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Abstract. We study the behavior of the co-spectral radius of a subgroup H of a discrete
group � under taking intersections. Our main result is that the co-spectral radius of
an invariant random subgroup does not drop upon intersecting with a deterministic
co-amenable subgroup. As an application, we find that the intersection of independent
co-amenable invariant random subgroups is co-amenable.
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1. Introduction
Let � be a countable group and let S be a finite symmetric subset of �. The co-spectral
radius of a subgroup H ⊂ � (with respect to S) is defined as the norm of the operator
M : L2(�/H) → L2(�/H):

Mφ(γH) = 1
|S|

∑
s∈S

φ(sγH), ρ(�/H) := ‖M‖.

The groups with co-spectral radius 1 for every choice of S are called co-amenable. If the
group � is finitely generated, one needs only to verify that the co-spectral radius is 1 for
some generating set S.

In this paper, we investigate the behavior of the co-spectral radius under intersections.
For general subgroups H1, H2 ⊂ �, there is not much that can be said about ρ(�/(H1 ∩
H2)) other than the trivial inequality

ρ(�/(H1 ∩H2)) ≤ min{ρ(�/H1), ρ(�/H2)}.
The problem of finding lower bounds on the co-spectral radius of an intersection is even
more dire, as there are examples of non-amenable � with two co-amenable subgroups
H1, H2 with trivial intersection (see Example 3.1). However, when considering all con-
jugates simultaneously, we have the following elementary lower bound on the co-spectral
radius of an intersection. Here and for the remainder of the paper, we writeHg := g−1Hg.
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THEOREM 1.1. Let � be a finitely generated group and let S be a finite symmetric
generating set. Let H1, H2 be subgroups of � and assume that H1 is co-amenable. Then,

sup
g∈�

ρ(�/(H1 ∩Hg

2 )) = ρ(�/H2).

The supremum over all conjugates in the statement of the theorem is in fact necessary,
as shown by Example 3.1. However, in the presence of invariance, this can be improved
upon: e.g. if H2 = N is normal, Theorem 1.1 immediately implies that ρ(�/(H1 ∩N)) =
ρ(�/N). Our aim is to generalize this to invariant random subgroups.

An invariant random subgroup (IRS) of � (see [2]) is a random subgroup of � whose
distribution is invariant under conjugation. Invariant random subgroups simultaneously
generalize the notion of finite index subgroups and normal subgroups. They have proven
to be very useful tools in measured group theory (see for example [1, 4, 5]). Many results
on invariant random subgroups are obtained as generalizations of statements previously
known for normal subgroups. We follow this tradition and show that one can remove the
supremum in Theorem 1.1 when H2 is an IRS. The co-spectral radius of a subgroup H
is invariant under conjugation of H by elements of � and defines a measurable function
on the space of subgroups of �. (The measurability follows from the fact that ρ(H\�) =
limR→∞ supsupp f⊂B(R) 〈Mf , f 〉/‖f ‖2, where B(R) is the R-ball around H inH\� and f
runs over non-zero functions supported in B(R). The ball B(R) depends measurably on H,
so the co-spectral radius must be measurable as well.) It follows that the co-spectral radius
of an ergodic IRS H is constant almost surely and, therefore, ρ(�/H) is well defined.
We say an IRS is co-amenable if it is co-amenable almost surely. Our main result is the
following theorem.

THEOREM 1.2. Let � be countable with a finite symmetric subset S. Let H1 ⊂ � be a
deterministic co-amenable subgroup and let H2 be an ergodic invariant random subgroup
of �. Then,

ρ(�/(H1 ∩H2)) = ρ(�/H2)

almost surely.

This result was inspired by a question of Alex Furman, asking whether the intersection
of co-amenable IRSs remains co-amenable. A positive answer follows from Theorem 1.2
applied in the case when both H1, H2 are co-amenable IRSs.

COROLLARY 1.3. Let � be a countable group and letH1, H2 be independent co-amenable
invariant random subgroups. Then the intersection H1 ∩H2 is co-amenable.

Remark 1.4. The independence assumption in the above corollary is necessary (see
Example 3.2).

