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DERIVATIONS ON A LIE IDEAL

BY
SILVANA MAUCERI AND PAOLA MISSO

ABSTRACT. In this paper we prove the following result: let R be a
prime ring with no non-zero nil left ideals whose characteristic is
different from 2 and let U be a non central Lie ideal of R.

If d # 0 is a derivation of R such that d(u) is invertible or
nilpotent for all ¥ € U, then either R is a division ring or R is the
2 X 2 matrices over a division ring. Moreover in the last case if
the division ring is non commutative, then d is an inner derivation
of R.

In the last years, many results due to Herstein, Lanski, Bergen and others (see
[1], [2], [3]) showed that some information on the structure of a ring can be
obtained by examining the behavior of one of its derivations.

Recently in [3] Bergen studied rings with no non-zero nil left ideals, endowed
with a derivation d # 0 with invertible or nilpotent values and proved that such
a ring is either a division ring or the ring of 2 X 2 matrices over a division
ring.

In this paper we generalize this result to the case of a Lie ideal, more precisely
we shall prove the following

THEOREM. Let R be a prime ring with no non-zero nil left ideals whose
characteristic is different from 2 and let U be a non central Lie ideal of R.
If d + 0 is a derivation of R such that d(u) is invertible or nilpotent for all u € U,
then either R is a division ring or R is the ring of 2 X 2 matrices over a division
ring D. Moreover in case D is not commutative, d is an inner derivation of R.

We shall make use of the results in [4] and [5] where the authors study
derivations with invertible and nilpotent values respectively on a Lie ideal.

Through this paper R will be a prime ring with 1 with no non-zero nil left
ideals whose characteristic is different from 2, Z = Z(R) will be the center of R,
U a non central Lie ideal of R. We will assume that R is endowed with a
derivation d satisfying the following condition: for all u € U either d(u) is
nilpotent or d(u) is invertible.

Given two elements a, b € R, the symbol [a, b] will mean the element
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ab — ba; also, given two subsets U, V of R, then [U, V] will be the additive sub-
group of R generated by all [q, b] fora € Uand b € V.

We start with the following:
LEmMA 1. U D [R, R] and R is a simple ring.

Proor. Let J # 0 be an ideal of R; by [1, Lemma 1] there exists an ideal
K # 0 of R such that [K, R] € Uand [K, R] ¢ Z. Let I = K N J; we note
that U N I* is a Lie ideal containing [I, I], hence U N I’ ¢ Z
otherwise [/, I] C Z and this easily leads to I C Z, so the ring would be com-
mutative contrary to the hypothesis that U is non central.

For every x € U N I d(x) € I. Therefore, if d(x) is invertible, for some
x€ UN I then] = RandsoJ = Rand U D [R, R], the desired con-
clusions. However, if d(x) is nilpotent, for all x € U N I?, then by [5],
dlU n 12) = 0 resulting in the contradiction d = 0.

We remark that, since R is a simple ring with unity, then R is a primitive
ring.

Our next goal is to prove that R is artinian.

By ([6], Lemma 1.2.2) it is enough to show that R contains a minimal right
ideal or equivalently [7, page 75] R contains a non-zero transformation of finite
rank. Since R is a primitive ring, R is a dense ring of linear transformations on a
vector space V over a division ring D.

We begin with:

LEMMA 2. Suppose R is not artinian. If v € V and r € R are such that vr = 0
then vd(r) = 0.

Proor. We will break the proof into three steps. First we will show that if
v, w € V are linearly independent vectors and vr = wr = 0 for some r € R,
then vd(r) and wd(r) are linearly dependent over D.

Suppose this is not the case. Since R does not contain transformations of
finite rank, dim Vr = oo, and we can choose 0 #* v’ = v'r € Vr such that
v”, vd(r), wd(r) are linearly independent over D. By the density theorem, there
exist s, ¢t € R such that:

vd(r)s = v
wd(r)s = 0
and
vd(r)t = 0
wd(r)t =0
V't = .
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Then vd(rsrt — rtrs) = vd(r)srt — vd(r)irs = Vvrt = vt = v and
wd(rsrt — rtrs) = wd(r)srt — wd(r)trs = 0. This shows that the element
d(rsrt — rtrs) is neither nilpotent nor invertible. Since d(rsrt — rtrs) €

d([R, R]) and, by Lemma 1, d([R, R]) C d(U), this is a contradiction.

Consequently vd(r) and wd(r) are linearly dependent over D.

