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CARLESON MEASURES ON SPACES 
OF HARDY-SOBOLEV TYPE 

CARME CASCANTE AND JOAQUIN M. ORTEGA 

ABSTRACT. We study positive measures on B" satisfying that JB" \f(z)V dp(z) < 
cll/llrf. f o r a ny/ e fl£> w h e r e tfa is the Hardy-Sobolev space in the unit ball. We 

"a 

obtain several computable sufficient conditions as well as some necessary conditions 
and establish their sharpness. We study the same problem for Besov-Sobolev spaces 
and give some applications to multipliers. 

1. Introduction. Let IB" be the unit ball in Cw, and §" its boundary. We will de
note by dV the normalized Lebesgue volume measure on Bw, and by da the normalized 
Lebesgue measure on S". For a £ R and 0 < p < +00, the Hardy-Sobolev space l¥a 

consists of holomorphic functions/ in W so that Raf G IF(En), where iff — Y,kfk is its 
homogeneous expansion, Raf = T,k(k + 1)°14. 

For n — 1, a = 0, and p > 1, Carleson [C] proved that the finite positive Borel 
measures on B1 = ID such that 

jB\f(z)\PdKz)<C\\f\\p
Hm, 

are characterized by what is now known as Carleson condition: there exists a constant 
K > 0 with n(T(!)) < K\I\ for any interval / in the unit circle, where T(I) is the corre
sponding "Carleson box" over /. 

If G is a region, /i a finite positive Borel measure and B a Banach space of continuous 
functions in G, we say that [i is a Carleson measure for B if there exists a constant O 0 
such that for any/ in B, 

(1-1) fG\f(z)Y>dn(z)<C\\f\\p
B. 

The purpose of this work is to study Carleson measures for Hardy-Sobolev spaces 
and other related spaces. 

In some particular cases, these measures have been treated by different authors, ([C], 
[St], [Lu2], [N-R-S], [A-Bo], [A-J], [F-S], [Ke-S]), as well as their connection with prob
lems about multipliers, interpolation, solution of the ë-problem and duality theory for Hl. 
We will mention briefly the results closely related to our work. 
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1178 C. CASCANTE AND J. M. ORTEGA 

For n — 1, and/7 > 1, Stegenga [St] characterized the Carleson measures for //£(B>), 
ap < 1 (when ap > 1 these spaces consist of continuous functions on D>, and any finite 
Borel measure is then Carleson for //£(D>)). He showed that those measures are the ones 
satisfying that /i(r(i4)) < KCap(A) for any open set A in the unit circle, where Cap is 
an appropriate Bessel capacity depending on a and/?. If/? < 1, the characterization in 
[A-J] is simpler: any finite positive Borel measure is Carleson for /^ (0) if and only if 
V>{T(Ij) < K\I\x~ap, for every open interval / in the unit circle. Since Cap(I) ~ \I\x'ap, 
the condition in [A-J] is Stegenga's condition only for intervals. The proof in [St] goes 
roughly in the following way: in dimension one, Carleson measures for /^(D>) coincide 
with Carleson measures for the space of Poisson transforms of Bessel potentials of If 
functions. The key point in the argument is then a strong type capacity inequality. 

In fact, Hansson's theorem extending this strong capacitary inequality to dimension 
n > 1, shows ([N-R-S]) that Stegenga's theorem extends to measures /i on Wl+l, for the 
spaces B = P[Ja *If], where P is the Poisson kernel on R++1 and Ja is the Bessel kernel 
inR". 

In [A-C] it is introduced a non-isotropic Bessel kernel given by 

where 0 < a < n. For 1 < p < +oo, and / E If (da), the non-isotropic convolution is 
denoted by 

Ka */(z) - f Ka(z,Qf(Qda(0, z G B". 

It is also introduced a non-isotropic Bessel capacity, Cap, associated to these kernels, 
and a non-isotropic version of Hansson's theorem is proved. If P[Ka *Z/7] is the space of 
Poisson-Szegô transforms of convolutions of If functions with Ka, following the meth
ods of Stegenga, it is easy to show that a positive finite Borel measure \x in B" is a 
Carleson measure for P[Ka * If], if and only if there exists a constant M > 0 so that 
v{T(A)) < MCap(A) for any open set ,4 C §". Here T(A) is an admissible tent over A. 

The paper is organized as follows. In Section 2 we study Carleson measures for 
P[Ka * If]. As we have already said, Stegenga's condition still characterizes, but be
ing difficult to check, the purpose is to find computable sufficient conditions. We have 
found several such conditions in terms of duality, moduli of continuity and geometric es
timates. Those last kind of conditions improve the one obtained in [N-R-S] for P[Ja *If] 
in Wl+l. We also give some examples which show, in a certain sense, the "sharpness" of 
the sufficient conditions, as well as the relations among them. 

In Section 3 we deal with the holomorphic case, where, in general, no necessary and 
sufficient size conditions are known. We begin proving the non equivalence, for n > 1, 
of the problems for P[Ka * If] and ¥fa, and observing that the sufficient conditions for 
the first space are also sufficient for the second one. We give a necessary and sufficient 
condition for a measure to be Carleson for Ifa, in terms of atomic representation of those 
spaces. Some particular cases are presented where Stegenga's condition is necessary and 
sufficient. 
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We also study the problem for Ap
qs, the holomorphic Besov-Sobolev space, and give 

similar sufficient conditions. Finally, we apply the previous theorems giving examples 
of multipliers for Aqs, which could not be obtained as a consequence of the sufficient 
condition in [N-R-S]. 

As final remarks on notation, we will adopt the usual convention of writing by the 
same letter various absolute constants whose values may differ in each occurrence. Also 
A <B will mean that there exists C so that A < CB. 

2. Carleson measures for P[Ka * LP], As we have already said in the introduction, 
Stegenga's condition characterizes Carleson measures for P[Ka * LP], p> \,ap <n\ a 
finite positive Borel measure \i in W is a Carleson measure for P[Ka * LP], if and only if 
there exists K > 0 such that 

(2.1) ti(T(A))<KCap(A)9 

for any open set̂ 4 C § \ where T(A) is the admissible tent over ,4 given by 

(2.2) T(A) = Tp(A) = W\\jDp(Q9 
CgA 

Dp(Q = {z ; 11 — zC\ < /3(\ — \z\)}, and Cap is the non-isotropic Bessel capacity defined 
by 

(2.3) Cap(A) = inf{||/1|£ ; / € Lp
+(dcr),Ka *f > 1 on^} . 

If A = #(£, r) is a non-isotropic ball, Cap(B(C), r)) ^ r"-0^, and then the condition 

li(T(B(Çr))<Kr»~ap, 

is necessary but not sufficient (see [St]). 
It is easy to see that if we define "weak" Carleson measures for P[Ka *LP] as the finite 

positive Borel measures /i on B" such that 

(2.4) supA/i({z G B" ; \F(z)\ > \})l/p < C\\F\\p,a, 
A>0 

then [i is a Carleson measure for P[Ka * LP] if and only if it is a weak Carleson measure. 
Indeed, let A be any open set in Sw and le t / be any test function for Cap(A). Then, (see 
[N-R-S, Lemma 3.4]) there exists b > 0, depending only on n but not on A, with 

P\f\(z)>b, for zeT(A). 