Combined with Cohen–Grigorchuk’s co-growth formula [6, 9] and Gekhtman–Levit’s
lower bound on the critical exponent of an IRS of a free group [7, Theorem 1.1],
Theorem 1.2 yields the following corollary on the critical exponents of subgroups of the
free group.
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COROLLARY 1.5. Let Fd be a free group on d ≥ 2 generators and let S be the standard
symmetric generating set. Write δ(H) for the critical exponent of a subgroup H. Suppose
H1 is co-amenable and H2 is an ergodic IRS. Then,

δ(H1 ∩H2) = δ(H2)

almost surely.

1.1. Outline of the proof. We outline the proof of Theorem 1.2. For the sake of
simplicity, we restrict to the case when both H1, H2 are co-amenable. We realize H1 and
H2 as stabilizers of �-actions on suitable spaces X1 and X2. Since H1 is a (deterministic)
subgroup, we can take X1 = �/H1. However, H2 is an ergodic IRS so X2 is a probability
space with an ergodic measure-preserving action of �. The intersection H1 ∩H2 is then
the stabilizer of a point in X1 ×X2 that is deterministic in the first variable and random
in the second. Using an analog of the Rokhlin lemma, we can find a positive measure
subset E of X2 that locally approximates the coset space H2\�. The product of E with
X1 will locally approximate the coset space of (H1 ∩H2)\�. The co-amenability of H2

means that the set E contains a subset P that is nearly �-invariant. The product of such
a set with a Følner set F in X1 should be a nearly �-invariant set in X1 × E, and hence
witnesses the amenability of the coset graph (H1 ∩H2)\�. The latter implies thatH1 ∩H2

is co-amenable.
The actual proof is more complicated because if the product system is not ergodic, one

has to show the product set is nearly invariant after restriction to each ergodic component
and not just on average. Otherwise, we can only deduce the bound from Theorem 1.1 using
a supremum over all conjugates. Obtaining control on each ergodic component is a key
part of the proof where we actually use the invariance of H2.

To prove Theorem 1.2 for the co-spectral radius, one should replace the Følner set in
X2 with a function f2 that (nearly) witnesses the fact that ρ(�/H2) = λ2, and adapt the
remainder of the proof accordingly.

1.2. Outline of the paper. Section 2 contains background material. In §3, we prove the
deterministic bound on spectral radius given by Theorem 1.1. Next, in §4, we rephrase
co-spectral radius of the (discrete) orbits in terms of embedded spectral radius on a
(continuous) measure space. Finally, in §5, we prove the main theorem.

2. Background
2.1. Co-amenability. Let � be a finitely generated group and let S be a finite symmetric
set of generators. A subgroup H of � is called co-amenable if the Schreier graph
Sch(H\�, S) is amenable, that is, for any ε > 0 and any S, there exists a set F ⊂ H\�
such that |F	FS| ≤ ε|F |. Such sets will be called ε-Følner sets. Alternatively, a subgroup
H is co-amenable if and only if the representation 
2(�/H) has almost invariant vectors,
or that ‖M‖L2(H\�) = 1.

2.2. Invariant random subgroups. Let Sub� be the space of subgroups of �, equipped
with the topology induced from {0, 1}� . An invariant random subgroup is a probability
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measure μ ∈ P(Sub�) which is invariant under conjugation of �. An IRS is called
co-amenable if

μ({H ∈ Sub� | H is co-amenable}) = 1.

Similarly, we say that an IRS H has co-spectral radius at least λ if ρ(H\�) ≥ λ almost
surely.

For any action � � X and x ∈ X, write �x for the stabilizer of x. Every IRS can be
realized as a stabilizer of a random point in a probability measure-preserving (p.m.p.)
system.

THEOREM 2.1. (Abert, Glasner and Virag [2]) For every IRS μ, there exists a stan-
dard Borel probability space (X, ν) and a Borel p.m.p. �-action on (X, ν) such that
μ = ∫

X
δ�x dν(x).

2.3. Ergodic decomposition of infinite measures. The material in this subsection is well
known to experts but difficult to locate in the literature. Our goal is to construct an ergodic
decomposition for measure-preserving actions of countable groups on spaces with an
infinite measure. We deduce this from the corresponding result for non-singular actions
on probability spaces.

