the parameters and put Wll2= U2. 
For p = 5, Wis distributed as a product of four Beta variâtes, Xl9 X29 X3, X±, 

with parameters {n\2-\, -&), (n/2-1,1), (zi/2-f-, |o), (w/2-2, ̂  respectively. To 
find the density of PPr=Ar

1A
r
2̂ 3^r4 consider the transformation w=u2x± and 

r = w2 where tt2=*i*2X3- Apply the technique of case/? = 6 and we obtain, 

(11) *(w) = c'wn/2-3(l-w)33/2 f («)i(l-w)fc 

fc = 0 

; = 0 1(-T + IC+J) 
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where 

C" 
r(n/2+|)r(w/2+f)i\w/2+|)r(«/2+f) 

r(B/2 - i)r(n/2 - i)r(»/2 - |)r(»/2 - 2)r(f §)' 

For/? = 8, W1I2 = R is distributed as a product of four independent Beta variâtes: 
X1~B(n-l, 1), X 2 ~ £ 0 7 - 3 , i f ) , X 3 ~ £ 0 - 5 , j i ) , Xt~B(n-7,¥). Using the 
above technique, we find 

(12) h(r) = c V - 8 ( l - r ) 3 3 / 2 f 0)£(l--r) fc 

7c = 0 

, = 0 i-K-r+k+j) 

where 

c„ = r(n)r(n+i)r(ii+|)r(ii+|) 
r(« - i)r(» - 3)r(n - 5)r(« - 7)iW) 

(i)X¥+*)> 

and 

(«)ié 
0) fc(^) fc 
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