Thus T(A) Ç {z ; P[Ka */](z) > b}9 and if// satisfies (2.4), ^(T(A)) < C\\f\\p
p. Taking 

infimum on/ , we get the desired conclusion. 
In this section we will study the Carleson measures for P[Ka *LP],p > 1 and ap <n. 
Our first result gives a first sufficient condition, which is deduced using duality, and 

does not involve capacity. 
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THEOREM 2.1. Let 1 < p < +oo, 0 < a, ap < n. If a positive Borel measure \i in 
W satisfies that 

(2.5) sup I * [ [ H ^ - l ^ MO < +oo, 

then [i is a Carleson measure for P[Ka * If]. 

PROOF OF THEOREM 2.1. We begin with the following simple lemma: 

LEMMA 2.1. Suppose 0 < a < n. Then 

P[Ka *f](z) ~ Ka */(z) for each z <E B", andf G L\(da). 

PROOF OF LEMMA 2.1. Lemma 1.7 in [A-C] shows that Ka */(z) < P[Ka */](z). 

The other estimate will hold if we check that 

(1 - \z\2)n da(cj) 1 
is* 11 — zô)|2w 11 - o<|M-a ~ 11 - zC|w_a ' 

This will be obtained by breaking the integral in two pieces corresponding to 11 — CJ£| > 
e\ 1 — zC\ and 11 — UJC\ < e\ 1 — z£|, with e > 0 to be chosen. Then 

/ , 
(1 - |z|2)" da{ui) < 

|l-o<|>£|l-zC| |1 -ZÛ\2n |1 -<d£|"-« ~ |1 -zC\n-a' 

andife > 0 is small enough, we obtain that if |1—OJ£| < e\\— z£|,then|l — zQ>\ ~ |1— zC\. 
Thus 

(1 - \z\2f d(j(uj) r (i - \z\~y acjyu)) 
I - - T: 7Z--, =; daiuj) 

J|l-a<|<e|l-2C| 1 -ZLJ\2n 1 - a < " - a 

< _ } _ f dajui) „ 1 
~ |1 - z ( | w i|i-a<|<e|i-2C| |1 - a < | w - a |1 -zC|"-« ' 

and we obtain the lemma. • 
Returning to the proof of the theorem, we just need to show that the linear operator 

given by 
/(C) Tf{z)= f , -, do{Q, 

J v ' 7s» h - zC\"~a 

is bounded from If (do) to If{d\i). This is equivalent to show that the adjoint operator 
T* defined by 

r / ( o = f , ^(z-,— </M(Z), 
^ ^ JIB" M — z(\n~a 
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theorem, 
is bounded from If (dfi) to If (da), \ + h = 1. Apply ing Holder's inequality and Fubini's 

l/"(w)K 
<f r J / W MJ( -JH® VM0 

./n»^ " lis* |i -uC\n-aV®n |1 -zC|"-«J ) 

Now (2.5) finishes the proof. 

REMARK 2.1. When/7 = 2, it is easy to see that condition (2.5) is equivalent to 

a;<EB" * " " 

just because 
da(Q 

(2.6) s u p / - ^ _ < + o o , 

7s« 11 - u^\n~a 11 - zC\n~a 11 - zâ;|w-2a ' 

REMARK 2.2. It is also easy to show that condition (2.6) can be rewritten in terms 

of the function ifcHf) — \i[ T{B(C^, r)) ], as 

r+oo ipAf) dr 
sup / -^V — < +°°-

But if/? ^ 2 there is no a similar expression of (2.5) in terms of (^. Instead, we will see 
in the following theorem a sufficient condition involving a modulus of continuity of \i. 

THEOREM 2.2. Let /i be a finite positive Borel measure in W. For 0 < S < 2, let 

<p(S) = sup JT(B(<;,6))). 

Assume 1 < p < +00, m = n — ap >0, a > 0 and that 

-±jd5 
Jo v v - / s 

Then \i is a Carleson measure for P[Ka * If]. 

PROOF OF THEOREM 2.2. In [M-K, Theorem 6.1 ] it is proved that 

r°° / \ — db 

rfr diL{z) \ '- ' dy <Ct°°{ "&> 6A *~l db 

where o;(/i,<5) = supx ç r ji({y ; \x — y\ < <5}). Their methods can be used to show that 

rfr dfi(z) \ ~l da(Q r+™ ( (f(S) \^d8 

ueE» J&['®n \\-zC\n-a) \\-uC\n~a ~ Jo {6n-aPJ T' 
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REMARK 2.3. There are many examples of functions ip satisfying (2.7): 
(1) <p{S) = ffn(\og\)l-*,q>p. 
(2) <p(8) = 8m(\og ^ " ' ( l og log i ) 1 ^ , q >p. 

The following proposition will show that, in terms of modulus of continuity, (2.7) is 
sharp. 

PROPOSITION 2.1. Let (/?:[0,+oo) —> R be a non-decreasing function such that 
(p(0) = 0, constant for x > xo, and 

Assume that ij G [0,+oo) defined by <p(£j) = ^J— 1,2,..., satisfies 2lj+\ < lj. 

Then there exists a finite positive Borel measure v in Bw, so that 

i/(r(fi(c,«)))<^(5), Ce§w, £>o, 

but i/ is not a Carleson measure for P[Ka * Z/7]. 

REMARK 3.4. It is easy to show that if jJTp is strictly concave on [0, +oo), the con
dition on the sequence (£J)J holds. 

PROOF OF PROPOSITION 2.1. In [M-K, Lemma 7.2] it is shown that the «-dimensional 
Cantor set Ë c Rn associated to the sequence (lj)j (see [K-S] for a construction of such 
sets), has zero Bessel capacity in Rn, and that there exists a measure /Ï, supported in Ë 
so that for any r > 0, xo G Rn, p,({x G Rn ; \x — JCO| < r}) < </?(r), whereas if xo G Ë, 
/X({JC G Rn ; |JC - jc0| < r}) ~ cp(r). 

Identifying Ë with a compact subset of an «-dimensional transverse variety included 
in Sw, we obtain a set E C Sw of zero non-isotropic Bessel capacity. The measure \i 
defined in §" by transporting p,, has its support in E and satisfies similar estimates than 
/2, with non isotropic balls. 