THEOREM 2.2. (Greschonig and Schmidt [8, Theorem 1]) Let � be a countable group
and let � � (X, �X, ν) be a non-singular Borel action on a standard Borel probability
space. Then there exist a standard Borel probability space (Z, �Z , τ) and a family of
quasi-invariant, ergodic, pairwise mutually singular probability measures {νz}z∈Z with
the same Radon–Nikodym cocycle as ν, and such that for every B ∈ �X, we have

ν(B) =
∫
Z

νz(B) dτ(z). (2.1)

As an application, we have the following corollary.

COROLLARY 2.3. Let � be a countable group and let � � (X1, �X1 , ν1) and � �

(X2, �X2 , ν2) be measure-preserving Borel actions on standard Borel spaces. Suppose
that (X1, ν1) is ergodic and that ν2(X2) = 1. Then there exists a standard Borel probability
space (Z, �Z , τ) and a family of �-invariant, ergodic, pairwise mutually singular
measures {νz}z∈Z on X1 ×X2 such that for every B ∈ �X1×X2 , we have

ν(B) =
∫
Z

νz(B) dτ(z). (2.2)

Moreover, for every measurable set F ⊂ X1 and z ∈ Z, we have

νz(F ×X2) = ν1(F ).

Proof. Fix a countably valued Borel function w : X1 → R>0, such that
∫
X1
w dν1 = 1.

Write w = ci on the set Ai , where {Ai} is a Borel partition of X1.
Then w(x1)dν(x1)dν2(x2) is a �-quasi-invariant probability measure on X1 ×X2 with

Radon–Nikodym cocycle dw(x1, x2, γ ) = w(γ x1)/w(x1). Let (Z, �Z , τ), z �→ (wν)z,
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be its ergodic decomposition as provided by Theorem 2.2. Now pass back from
w(x1)dν1(x1)dν2(x2) to ν1 × ν2 by setting

dνz(x1, x2) := w(x1)
−1d(wν)z.

Since {(wν)z}z are ergodic and pairwise mutually singular, the same is true for {νz}z. Since
(wν)z have Radon–Nikodym cocycle dw, the measures νz are �-invariant.

It is easy to verify that equation (2.1) implies the corresponding equation (2.2).
Finally, to satisfy the last identity, choose a positive measure subset F ⊂ X1 and

renormalize νz and τ as

νz �→ ν1(F )

νz(F ×X2)
νz, dτ(z) → νz(F ×X2)

ν1(F )
dτ(z).

By ergodicity of ν1, this normalization does not depend on the choice of F.

2.4. Ergodic theory of equivalence relations. Let (X, ν) be a probability measure space
and let ϕi : Ui → X be a finite family of non-singular measurable maps defined on
subsets Ui of X. The triple (X, ν, (ϕi)i∈I ) is called a graphing. We assume that (ϕi)i∈I
is symmetric, that is, for each i ∈ I , the map ϕ−1

i : ϕi(Ui) → Ui is also in the set (ϕi)i∈I .
A graphing is finite if the index set I is finite.

Remark 2.4. In our applications of this theory, X will be a finite measure subset (not
necessarily invariant) of a measure-preserving action of �, equipped with the graphing
corresponding to a finite symmetric generating set S of �, and ν will be the restricted
measure or the restriction of an ergodic component.

Let R be the orbit equivalence relation generated by the maps (ϕi)i∈I . A measured
graphing yields a random graph in the following way. For every x ∈ X, let Gx be the graph
with vertex set given by the equivalence class [x]R and place an edge between y, z ∈ [x]R
whenever z = ϕi(y) for some i ∈ I (multiple edges are allowed). The graphs Gx have
degrees bounded by |I | and are undirected since (ϕi)i∈I is symmetric. If we choose a
ν-random point x, the resulting graph Gx is a random rooted graph. The properties of Gx
will depend on the graphing. For example, if the graphing consists of measure-preserving
maps, then the resulting random graph is unimodular (see [3]).