Next we show that, if v, w € V are linearly independent over D and
vr = wr = 0 for some r € R, then vd(r) = wd(r) = 0. Suppose, by contra-
diction, that vd(r) # 0. Since dim Vr = oo, choose 0 # v’ = vr € Vr such
that v”, vd(r) are linearly independent over D. Then there exist s, f, € R

such that
vd(r)s = Vv
and
vd(r)t = v
vt = .
Then

vd(rsrt — rtrs) = vd(r)srt — vd(r)trs = v'rt — vrs = vt = v.

This implies that d(rsrt — rtrs) cannot be nilpotent, thus it has to be invertible.
Set a = rsrt — rtrs. Since vr = wr = 0, then va = wa = 0. On the other side,
v and w are linearly independent over D, so by the first step, we have that
vd(a) and wd(a) are linearly dependent over D.

Let a, B € D be such that (av + Bw)d(a) = 0, as a consequence we get that
d(a) cannot be invertible and this is a contradiction; hence vd(r) = 0.

We are ready for the final step. Let v € V and r € R be such that vr = 0;
suppose, by contradiction, that vd(r) # 0. Since dim Vr = oo, there exists
w € V such that wr and vd(r) are linearly independent.

Let s € R be such that

wrs = 0
vd(r)s = v.

Since vrs = wrs = 0, it follows from the previous step that vd(rs) = 0. On the
other side vd(rs) = vd(r)s + vrd(s) = v. Consequently vd(r) = 0 as claimed.

We proceed with the following:

LEMMA 3. Suppose R is not artinian. If v € V and r € R, then vd(r) = Avr
where A € D is independent on the choice of v.

PrOOF. Suppose by contradiction, that vr and vd(r) are linearly indepen-
dent over D. By the density of the action of R on V, there exists s € R such
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that vrs = 0 and vd(r)s = v. Since vrs = 0, it follows from Lemma 2 that
vd(rs) = 0.

Hence we have 0 = vd(rs) = vrd(s) and vd(r)s = v, a contradiction. Thus vr
and vd(r) are linearly dependent over D.

We will show now that vd(r) = Avr where A € D is independent on the choice
of v.

Since dim Vr = oo, we can choose w € V in such a way that vr and wr are
linearly independent over D. Then vd(r) = A ,vr and wd(r) = A wr. Thus we get
(v + w)d(r) = A,y + A, w)r, on the other side (v + w)d(r) = A, (v + w)r.
Since vr and wr are linearly independent, it follows that A, = A, = A, = A.

We are finally able to prove the following:
THEOREM 1. The ring R is artinian.

PrOOF. Suppose that the conclusion of the theorem is false.

We will first show that if a € [R, R] and d(a) is nilpotent then either d(a) =
0 or a is nilpotent. Suppose that a € [R, R] and d(a) is nilpotent. By Lemma 3,
there exists A, € D such that vd(a) = Ava. If A, = 0, then Vd(a) = 0 which
implies d(a) = 0. If A, # 0, then 0 = vd(a)" = Ajva", hence \}Va" = 0.
Then Va" = 0 and so a" = 0. We have proved the claim.

Our next goal is to prove that for every a € [R, R], either d(a) = 0 or d(a) is
invertible.

Let a € [R, R] be such that d(a) # 0 and suppose that d(a) is nilpotent. By
the first part of the proof we know that a is nilpotent. This implies the existence
of three linearly independent vectors v, w, u € V such that

va = w
wa =0
ua=z+0 zeV.

Let now v/ € V be such that v, w, u, v/ are linearly independent over D. Then
there exist s, £, € R such that

vs = —v
ws = —vy
us = w
Vs = z

and
vt = w
wt =0
ut = v
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We have
v(ist —ts) = —vt —ws = —w+tv=v—w

w(st — ts) = —vt = —w
u(st —ts) = wt — vs = —z

By setting b = st — ts, thena + b € [R, R] and
va@+b)y=wt+tv—w=y

wa+ b) = —w

u@a+b)y=z—2z2=0.

Since a + b € [R, R] then d(a + b) is either invertible or nilpotent. From
u(a + b) = 0 it follows that ud(a + b) = 0, hence d(a + b) is not invertible.
Thus d(a + b) must be nilpotent. This implies that either d(a + b) = 0 or
a + b is nilpotent. Since w(a + b) = —w, then a + b cannot be nilpotent.

It remains to examine the case d(a + b) = 0. In this case, d(a) = —d(b)
which implies that d(b) is nilpotent. Again by the first part of the proof, either
d(b) = 0 or b is nilpotent. The last possibility cannot occur since wb = —w.
Thus d(b) = 0 and so d(a) = 0, a contradiction.

Hence we have proved that for every a € [R, R], either d(a) = 0 or d(a) is
invertible. By [4], R must be artinian contradicting our assumption.