Now, for 8 > 0 let Es — {( G Sn,d(C,E) < 8} where d(ÇE) is the non-isotropic 
Koranyi distance from £ to E. Since Cap(E) — 0, and Cap is an outer capacity ([Me]), we 
obtain that the increasing function g(8) = Cap(Eè) tends to zero as 5 —> 0. It is easy to 
construct an integrable positive function h on [0,1) satisfying that for any m G N, 

JUh(r)dr-igÙ-
We define now a positive finite Borel measure in En by 

r1 

which will be the desired measure. If C £ B" and 5 > 0, anyz e T(B(ÇS)) satisfies 
^GB(C^).Then 

I / (T , (B(C,6))) < j j ' h(r)n(B(C,S)) dr < <p(S), whereas 

"0 ) = [ jjiOKr) dKQ dr, for any / G C(B"), 
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'(7T£i)) > Jl^ h(r)j^ xsAQdKQdr = [ ^ h{r)^{E)dr 

^cisU=cic°»N 
Thus v does not satisfy Stegenga's condition. • 

The third kind of sufficient conditions will be of geometric type. Before stating them 
we need some more definitions. Let 1 < p < +00, m = n — ap > 0, and 1 < r < ^. If 
CGS"and/î>01et 

a ( 0 = ^ ( 0 = {z G B" ; 11 - zCT < (3(1 - \z\)} 

and for any E C §", the "tangential" tent over E is defined by 

TT(E) = 10(E) = En \ (J a « ) . 
CgE 

(whenr = 1,Q{(Q = D(0, 7*1 (£) = r(£)). 

In [N-R-S] it is shown that the geometric condition, when r = - , 

r" = r^S is sufficient for a measure /i to be Carleson for P[Ka * / /*] . The same condition, 

whenr = 1, // ( 7f(i?(£, r)) ] < r™ is the necessary condition we have already mentioned. 

It is then natural to ask whether the "intermediate" conditions // ( Tf(jB(Ç r)) j < r™7, are 

necessary or sufficient. 
The next theorem establishes that these conditions are also sufficient for a measure 

to be Carleson. Since HausdorfY content is not additive, the proof of the theorem needs 
a completely different approach of the one used in [N-R-S] for r = ^. In that case, the 
corresponding Hausdorff content is just Lebesgue measure. 

Before stating it, if/: B" —> C, we will denote by Nf the admissible maximal function 
given by Nf(Q = supzGD(0 \f(z)\. 

THEOREM 2.3. Let 1 < p < +00, m = n — ap > 0, and let \x be a finite positive 
Borel measure [i in W so that there exists 1 < r < ~ and O 0 with 

(2.8) / i ( 7 f ( 5 « , r ) ) ) < / ^ . 

Then [i is a Carleson measure for P[Ka * If]. 

PROOF OF THEOREM 2.3. We need the following: 

PROPOSITION 2.2. Let0<p< +00, 0 < a and m = n - ap > 0. Let n be a 
finite positive Borel measure in W1 satisfying that there exists C > 0, K > 0, (3 > 0, and 
1 < r < - with 

— m 

(i) supp/i C {z ; (1 - \z\) < EC±}, (e = \ ^ \ 
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Then there exists M > 0 so that for anyf: Un —-> C 

/B„d - k i r W dii(z) < MC\\Nf\\p„m-

REMARK 2.4. Observe that the above proposition gives that if \i satisfies (i) and (ii), 
then (1 — \z\)ap d[i{z) is a Carleson measure for 7/^(0"), with a control on the constant 
expressing the continuity of the mapping from IF(Un) to If((\ — \z\)ap rf/i(z)). 

It suffices to prove the proposition for/? = 1, since HATII^a) = WNfWway We 
claim that 

a 

(2.9) j ^ ( l - | z | ) a | / - ( z ) | ^ (z )< j f o Jo p({z;\f(z)\>t,(\-\z\r>l})dtdt. 

In fact, similar inequalities were treated in [Ci-Do-Su], and we briefly sketch the proof 
of (2.9). If t > 0 and £ > 0, let E(tJ) = /x({z ; \f{z)\ > t9(\ - \z\)a > £}). Let 
z G suppjii satisfying that |/*(z)|(l — \z\)a > t. There exists j G ~L~,k G Z so that 
2/eC^ < (l-\z\)a < TxeC^,2k < \f(z)\ < 2k+\ and in particular z G E(2k,2feC&), 
2Lndt<42k+J£C^.Thus 

roo +oo - 1 r2
J+k+2eC^ 

H({z;(l-\z\f\f(z)\>t})dt< £ £ /n n(E{2k,2feC^))dt 
k=-ooj=-oo J0 

+oo - 1 

< £ 2* £ 2>C*n(ECLk,yeC*j) 
k=—oo J——00 

+oo r e c A 
/o n{E(t,tj)dldt, 

which gives (2.9). 
Next, since (2.9) holds, in order to prove the proposition, we just need to check that 

a 

(2.10) /o
£CT_1 /X({Z ; \f(z)\ >t,(l- \z\f > I})dl < CV({C ; Nf(Q > t}). 

LetS = (Bk)k9wiÛiBk = B{(j^rk) be a Whitney decomposition of the set {( ; A//{0 > t}. 
Thus: (a) {A//~ > t} = \JkBk; (b) there exists /z G N, only depending on n, so that no 
point in S" lies in more than h distinct balls Bk\ (c) #(<^, hrk) <f_ {Nf > t} for each k. 

Let z G W with (1 - \z\) < eC^ and \f{z)\ > t. Then there exists M > 0 with 
Z?(zo,M(l — |z|)) C {A/f > /} , where zo = o . In particular there exists k G N and 
zo G Bk, and by property (c) of the Whitney decomposition (1 — |z|) < rk. We want to 
show that there exists m > 0 and 

(2.11) z G 7f (B(Ct,m(dr | + r t))) n 7* (*(<», « ( d r * + r t ) ) ) . 

Indeed let ( e S " with z G Qr(Q (the condition 1 — \z\ < eC~ with £ = -Vr gives that 
is always possible to find such Q. Then, 

| i -Câl< | i -a i+( i -N 2 ) + | i -^oâ |<c^( i - | z | )Ur,<d^+^ 
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Thus if ( is any point such that z G Qr(()> C £ #(Cb m{cSr\ + r*)), and we deduce from 

the definition thatz G 7^ (# (&,m(C^ + r*))Y 

The other inclusion in (2.11) is proved in a similar way. 
Now we decompose <B = *Bl U #2 , where any ball Bk in (B1 satisfies rk < (0>) 7 , and 

if Bk G <B\ (Crk)i < rk. Applying (2.10) we get 
a 

/JCT_1 /X({Z ; \f(z)\ > f,(l - \z\f > £})dl 

< E j ( ^ | i ( 7 f ( f i ( a , 2 i n d r * ) ) n ^ ( f i ( & 

r,C^T 
£ jT T" / x ( 7 f ( 5 ( a , 2 m r , ) ) n ^ ( 5 ( a , 2 m r , ) ) ) ^ , + 

where in the first estimate we have also used that if £ < (1 — \z\)a and (1 — |z|) < rk, 

then I <r?. Finally, we use the hypothesis on u to obtain that the last sums are bounded 

by 

c"1 E >fa + cm E c^-w^r<cwa({^>4). 