Suppose from now on the graphing is measure-preserving. Then the mass transport
principle [3] asserts that for any measurable function K : R → R, we have∫

X

( ∑
x′∈[x]R

K(x, x′)
)
dν(x) =

∫
X

( ∑
x∈[x′]R

K(x, x′)
)
dν(x′). (2.3)

3. Co-spectral radius for deterministic intersections
In this section, we prove Theorem 1.1 that gives the elementary deterministic lower bound
on the supremum of co-spectral radii over all conjugates. Then we show an example that
consideration of all conjugates is necessary. This example will also show the necessity of
the independence assumption in Corollary 1.3 on the co-amenability of the intersection of
a pair of independent co-amenable IRSs.
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Proof of Theorem 1.1. As in §1, we letM := 1/|S| ∑
s∈S s ∈ C[�]. We have the following

identity between the unitary representations of �:

L2(H1\�)⊗ L2(H2\�) �
⊕

g∈H1\�/H2

L2((H1 ∩Hg

2 )\�).

Write π1, π2 for the unitary representations corresponding to L2(H1\�) and L2(H2\�).
The above identity implies that

sup
g∈H1\�/H2

ρ((H1 ∩Hg

2 )\�) = ‖(π1 ⊗ π2)(M)‖.

To prove the theorem, it is enough to verify that

‖(π1 ⊗ π2)(M)‖ ≥ ‖π2(M)‖ = ρ(H2\�).

Let ε > 0. Choose unit vectors u1 ∈ L2(H1\�) and u2 ∈ L2(H2\�) such that
〈π1(s)u1, u1〉 ≥ 1 − ε for all s ∈ S and 〈π2(M)u2, u2〉 ≥ ‖π2(M)‖ − ε. Then,

〈(π1 ⊗ π2)(M)u1 ⊗ u2, u1 ⊗ u2〉 = 1
|S|

∑
s∈s

〈π1(s)u1, u1〉〈π2(s)u2, u2〉

≥ 1
|S|

∑
s∈S
(1 − ε)〈π2(s)u2, u2〉

≥ (1 − ε)(‖π2(M)‖ − ε).

Letting ε → 0, we conclude that ‖(π1 ⊗ π2)(M)‖ ≥ ‖π2(M)‖.

The supremum in the inequality seems to be necessary. Below, we construct an example
of a non-amenable finitely generated group � with two co-amenable subgroups H1, H2

such that the intersection H1 ∩H2 is trivial. In particular,

ρ(�) = ρ((H1 ∩H2)\�) < ρ(H2\�) = 1.

Example 3.1. Let � := F⊕Z

2 � Z, where F2 stands for the free group on two generators.
The group is obviously non-amenable. Let a, b be the standard generators of F2 and
let s be the generator of the copy of Z in �. The triple {s, a, b} generates �. Put
S := {s, a, b, s−1, a−1, b−1}. For any subset E ⊂ Z, let HE := F⊕E

2 ⊂ �.
Now let A, B be disjoint subsets of Z containing arbitrary long segments. Since

A ∩ B = ∅, the intersection HA ∩HB = 1 is not co-amenable. However, we claim that
for any subset C containing arbitrarily long segments, HC is co-amenable, so that, in
particular, HA and HB are co-amenable. Indeed, suppose C ⊆ Z contains arbitrarily long
segments. Then for any g ∈ �, the Schreier graphs for HC and Hg

C are isomorphic, so
ρ(HC\�) = ρ(H

g
C\�). For every n ∈ N,

ρ(HC\�) = ρ(Hsn

C \�) = ρ(HC−n\�).
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Let (nk)k∈N be a sequence such that {−k, −k + 1, . . . , k − 1, k} ⊂ C − nk . Then,HC−nk
converges to HZ in Sub(�) as k → ∞. Since the spectral radius is lower semi-continuous
on the space of subgroups, we get

ρ(HC\�) = lim inf
k→∞ ρ(HC−nk\�) ≥ ρ(HZ\�) = ρ(Z) = 1.

Example 3.2. The above example also shows that for the intersection of two co-amenable
IRSs to be co-amenable (Corollary 1.3), the independence assumption is necessary. Indeed,
let � be as in the previous example and let A be an invariant percolation on Z such that
both A and its complement contain arbitrarily long segments (e.g. Bernoulli percolation).
Then, HA and HAc are co-amenable but their intersection is trivial.