We can better describe the ring R with the following
LEMMA 4. R ~ D,, n = 2, where D is a division ring.

Proor. By Wedderburn theorem R ~ D, where D is a division ring. Sup-
pose, by contradiction, that » > 2 and let e; be the usual matrix units. Since
e, = e.e. — is a commutator for i # j, it follows that d(e ) is either nil-

ij i €y
potent or invertible. Since

d(ey) = d(e;e d(e ) + d(e;)e;;, rank d(eij) = 2,

it t]) ij

o) d(e ) cannot be invertible. Therefore for every i # j, d(e ) is nilpotent. Let
(a,j) € D,, then, fori # j,

eij(Ae,-j) - (Aeij)eij = el-jAel-j
1s a commutator; since
d(e Aey) (jl 1]) (j1 1] j]) (jl ’]) + alelj ( )

it follows that rank d(e, jAe;) = 2 so d(e;Ae;) cannot be invertible, hence
d(e;Ae;) is nilpotent for every 4 € D, ThlS 1mphes that 0 = e;(d(e;de;) )" =
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e;(d (e )Ae) and so e;d(e;)R is a nil right ideal of R. Consequently
e;d(e;) = 0 for every i # J; smularly d(ey)e; = 0.
If i # j, this gives us 0 = ekie,-jd(e,-j) = ¢ d(e).
Let 1 # i, then
ed(e;)) = epd(eey;) = ey d(e)e); + e e d(ey;).

Since both terms on the right hand side are equal to zero, it follows that
ed(ey) = 01if 1 # i and similarly d(e;)e,, = 0if j # k.
Now let d(e;) = (a,,). Then for 1 # i,

ekl(auv) =0= €k1 2 Ay = 2 a1y€ky
and soa;, = 0forv =1,...,nand 1 # i; on the other hand, for k # j,
(auv)ekl =0= (E a,e uv)ekl - 2 auk€uls

hencea, = Ofork = 1,...,nand k # j.

Therefore d(ey) for every i # j, where a« = a(i, j) € D.
Moreover

ae; = ae;,

de;) = d(e,j ﬂ) = d(e,j)eji + e,-jd(eji) e;e; + ,Be,j i = (a + Be;.

Thus we have shown that for every i # j, d(e;) =
a(i, j) € D.

Now, e, and e;; are both commutators, hence d(e; + ¢;,) = ae; + Be;; and
d(e e; — ej,) = ae; — ,B ; should be nilpotent. It follows that raising both to the
2m power, where misa suitable integer, we get (af)"e; + (Ba)™e; = 0, hence
eithera = 0or 8 = 0.

Since

aey, where a =

d(ley ;1) = (@ + Bleyy ¢l = (o + ey — ¢y)
is nilpotent, then
d(ley ;)" = (@ + B"(e; + ;) = 0

and so @ + B = 0. Combining this with the previous fact that either « = 0 or
B = 0, we obtain @ = B = 0. Hence, for every i # j, d(e;) = 0.
Let now 4 = (ay) = > a;e;; then

d(4) = d(Z azey) = 2 d(aye; = Z d(ay)e;

where d is a suitable derivation defined on D.
Take a € D such that d(a) # 0. Since

[(ce)), (612 T ex) ] = ae, — aey; = ale); — €y),

we have that
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d([(aey)), (e1y + e)]) = d(@)(e;; — ¢39)
and so either
d([ (aey)), (e1; + €))]1)" = d(a)" (e}, = e;)) # 0 or
d([ (aey)), (e1y + €;))1)" = d(@)"(e)) &= ey) # 0

according as m is odd or even; moreover rank d( [ (ae,), (e;; + €,;) 1) = 2, but
n > 2 so it cannot be invertible.

Since we have shown that the ring R under our hypotheses is either a division
ring D or D,, the ring of 2 X 2 matrices over a division ring, we wish to examine
which derivations d in D, satisfy the condition: d(u) invertible or nilpotent for
all u € U, U a non central Lie ideal.

As by the proof of Lemma 8 of [2] and Lemma 10 of [4], we can conclude that
if D is non commutative and char D # 2 then the derivation d must be inner.

By combining Lemma 4 and the above remark, we have the final result:

THEOREM 2. Let R be a prime ring with no non-zero nil left ideals and
char R # 2. Let U be a non central Lie ideal of R; if d + 0 is a derivation of R
such that d(u) is either invertible or nilpotent for all u € U, then either
(1) R >~ D, D a division ring or
(2) R =~ D,, the 2 X 2 matrices over a division ring D.

Moreover, if D is non commutative, d is an inner derivation.
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