Here we have used that if Bk e<B2,C< r\~\ and then C^~m < r^
(T-l)m. Thus we 

have seen (2.10), and that finishes the proof of the proposition. • 
Going back to the proof of the theorem, Lemma 2.1 gives that we just need to show 

that there exists M > 0 such that if 

F(z)= [ — ^ da(Q, 
w M" 11 - zC\n-a 

with/ G ti&do), then 

(2.12) jjFfdii<MJsfdcj. 

Since 
1 (1 _ ff-CL-X 

1«-of ~ Jo M -tzC\2n |1 -zC\n-a ~Jo |1 -tzC\2 

we then have: 

r f(Q r r1 (1 - z2)"-^-1 

F(z)=I \T^MO $ Lfi0L W * ^ ( 0 

£ /o'(1 ~ ' r ' i T i ^ r ^ ^ 0 * = /o'(1 " ̂ ^ 
where g = P[f]. Breaking up the integral in the right hand side in two pieces, from 0 to 
A and from A to 1 (0 < A < 1 to be chosen), we denote the corresponding integrals by 
gi andg2- We will show that both functions satisfy an estimate like (2.12). 
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First, since the supremum of g over any compact in Bw is bounded by the If-norm of 
g, we may assume that supp/x C {z ; 1 — \z\ < min(£C~, 4)}, where (3 > 2 will be 
chosen later. By the same argument the estimate for gi is immediate. So we need only to 
deal with the contribution of gi to (2.12). Let 1 = t0 > t\ > • • • > fy, where £ G N is 
the first integer so that 2^(1 — \z\) > 1, and where for each k < l,\—tk\z\ = 2k(\ — \z\). 
If we choose^ = (1 — |)(1 — 4)_ 1 , then t£ < A, and 

gi(z) < /'(i - ty-l
g(tz)dt < E f (i - tf-lgntz)dt 

Jh k==Q k+l 

< / ( i - f l z | y W ; dt 
~ Jh (1 — t\z\)a 

l~x rh dt 

+ £ / V-t\z\Tg(tz)-f-(1-0 ' 
We denote by g2jdz\ k — 0 , . . . , I — 1, the integrals that appear on the right hand side. 
Let /io, • • •, M̂  be the measures in W defined by: 

wW = M^V^)g^*) 
iik(h) = / x ^ Ktz)-^-^ ], * = l • • • i, h G C(Bn). 

/** . , dt 

0 ^ 0 
Each /i£ is a finite measure. Indeed, for k = 0, and since 1 — t\ \z\ = 2(1 — |z|), we have 
that if tx < t < 1, 1 - f|z| ~ 1 - |z| and 

(2.13) / )- f—- A - r-— / (1 - t)a~l dt ~ 1, 
V } k (1 - *|z|)a (1 - \z\f Jh ' 

and if 1 <k< £, 

dt , 1 - fc+i . 1 - fjt+i |z| - tk+l(l - \z\) rtk at l — tk+{ 

/ 71—Â == l o g 1—7~ = l o g 
^*+i ( 1 — n 1 — h tk+l ( 1 - 0 1 - tk 1 - fc|z| - tk(\ - |z|) 

2*+1(l - Izl) 

< 2 - 1 4 ) ^ l o g 2»(i - N ) - 2^( i - N ) = l o g 4 ' 

where in the last inequality we have used that since k>l,tk< 2k~x. 
We check that the measures fik, 0 < k < £, are in the hypothesis of Proposition 2, 

for appropriate constants. We first check the size estimate. We will show that there exists 
M > 0 so that 

(2.15) )ik(TÏ-kM(B(to,r)) H 7*(2?(<b,r))) < ^ 

for any Co G § V > 0 . 
Indeed, let z G supp/i and assume *z G T^'kM{B(Co,r)) n 7^ (fl«b,r)), f < ft- Let 

£ G S" so that z G Qf (O (again, since supp \i C {z ; 1 — \z\ < eC~ } there exists such 
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point). If tz G D(Q, we have since tz G ^(^((o, rfj that 11 - (oC| < r a n d consequently 
that z G T^(B(($, r)). Widening, if necessary, the aperture of the admissible region D(Q, 
it is immediate to show that if k < I - 1, t < tk and if tz <£ D(Q, then tz G ̂ f *M(0-
Hence, since tz G 7?"*M(#(Co, r)), we have that 11 - (oC| < r, and z G 7f (fl«b, r)). Now, 
this inclusion, (2.13), (2.14) and the hypothesis on /i gives that in any case: 

/ i 0 (7 f (fl«b,r)) n 7*(tf«b,r))) < /i(x7?W<b,)) sup / 0=1^* 
and if 1 < k < t 

Mt(7?"*M(i?«o,r)) n 7*(fl«b,r))) < M(X7- W 4 , , ) ) 

•z67f(£(Cb,r)) •" (1- ' IZI) ' D <rm T , 

sup jf* 
( 1 - 0 ]) < r w r . 

We deal now with the condition on the support of the measures //*, 0 < k < I. Let h be 
i 

any continuous function supported in {z ; (1 — \z\) > e^-}, 0 < k < L For any t <tk 

we have 1 — t\z\ > 1 — tk\z\ = 2k(\ — \z\) > eC~^, and consequently tz $ supp/x and 
fik(h) = 0. Thus if k<£, 

supp/x* C \z ; (1 - |z|) < e - ^ r ). 

Assuming first that ^ < 1, we finish the proof of the theorem. We can choose M > 0 

big enough so that ~jjr < (^^^k < I, and we then have that the measures /i£ are in 
the hypothesis of Proposition 2.2 with constant 2~kM. Holder's inequality together with 
(2.12) and (2.13) gives 

||g2||lP(«/ji) < J2 \\g2Jt\\v(dn) = 
k>0 

,0-0' a - 1 

+ E 
k>\ 

B» 

eh dt f V 
Jh+\ 1 — 11 J 

( 1 - 0 ' 

* <fc(z) 

ALLv-towtoT^**** •)! (1 - f|z|)« 

= ç(/B„d-Nr^)^(z) 
Applying now Proposition 2.2 to each Hk we deduce that the above sum is bounded by 

T - l — < 1. £!=o(2 ^^O^ I I^ I IP < ll/llz f̂o)» a n ( l w e n a v e ended the proof when 

If ^ f > 1, we may choose &o so that for k > ko, 2~kM < (^)T_1 C. Applying Propo
sition 2.2 to /i£, k > ko, now with constant (^)T_1 C, a similar argument would give that 

I m(r-l) 

E Mb*» < E (=E) ' 11/11 LP{do)-
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Finally for 0 < k < ko, (jk)T~~l C < 2~kM and we proceed as in the case ^ j < 1. 

Before going further we give a definition of tangential "Carleson box". 

DEFINITION. For k > 0 and 1 < r < ^-, Co G S" and r > 0, 

Vk
T(B(Co,r)) = z ; 

\z\ 
<r\ - \z\ <krT . 