4. Embedded spectral radius
Let us introduce some terminology. Let (X, ν) be a measure-preserving�-action, and write
R for the corresponding orbit equivalence relation. We shall assume that ν is σ -finite but
not necessarily finite. We recall that for every x ∈ X, Gx is the labeled graph with vertex
set [x]R and edge set (y, sy), y ∈ �x, labeled by s ∈ S.

Definition 4.1. A set P ⊂ X is called a finite connected component if for almost all x ∈ P ,
the connected component of x in the graph P ∩ Gx is finite. In other words, the graphing
restricted to P generates a finite equivalence relation.

For any subset P ⊂ X, write ∂P := SP \ P for the (outer) boundary and int(P ) :=
P \ ∂(X \ P) for the interior of P.

Definition 4.2. Let (X, ν) be a measure-preserving �-action. We say that (X, ν) has
embedded spectral radius λ if for every finite measure finite connected component P ⊂ X

and every f ∈ L2(X, ν) supported on the interior int(P ), we have

〈(I −M)f , f 〉 ≥ (1 − λ)‖f ‖2,

and λ is minimal with this property.

Remark 4.3. Using the monotone convergence theorem, we may assume that f in the above
definition is bounded. Further, taking the absolute value of f leaves the right-hand side
unchanged and decreases the left-hand side. Therefore, it suffices to consider non-negative
functions f ≥ 0.

Our goal in this section is to prove that the embedded spectral radius of a
measure-preserving system � � (X, ν) is detected by the co-spectral radius along orbits.

PROPOSITION 4.4. Let (X, ν) be a σ -finite measure-preserving �-system. Then, the
stabilizer of almost every point has co-spectral radius at least λ if and only if almost every
ergodic component of ν has embedded spectral radius at least λ.

Remark 4.5. This result can be used to give examples whose embedded spectral radius is
strictly less than the spectral radius of M on L2

0(X, ν). This happens, for example, when �
is a non-abelian free group and X = X1 ×X2 is a product of an essentially free action X1
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with an action X2 that has no spectral gap. In this case, the graphs Gx are just copies of the
Cayley graph of � so their spectral radius is bounded away from 1. However, the spectral
radius of M on L2

0(X, ν) is 1, because it contains L2
0(X2, ν2).

Proof. By passing to ergodic components, we can assume without loss of generality that
(X, ν) is ergodic. If (X, ν) is periodic, then there is nothing to do, so henceforth we will
assume that (X, ν) is an aperiodic measure-preserving ergodic system.

First, let us prove that if the co-spectral radius of the stabilizer �x is at least λ, then X
has embedded spectral radius at least λ. Let ε > 0 be arbitrary. Then ν-almost every orbit
Gx supports a function fx : Gx → R such that

〈(I −M)fx , fx〉 ≤ (1 − λ+ ε)‖fx‖2. (4.1)

Since Gx is countable, using the monotone convergence theorem, we can assume fx
is supported on a finite ball. Let Rx > 0 be minimal such that the interior of the ball
BGx (x, Rx) of radius Rx around x supports a function ψx satisfying equation (4.1). Since
balls of fixed radius depend measurably on x, the map x �→ Rx is measurable, so we can
choose R0 > 0 such that

ν ({x ∈ X | Rx ≤ R0}) > 0

and put X1 := {x ∈ X | Rx ≤ R0}. Since there are only finitely many rooted graphs of
radius R0 labeled by S, there exists a positive measure set X2 ⊂ X1 such that for all
x ∈ X2, the rooted graphs (BGx (x, R0), x) are all isomorphic to some (G, o) as rooted
S-labeled graphs. By restricting to a smaller subset, we can assume that ν(X2) is finite. Fix
ψ : G → R satisfying

〈(I −M)ψ , ψ〉 ≤ (1 − λ+ ε)‖ψ‖2,

and for x ∈ X2, letBx ⊂ X be the image of G via the unique labeled isomorphism (G, o) �
(BGx (x, R0), x).

Let S′ be the set of all products of at most 2R0 elements of S. At this point, we need
to use a Rokhlin-type lemma, which will be stated and proved below (see Lemma 4.6).
Upon applying this to the graphing (S′X2, ν, S′), we find a partition S′X2 = B � ⊔N

j=1 Aj

with ν(B) < ν(X2)/2, such that Aj ∩ sAj = {x ∈ Aj | sx = x} for every s ∈ S′. This
translates to the condition that Bx and Bx′ are disjoint for every distinct pair of points
x, y ∈ Aj . Since the sets Aj cover a subset of X2 of measure at least ν(X2)/2, there
exists j such that X3 := X2 ∩ Aj has positive measure. The set P := ⋃

x∈X3
Bx is then a

disjoint union of its finite connected components Bx , so it is a finite connected component
in the sense of Definition 4.1. The function ψ : G → R naturally induces a function
f : P → R defined by f |Bx := ψ for all x ∈ X3, where we have identified Bx with G
using the isomorphism of rooted S-labeled graphs (Bx , x) � (G, o).

Then, we easily verify 〈(I −M)f , f 〉 ≤ (1 − λ+ ε)‖f ‖2, namely

‖f ‖2 =
∫
X3

‖ψ‖2 dν = ν(X3)‖ψ‖2,
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and similarly

〈Mf , f 〉 =
∫
X3

〈Mψ , ψ〉 dν = ν(X3)〈Mψ , ψ〉.

Taking ε → 0, we see that X has embedded spectral radius at least λ.
We prove the other direction. The proof will use the mass transport principle for

unimodular random graphs. In our case, the unimodular random graph is given by (Gx , x)
where x ∈ X is ν|P -random. We argue by contradiction, so assume that (X, ν) has
embedded spectral radius at least λ but, at the same time, stabilizers have co-spectral
radius ρ < λ with positive probability. By ergodicity, there exists an h > 0 such that
ρ(Gx) ≤ λ− h almost surely.

Since X has spectral radius at least λ, there exists f ∈ L2(X, ν) non-zero and supported
on the interior of a finite connected component P ⊆ X with ν(P ) < ∞ such that

〈(I −M)f , f 〉 ≤
(

1 − λ+ h

2

)
‖f ‖2. (4.2)

As in §2.4, let RP be the equivalence relation generated by the graphing on P. We write
Pox := [x]RP

for the connected component of x ∈ P . Define K : RP → R by

K(x, y) := f (x)2

‖f ‖2
Pox

(2|S|)−1
∑
s∈S
(f (ys)− f (y))2. (4.3)

By the mass transport principle, we equate∫
P

∑
x∈Poy

K(x, y) dν(y) =
∫
P

∑
y∈Pox

K(x, y) dν(x). (4.4)

We start by computing the integrand on the right-hand side. Rewriting

(f (ys)− f (y))2 = f (ys)(f (ys)− f (y))+ f (y)(f (y)− f (ys)),

we find (using S is symmetric) for every x ∈ X that

∑
y∈Pox

K(x, y) = f (x)2

‖f ‖2
Pox

|S|−1
∑
y∈Pox

∑
s∈S

f (y)(f (y)− f (ys))

= f (x)2

‖f ‖2
Pox

〈(I −M)f , f 〉Pox .

Using ρ(Gx) ≤ λ− h and f ≥ 0, we can estimate∑
y∈Pox

K(x, y) ≥ (1 − λ+ h)f (x)2. (4.5)

Therefore, we have the following estimate for the right-hand side in the mass transport
equation (4.4): ∫

P

( ∑
y∈Pox

K(x, y)
)
dν(x) ≥ (1 − λ+ h)‖f ‖2. (4.6)
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Next, we compute the integrand on the left-hand side of the mass transport equation (4.4),
namely for y ∈ X, we have

∑
x∈Poy

K(x, y) =
∑
x∈Poy

f (x)2

‖f ‖2
Poy

(2|S|)−1
∑
s∈S
(f (ys)− f (y))2

= f (y)(I −M)(f )(y),

where we used S is symmetric and the action is measure-preserving. Hence, integrating
the above equation over y and using the mass transport principle to estimate this by the
right-hand side of equation (4.6), we find

〈(I −M)f , f 〉 ≥ (1 − λ+ h)‖f ‖2.