We then have 

LEMMA 2.2. $ Letk> 0 and 1 < r < ^. 77*e« /Aere exw/ £i > 1, fe < 1 so rta/ 
/or awy r > 0, Co G S", 

^(fl«b,fer))cfî(5«b,r)) . 

(7/) Analogously, let k > 0 a«d 1 < r < ^. 77zew //*ere exist k\ > 0, k2 > 0 so that 

for any r< 1, Co G Sw, 

^ (2?«b,*2r) )c7; (5«b, r ) ) . 

PROOF OF LEMMA 2.2. Let z e T^(B(Ç0,k2r)), where ifci > 1, k2 > 0 are to be 
chosen. Since z G Q*1 (zo), zo = A, we must then have 11 — Cô o| < k2r < r if k2 < 1. 

Now choose C G Sw so that 11 — CCo| = 2k2r (ifk2 is small enough it always exists). 
Then since C ^ #(Co, k2r), we have that z ^ Q*1 (C). Thus 

i - M < £ | i - < I T < £ ( 0 - N) + |i -zoCol + |i -<oCI)r < £ ( 0 - N) + rT), 

and if k\ is big enough, 1 — \z\ < krT, and we have proved (i). 
The proof of (ii) goes similarly. • 

COROLLARY 2.1. Let [i be a finite positive Borel measure in W. Then the following 
are equivalent: 

(i) There exists k,C{>0 such that J 7^(#(Co, r)j\ < dr™ for any Co G S V > 0. 

(ii) There exists k, C2> 0 such that 

/ i ( ^ (5«b , r ) ) ) < C2r^ for any Co G Sw, r > 0. 

We can now show that any measure satisfying the sufficient condition of [N-R-S], 
also satisfies the sufficient condition in Theorem 2.3, for any 1 < r < - . Nevertheless, 
there are measures satisfying such sufficient condition, but do not satisfy the condition 
of [N-R-S]. 
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PROPOSITION 2.3. Assume 1 < p < +oo and m = n - ap > 0. Then: 
(i) Let [i be a finite positive Borel measure in En, so that, there exists O 0 with 

/ i ( r s (5 (Co , r ) ) )<C^, foranyC0eSn,r>0. 

Then for any 1 < r < ^, there exists C\ > 0 so that for any Co G S", r > 0 

/x ( r T (* (<o , r ) ) )<Ci^ 

(7z) For a«y r < ^ //zere exlsto a positive Borel measure \i in W satisfying 

M ( r T ( f i ( C , r ) ) ) < ^ , but / i ( r , (S (C , r ) ) )^ r " . 

PROOF OF PROPOSITION 2.3. By Corollary 2.1 it is enough to show the proposition 
with tents changed for the equivalent regions VT. Since Kr(i?(Co, r)) C Fi(Z?(Co,r^)), 
we have (i). For the proof of (ii), let v be a m-measure on §", /.e., there exists £ C §" so 
that for any Co G F, r > 0 i/(#(Co,r)) ~ r"1, whereas for any Co G S" i/(#(Co,r)) < r™ 
(for the existence of such measures, see [K-S] and the argument in Proposition 2.1). 

Let fi be the measure in B" defined by 

for/ G C(B") and where t> —1 is to be chosen later. 
Next, let Co G S", r > 0. Then 

/*(*(*<b,r))) = / > -,)'X (4r ) rftfO* < ^+1)+m 

If Co G F, r > 0 we have 

M(^(5(<o,r)))~^<<+ 1 ) + m 

Since r < - we can choose t > — 1 so that rw < r(t + 1) + m but -(f + 1) + m < n, and 
that finishes the proof. • 

The following two examples will show the "sharpness" of the sufficient condition 
of Theorem 2.3 as well as the relation between the different sufficient conditions. As a 
consequence we will see that none of them are necessary. 

EXAMPLE 2.1. Let 1 < p < +00, m = n - ap > 0, and let Y: [0,2) —> R+ be a 

differentiable function such that ¥(0) = 0 and ^ —» +00, as r —» 0. Then there exists 
a finite positive Borel measure \i in Bw satisfying: 

M ( r r (5 (Co , r ) ) )<^(CO, 

but n is not a Carleson measure for P[Ka * LP]. 
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Let Co G §M be a fixed point, and define d\i = *F'(1 - r)drb^ where 6^ is the Dirac 

measure at Co- Then /z(rT(5(Ç,r))) < V(CrT)9 but for any r > 0, fj,(T(B((0,r))) ~ 

¥ ( 0 ) . This last estimate, the condition of growth of *F at zero, and the fact that 

Cap(B(Q), r)) ^ r™ shows that // does not satisfy Stegenga's condition. • 

EXAMPLE 2.2. Let (p be the modulus of continuity of/x defined in Theorem 2.2. 
(i) For 1 < r < ^, there exists a finite Borel measure /i in W such that 

M ( r r ( S ( C , r ) ) ) < ^ , 

but 

f W ) A f = +-

(ii) There exists a positive finite Borel measure /x in W so that 

and there exists £ G Sw, so that for any 1 < r < - , 
M ( r T ( 5 ( C , r ) ) ) ^ ^ T . 

For (i) it is enough to take dfi = (1 — r ) m _ 1 ^ , £o G§". For the second example, let 

E C Sw, be an m-set and v be a measure on S", supported in is satisfying: v{B((^ r)) ~ r™ 

for each £ G £, r < 1, and i/(5«, r)) < r"1, VÇ € S", r > 0. Let <? > /? be fixed, and let 

/ (r) = (log \)x~q, and define /x by 

Mfe) = /0 ' X / ( l - r)gir)dV(Qdr, for any / G C(B"). 

It is then immediate to show that /x is the desired measure. 

REMARK 2.5. In [A-Bo] the so-called /3-Carleson measures are studied. They are 
defined as the finite positive Borel measures /x in B" so that there exists O 0 with 

p(T(AJ) < Ca(Af, for any open set A C Sw. 

Following [Me, Theorem 20] it is easy to show that there exists M > 0 so that aiA)^ < 
MCap(A). Thus any ^^^-Carleson measure /x satisfies Stegenga's condition and is a 
Carleson measure for P[Ka * lP\p > 1. The following example will show that there are 
Carleson measures for P[Ka * If] which are not ^^^-Carleson. Consider a transverse 
curve in S", 7: I = [a, b] —» Sw, and denote by dx the unidimensional Lebesgue measure 
on 7. Let /x be the positive measure in B", supported in {r7(x) ; x G 7, r < 1} given by 
dy,(r9x) = (log \)x-v drdx, with q > p. Then for any < G S", r > 0, /x(r(£(Ç,r))] < 

r(log ^y-*7, whereas /x(T(B(%t)9rj)) ~ r(log ±)1_*. Theorem 2.2 shows that /x is a 
Carleson measure for P[Ka * Z/*], if 1 = n — ap. 
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Assume that \i is also an i-Carleson measure, let e > 0 and consider Ae = 
Uf=15(7(x,),e)the union of a maximal number of disjoint non-isotropic balls centered 
at points in 7. Since A£ is open and we have 

£ M(r(5(7(x,), £))) = n{T(AE)) < C(Nee")K 
i— 1 

this estimate together with the fact that /if r(#(7(jc;), s))) ~ e(log \)x~q and N£ ~ ± 
gives a contradiction. 