This contradicts the choice of f in equation (4.2).

We end this section with the following technical Rokhlin-type lemma that was used in
the above proof.

LEMMA 4.6. Let (X, ν, (ϕi)i∈I ) be a finite measure-preserving symmetric graphing
on a finite measure space. Then, for every δ > 0, there exists a measurable partition
X = B � ⊔N

j=0 Aj , such that ν(B) ≤ δ and

Aj ∩ ϕi(Aj ∩ Ui) = {x ∈ Aj ∩ Ui | ϕi(x) = x}.

Proof. We start by proving the lemma for a single measure-preserving invertible map
ϕ : U → ϕ(U). Since we do not assume that ϕ is defined on all of X, we need to treat
separately the subset of elements where ϕ can be applied only finitely many times. For any
n ∈ N, define

En := {x ∈ X | ϕn−1(x) ∈ U but ϕn(x) �∈ U}.
Put A0 = ⋃∞

n=0 E2n and A1 = ⋃∞
n=0 E2n+1. We obviously have A0 ∩ A1 = ∅,

ϕ±1(A0) ⊂ A1, and ϕ±1(A1) ⊂ A0. This reduces the problem to the subset Y :=
X \ ⋃∞

n=0 En. By definition, ϕ(Y ) = Y . We further decompose Y into the periodic and
aperiodic parts Y p, Y ap. The periodic part can be partitioned into a fixed point set A2 =
{x ∈ Y p | ϕ(x) = x}, finitely many sets A3, . . . , AM permuted by ϕ, and a remainder
B1 of measure ν(B1) < δ/2 coming from large odd periods. By the usual Rokhlin
lemma, the aperiodic part Y ap can be decomposed as Y ap = B2 � AM+1 � · · · � AN ,
where ν(B2) < δ/2, ϕ(AM+k) = AM+k+1 for all M + k < N and ϕ(AN) ⊂ B2. Put
B = B1 ∪ B2. This ends the construction for a single map.

Suppose now that the graphing consists of d maps ϕ1, . . . , ϕd and their inverses.
For each i = 1, . . . d , there exists a partition X = Bi � ⊔Ni

j=1 A
i
j such that ν(Bi) < δ/d

and ϕi(Aij ∩ Ui) ∩ Aij = {x ∈ (Aij ∩ Ui) | ϕi(x) = x}. Let B := ⋃d
i=1 B

i and define the

partition {Aj } as the product partition
∧d
i=1{Aij }. This partition satisfies all the desired

conditions.
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5. Proof of the main theorem
5.1. Preliminary reductions and general strategy. Let � be a countable group with a
co-amenable subgroup H1 and an IRS H2 with co-spectral radius λ2. We need to show
that H1 ∩H2 has co-spectral radius at least λ2 as well. First, without loss of generality,
we can assume H2 is ergodic. The group H1 is realized as the stabilizer of a point in
X1 := H1\� and H2 is realized as the stabilizer of a random point in a p.m.p. action of �
on (X2, ν2). We use Proposition 4.4 to find a finite connected component P2 of X2 and a
function f2 on P2 that witnesses the spectral radius λ2. Next, using a large Fölner set inX1,
we produce a new finite connected component in the product system X1 ×X2 and a new
function which certifies that the co-spectral radius of stabilizers in X1 ×X2 is arbitrarily
close to λ2 on almost every ergodic component of the product measure.

5.2. Reformulation of the problem in measure theoretic terms. Write (X1, ν1) for the
set H1\� endowed with the counting measure. It is an infinite ergodic measure-preserving
action of �. Let � � (X2, ν2) be a p.m.p. Borel action on a standard Borel probability
space such that H2 = �x for ν2-random x. We will consider the action of � on the product
system (X1 ×X2, ν1 × ν2). To shorten notation, we write ν = ν1 × ν2. The intersection
H1 ∩H2 is nothing else than the stabilizer of a random point x ∈ {[H1]} ×X2. Note that
for such x, we have ρ(�x\�) ≤ λ2 := ρ(H2\�) almost surely. Set