3. Carleson measures for holomorphic spaces. In this section we will study con
ditions on a measure \i in W to be Carleson for Hardy-Sobolev and Besov-Sobolev 
spaces. The first example, which is based on one included in [A-C, p. 448] shows that, 
unlike what happens in dimension one, Stegenga's condition is, in general, not necessary 
for a measure /i to be Carleson for lfa, n > 1. 

PROPOSITION 3.1. If \ < p < 2, n — ap > I, there exists a finite positive Borel 
measure ji in W, such that ji is a Carleson measure for tfa, but fi is not Carleson for 
P[Ka*If\ 

PROOF OF PROPOSITION 3.1. By Theorem 3.1 and Corollary 3.1 in [A-C] there exists 
a compact set E C Sn with Cap(E) — 0, and an invariant positive measure v in Sw, 
supported in E so that 

(3.1) JjNfrdv<C\\Raf\\Pp for any/ G H<JT). 

For any S > 0, let E6 = {Ç e §n ; d(CE) < 8}, and g(6) = Cap(E8). This function 
tends to zero as 6 tends to zero since Cap(E) = 0. Let h be the function constructed in 
Proposition 2.1, and define a measure \x in W given by $%nfd[i = JQ J§r>f(rQh(r) dv(Q dr. 

Then (3.1) gives that // is a Carleson measure for lfa. Indeed, if/ G lfa 

l X \f(rQ\PKr)dv{Qdr < / J £ \NMth(r)du(Qdr 

<\\Raf\\P
p = \\f\\P

p,a-

Now the same argument given in Proposition 2.1 shows that ji does not satisfy Stegenga's 
condition. 

REMARK 3.1. Since any/ G lfa satisfies that there exists g G Lp+{dcr) with \f(z)\ < 
P[Ka * g](z) and \\f\\p,a — WgW^^ ([A-C, Lemma 1.7]), all the sufficient conditions in 
Section 2 also hold for the Hardy-Sobolev spaces. 

From the following representation theorem for //£, ([Lui, Theorem 5.5]), follows an 
equivalent formulation of the definition of a Carleson measure. 
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THEOREM [Lui]. There exists 6 > 0, e > 0, so that for any (r„)„ C (0,1), with 
rn —> 1, and for any n G N, a finite sequence (ank)k^x C {z G Bw ; \z\ = rn}, n > 1, 
satisfying 

(1) \Jk{z ; p(z,ank) < ( 5 } D { Z G B M ; \Z\ = rn} (here p(z9u) is the pseudohyperbolic 
metric in W, that is, p(z,u) — \hu{z)\), where hu is the automorphism ofW taking 0 to 
00. 

(2) JfkJ € {1 ' ' ' *(")} and k¥j then P(anj> ank) > £> 
Then anyf G IF can be written as 

(1 - IflrfD*1"^ 

(\-zânkf 

where E ^ i ( E ^ { I^PO' < +oo- Furthermore the mapping *F defined by ^ ( Q 
K«0-i) 

*¥((Cnk)nk) = ^nMCnk{X~(\lfànk)n- « COntinUOUS. 

With the same notations we then have 

PROPOSITION 3.2. Zef 1 < p < +oo, ap < n. Then \i is a Carleson measure for tfa 

if and only if there exists M> 0 so that for any finite sequence (cnk)nk C C, 

(3-2) lilS^(i-z^-« I <H ^ M Ç ( S ^ ) • 

PROOF OF PROPOSITION 3.2. It is proved in [Ca-O, Theorem 2.1] that the linear 
functional <j>\IF —» Ifa given by 

<j){f)(z)= [ — ^ 9 da(Q 

is onto. Thus the composition with *F is also onto. But for any ank G B", Cauchy 's formula 
gives 

1 do{Q 1 hrYz)=L K(\-ànk'Y) Js" (1 - C^)" (1 - zQ»~ a (1 -za„kY-a ' 

and we obtain the desired conclusion. • 

REMARK 3.2. If we just take one term in (3.2) we deduce a necessary condition, 
namely \i ( T{B(C^, r)) J < r™, which, as is shown in [St] is not sufficient. 

We have seen that, in general, Stegenga's condition is no longer necessary for a mea
sure to be Carleson for tfa. Nevertheless there are some particular cases where it still 
characterizes. The first case is given by the following proposition. 

PROPOSITION 3.3. Assume p > 1, ap < n and n — a < 1. Then a finite positive 
Borel measure \i in W is Carleson for FPa if and only if 

p(T(AJ) < kCap{A\ 
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for any open set A C Sw. 

PROOF OF PROPOSITION 3.3. Applying again [Ca-O, Theorem 2.1], any F e ffa can 
be written as 

F(z) = L (i -%-«da{0' with m»-a - m^°y 
Since \i is Carleson for lfa, there exists C > 0 such that 

( l - zC)" - a 

But since « — a < 1, this is equivalent to 

[\[ K} MQ d»(z) < C\\ft, f&Lp
+(da). 

JM-ûM^dai0îMz)-cm 

and since the integral on the left is equivalent to fan(P[Ka * l/lJ/Cz) d\i(z), we are done. • 
Before giving our next result we need some definitions. If/ = [a\, b{\ x • • • x [a^, bk], 

and 7: / —» S" is a smooth non-singular map, T — 1(1) is complex-tangential if and only 
if l'(x)(h) • 7(x) = 0 for any x el and he Rk. Let 7r(r) = {< ; Ç G T 0 < r < 1}, and 
denote by dv the A:-dimensional Lebesgue measure on T. 

PROPOSITION 3.4. If \i is a finite positive Borel measure in En, supported in ir(T), 
then \i is a Carleson measure for EPa if and only if there exists 8 > 0, M > 0 so that for 
any open set A C ^ = {( ; d((,, T) < 8}, 

li(T(A))<MCap(A). 

PROOF OF PROPOSITION 3.4. The proof is based in Lemma 2.7 and Theorem 2.8 
in [A-C], where it is proved that if E is a subset of a complex tangential manifold with 
Cap(E) = 0, E is an exceptional set for ¥Pa. For the sake of completeness, we give a brief 
sketch of the proof. 

Let \x be a measure supported in 7r(T), which is Carleson for Ifa, and let A Ç Yb, 8 > 0 
to be chosen. Take g e L^.(da) any test function. Then Ka * g > 1 on 4̂, and there exists 
C > 0 so that P[Ka *g]>C, on 7(^). Since ^ * g - P[A:a * g], we deduce that 

(3.3) p(T(AJ) < CJnA)(Ka*gy(z)dn(z) = C J^^K^gfirQd^rQ. 

Now the argument in Lemma 2.7 in [A-C] can be adapted to show that Ka * g(rQ < 

k{T)P\É\(^)Ka(K^)dv(r]\ where v is the measure in 7r(r) defined by di/(rQ = 

(1 - rf--2-1 dv(Q. Thus (3.3) is bounded by 
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Given < G ?r(r), let VK = {q G 7r(0 ; 11 - <T/| < 6}. In [A-C, (2.6)] is shown that for 

any 77 G V^, Re (1 * _a > n_J-i„-«, and breaking the inner integral in two pieces we 

obtain 

<LIn^]W?r= 7r(n|A(r) ^ J V " ( i -r^ay-" 

dv(n) f 

JirÇT) \JTT 
+ J L«„ ^bKî?)ï 

rfi/fa) ^ 
^ « ) -M r ) ^ *** "\l - rÇrj\n~a 

Next, Corollary 2.6 in [A-C] shows that the function 

dvjrj) 
Tr(r)* ">JV"(i -Zfjy 

is in Ifa, and ||#aG||£ < JB« ^[gF <M*/)- Then the above is bounded by 

G(z) = / r r / f e ] ( , ) 7 r ^ | z , 
A ( n (1 — Z7?r a 

i.w dv, 

which in turn is bounded by \\g\\p
p, since di/ satisfies by Proposition 2.3 in [A-C] that 

Je» |/*| t/z/ < /§« TVTz dcr. • 

The last case is also based in [A-C] with slight modifications, and we refer there for 
the proof. 

PROPOSITION 3.5. Letp = 2,n — 2a< 1. Then a finite positive Borel measure in W 
is a Carleson measure for Ifa if and only if 

Li(T(A))<KCap(A), 

for any open set A in Sw. 

In the following, we will deal with Carleson measures for Besov-Sobolev spaces. If 
1 < p < +00, q > 0 and s G N, the Besov-Sobolev space AqS is given by 

Ap
qs = [f G H(B") ; | | / 1 | ^ = |/1(0)| + £ ( 1 - \z\f~l \Rsf{z)f dV(z) < +00). 

It is well known ([Be, Theorem 1.2]) that if sj G N, qj > 0,y = 1,2 and 0 < p < +00, 
and if qi — q\ = p(si — s\\ then Ap

qxS{ = Ap
q2S2, with equivalent norm. In particular 

Ap
qs = ^q+ps+i and we may always assume that q > 1. It is also known ([Be]) that if 

P < 2, Ap
qs C If' 2, whereas if 2 < p < +00, If_g C Ap

qs. In what follows, we will 
s p s p 

denote a = s — ^,m = n — ap. 
From the following representation theorem for Ap

qS9 ([O-F, Theorem 4.1]) we deduce 
an equivalent formulation for a measure /1 to be Carleson for Ap

qs. 
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THEOREM [O-F]. If 0 < r\\ < r/o are small enough, and s < 1, there exists a lattice 
(akj) C B" so that 

(i) \atg\ = l-£k,j= l , . . . j * . 

^ UkjW ; p ( % ^ ) < ^0} = Bn. 
(Hi) {a; ; (fay, J) < r]\} D {UJ ; p(ak>f,u)) <rn}^$iffk = k*,j = / ; 50 fAaf fAe 

mapping 

T:[C= {Ckj)kj ; j : | c * / ^ < +cx)} — ^ S*ve#i 6y 

^ A (i _ |fl fy^B-r <7 
r ( Q = J2 E ^ ' 7 1 , yVH-m * ™'°' provided! > - . 

With the above notations we then have: 

PROPOSITION 3.6. Let 1 < p < +00, q > 0 a«ds G N 50 //*<# 0 < a = s - *, 
m = n — ap > 0. TTiew a finite positive Borel measure \i in W is a Carleson measure for 
AqS, if and only if there exists M > 0 such that 

mn E% (i - M2)' 2yi+l+7 

d/i(z)<MX;i^rÊ*", 
| # " * ( 1 -%z)" + 1 + 7 

ybr any finite sequence (c^j C C. 

Our next type of results will be obtained, as in the previous cases, by duality. 

THEOREM 3.1. Assume 1 < p < +00, q > 0 and s e N so that 0 < a = s - | , 
m = n — ap > 0. Let \i be a finite Borel positive measure in W satisfying 

d7ioiy^7r w f JF(0<+oo, 
2GB« ̂  11 - ZC|W+^ \ > 11 - 0 < | ^ J VV 

where - + A = 1. TTie/z M ^ 0 Carleson measure for Ap
qs. 

PROOF OF THEOREM 3.1. In [Be, Corollary 2.3] it is shown that any/ e A1^ can be 
written as 

m = E fsff(OKj(z9Q(i - K\2rs~l dV(Q, 

where the kernels Kj are holomorphic in z, and satisfy for any (3 E Nn, 

1^(^01 < Cf> 
1 _ z£|"+<7+|/3| " 

The above estimates on the kernel, and Theorem 3.1 in [Be-Bu] gives that the operator 
defined by 

w = /B»(1 - \Ct2rs-lKj(Z,of(Qdv(o 

https://doi.org/10.4153/CJM-1995-060-4 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1995-060-4


1196 C. CASCANTE AND J. M. ORTEGA 

is bounded from Lp = If((l- \z\f~l dV{z)) to itself. 

On the other hand, there exists a linear bounded operator, </>: Lq —» Lp x • • • x Lp
9 

<j>(h) = (ho, ...,hs) with hs = /*, and Rht-\ = ht. All together, the operator T: Lp
q —» ^ 5 

defined by 

W = L E ¥0^(^0(1 - ICI2)̂ "1 </r(0 
•/B"y=0 

is bounded and onto. Thus /x is a Carleson measure for ̂  if and only if T is bounded 
from Ifq to LP (dpi). Equivalently, the adjoint operator T*:LP'(d^i) —* Lp

q , ^ + A = 1, 
given by 

r/(o = L J:AZ)KJ{Z,Q{\ - ici2/^(4 

must be bounded. Now, Holder's inequality and the hypothesis on \i give 

\P 
(\-\z\2f-Uv{Q 

~ M» U V 7 | V7B« 11 - z(\n+q KM» 11 - ^ | ^ / V 

</B>(z)r> (z), 

which together with the estimates on Kj(z, Q, show that 7* is bounded. • 

REMARK 3.2. As we have already said H2
a = ^ 5 with q = 2(s — a). It is easy to 

check that in that case the sufficient condition (2.5) given in Remark 2.1 and the one in 
that theorem coincides. In fact, a change to polar coordinates shows that 

M» M 

(1_|C |2)2^1 dV(Q j 

- Z(\n+1 11 - L0C\n+q I ! - ZÛ\"~2a ' 

which gives the desired equivalence. 
We also can state, as in the case of potentials, a sufficient condition in terms of a 

modulus of continuity of /i. 

THEOREM 3.2. Assume 1 < p < +oo, q > 0 and s e N so that 0 < a = s - j , 
m = n — ap > 0. Let \i be a finite Borel measure in W satisfying. 

0,0)6-)-'y<4oo, 

wzY/z <£>(£) = sup^GB„ [i ( T(B((S, £)) Y Then \x is a Carleson measure for Ap
qs. 

PROOF OF THEOREM 3.2. An integration in polar coordinates gives 

f (1 - ICI2/^-1 ( r dnid) \ A 

JV | i-zcr« y^"\\-uK\n+v 

~JSP 11 - zrj|w-a \ > " 11 ~ r]LJ\n-aJ 
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4T- I ' 

The main estimate in Theorem 2.2 shows that the integral on the right hand side is 
bounded. Hence, Theorem 3.1 finishes the proof. • 

THEOREM 3.3. Let 1 < p < +oo, q > 0 and s eMso that a = s — g,m = n — ap> 
0. Let \i be a finite positive Borel measure in W satisfying that there exist C > 0 and 
1 < r < *• with 

— m 

/x(7f(B(Cr)))<^, 

for any £ G S", r > 0. 77ie« // w a Carleson measure for Ap
qs. 

PROOF OF THEOREM 3.3. The proof is similar to Theorem 2.3 replacing Proposi
tion 2.2 by 

PROPOSITION 3.7. Let \ibea positive finite Borel measure in W, and assume there 
exists [3 > 2, C> 0 and 1 < r < - so that 

(i) supp/i C {z ; (1 — \z\) < sC~}, wherez — — 

(ii) n(lf(B(Çr)) fl P(B(Cr))) < T>". 

Then 

JBn(l - \z\2)sP\f{zt drfz) < C" /Bn(l - | z | 2 r * |/-(z)r </F(z), 

/ora«y/G//(Bw) . 

PROOF OF PROPOSITION 3.7. Let £p(z,r) = {u G Bw ; p(z,o;) < r}, where z G 
Bw, r > 0 and p(z, LU) is the pseudodistance in Bw. It is then easy to show that there exist 
constants k, K > 0 so that for any z G Bw, and if z = zo|z|, 1 — \z\ < eC~^, 

(3.4) Bp(z,*(l - |z|)) C 7f (2?(zo,tfd(l - |z|)*)) H 7*(*(z 0 , t fd( l - |z|)*)), 

and that if UJ G #p(z,A:(l - |z|)) then 1 - \u\ ~ 1 - |z|. 
Now the mean-value inequality gives that for any z G Bw 

Applying Fubini's theorem, the fact that 1 — \UJ\ ~ 1 — \z\ and (3.4), we obtain 

/Bno - iziri/-(z)RM(Z) 
< /" ,(\-\z\yP- l—r f \f(z)\PdV(LO)dll(z) 
~ J{r,(l-M)<eCh ( l - | z | ) " + 1 JB p (z , i ( l - | z | ) ) l / W r V 7 P W 

< / ( i - n r - ( " + 1 ) ^ r L , „,... rf/i(z)jK(a;) 
^ ^B" Jz£Bp(uJc{\-\z\)) 

< / (i - |zir-(«+i)|/(^r 
<~ JB" 

Jj^B(uJo,kClr(l - \w\)r)m^{B(LJo,kCi(l - M)*)))-
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The hypotheses on /i finally give that the above is bounded by 

c" Jji - \oj\r+sp-(n+i)\f^)r dv(w) = c j j \ - \to\f-1 \f(utdv(fj). 
Our final result needs some more definitions. A holomorphic function/ in the unit 

disc 0) is a multiplier for Ap
qs(B) if for any g G Ap

qs(B\f • g G Ap
qs(B). In [Ve] it is proved 

the following characterization of inner multipliers: 

THEOREM [VE]. Ifp>l,seN,q>0,0<a = s-*t and m = 1 - ap = 
1 + q — sp > 0, and iff is an inner function in D>, thenf is a multiplier for Ap

qs(^>) if and 
only iff is a Blaschke product, whose sequence (a*)* of zeroes satisfies that the measure 
[i — EA:(1 — \ak\)l+q~spàak ^ a Carleson measurefor Ap

qs($$). 

In particular, all the sufficient conditions for a measure to be Carleson for ^ ( 0 ) that 
we have obtained, can be used to give examples of multipliers. The following example 
will produce a multiplier which we are not able to obtain from the sufficient conditions 
for a measure to be Carleson, known up to now. 

EXAMPLE 3.1. There exists a sequence (a*)* C 0 so that if 0 < m = 1 + # — sp < 1, 
p > 1, and if /i = £(1 — \ak\)môak, then p, is a Carleson measure for Ap

qs. In addition, 
there exists £o G S so that 

(3.5) M(r±(2K<b,r)));gA 

In particular, the Blaschke product whose zeros are the sequence (ak)k is a multiplier 
for 4 , . 

We will construct the required measure in the upper half-plane, being easier to deal 
with the computations. We need to show that there exists a sequence (a*)* C Rj. with 
ak = (xk,yk) so that the measure p = T,y^Sak satisfies the hypothesis on Theorem 3.3 
but does not satisfy (3.5). This will follow once we prove that there exists some r < ^ 
so that 

( i ) ZakeQT(B(Xo,r))y% < *" b u t 

Where QT(^(xo,r)) = {(x,y) ; \x — JCO| < rr,y < r}, and Qiis defined similarly, and 
where xo G R, r > 0. 

Now, if r < ^ , let t G (T, ^) be fixed, and let <p: [0, +oo) —> IR be the function defined 

by <£>(x) = e~. For A: G N, let A* = (</?(£), </>(£)')• We will show that the sequence (a*)* 
satisfies (i) and (ii). First assume that xo = 0, and let 0 < r < 1. 

Since r <t < ^ ,we have that conditions (i) and (ii) can be rewritten as: 

(i;) E , _ i <^(*r < ^ 

(ii') E , ( t y < r # ) ' m ^ , 
conditions which are immediate to verify for the selected <p. In particular, (ii7) says that 
(i) holds, which gives that (3.5) is not satisfied. 

Thus in order to finish we need to show that (i) is also satisfied for any x0 G R. Since 
(i') holds, it is enough to prove (i) for the regions {(x,y) ; s < x < s + rr , 0 < y < r} 

https://doi.org/10.4153/CJM-1995-060-4 Published online by Cambridge University Press

file:///to/f-1
https://doi.org/10.4153/CJM-1995-060-4


CARLESON MEASURES ON SPACES 1199 

with rr < s. We must then show that 

i ~ 
s<(f(k)<s+rr 

Expressing the above sum as an integral, using the definition of ip and the mean-value 
theorem, we have 

£ <p{kT < fl + log—K~ \s + A)m - (l +log^)^'m 

, - I {s+r-ry») V s*») s<(p(k)<s+r 

= tmr 
^ • h ' m - x 

where h G [s,s + rr]. 

Now the function in brackets is decreasing (tm < 1), and since rr <s<h, the above 
is bounded by r~? log \, which is, due to the fact that t > r, bounded by r™. m 
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