C0 := {x ∈ X1 ×X2 | ρ(�x\�) = λ2}.
Since conjugate subgroups have the same co-spectral radius, the set C0 is invariant

under the action of �. Let (X1 ×X2, ν) → (Z, τ) be the ergodic decomposition given by
Corollary 2.3 and set

Z0 := {z ∈ Z | νz(C0) > 0}.
By ergodicity and invariance, the set C0 has full νz-measure for every z ∈ Z0. Theorem 1.2
is equivalent to the identity C0 = X1 ×X2 modulo a null set, so it will follow once we
show that τ(Z0) = 1. By Proposition 4.4, z ∈ Z0 if and only if the following condition
holds: for every η > 0, there exists a function h supported on the interior of a finite
connected component of (X1 ×X2, νz, S) (according to Definition 4.1), such that

〈(I −M)h, h〉νz ≤ (1 − λ2 + η)‖h‖2
νz

. (5.1)

We will refer to non-negative, non-zero functions supported on interiors of finite connected
components of (X1 ×X2, ν, S) as test functions. It is easy to check that a test function for
ν is also a test function for almost all ergodic components νz. It will be convenient to name
the set of ergodic components z for which there exists a test function satisfying equation
(5.1) with specific η. Let

Zη := {z ∈ Z | there exists h such that 〈(I −M)h, h〉νz ≤ (1 − λ2 + η)‖h‖2
νz

}.
Obviously, we have Z0 = ⋂

η>0 Zη and Zη ⊂ Zη′ for η < η′. In the following sections,
we show that τ(Zη) → 1 as η → 0. This will imply that ν(Zη) = 1 for every η > 0 and
consequently that ν(Z0) = 1, which is tantamount to Theorem 1.2.
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5.3. Construction of test functions
LEMMA 5.1. Let δ > 0. There exists a test function f and a set Z′ ⊂ Z such that:
(1) ‖f ‖2

νz
≥ (1 − δ)‖f ‖2

ν , for every z ∈ Z′;
(2) τ(Z′) ≥ 1 − δ;
(3) 〈(I −M)f , f 〉ν ≤ (1 − λ2 + δ)‖f ‖2

ν .

Proof. Let ε2 > 0. Since � � (X2, ν2) has embedded spectral radius λ2, there is a finite
measure, finite connected component P2 ⊂ X2, and non-zero f2 ∈ L2(X2, ν2) as is in
Definition 4.2, that is, f2 is supported on the interior int(P2) and

〈(I −M)f2, f2〉 ≤ (1 − λ2 + ε2)‖f2‖2. (5.2)

By Remark 4.3, we may assume f2 ≥ 0.
We will show that for a good enough Følner set F ⊆ X1 and small enough ε2, the

function

f := 1F × f2

satisfies the conditions of the lemma. While condition (3) is relatively straightforward,
conditions (1) and (2) require some work and strongly use the fact that X2 is a p.m.p.
action.

Consider the following probability measures on �:

μ := 1
|S|

∑
s∈S

δs and μm := 1
m

m−1∑
i=0

μ∗i for m ∈ N.

By Kakutani’s ergodic theorem [10], there exists m0 ≥ 1 such that∣∣∣∣
∫
�

f 2
2 (xγ

−1) dμm0(γ )−
∫
X2

f 2
2 dν2

∣∣∣∣ ≤ ε2‖f2‖2 (5.3)

for all x ∈ X′
2, where ν2(X

′
2) ≥ 1 − ε2.

Fix 0 < ε1 � ε2 very small. The precise choice only depends on ε2 and will be specified
at the end of the proof. Let F ⊂ X1 be an ε1-Følner set and write Y = (F ∪ ∂F )×X2.

Write F ′ for the set of points of F which are at distance at least m0 from the boundary
∂F and set Y ′ := F ′ ×X′

2, where X′
2 is as in equation (5.3). We claim that for ε1 small

enough, we will have (ν1 × ν2)(Y
′) ≥ |F |(1 − 2ε2). Indeed, using that F is ε1-Følner, we

have

|F ′| ≥ |F ∪ ∂F | − |∂F |
m0−1∑
i=1

|S|i ≥ |F ∪ ∂F |(1 − |S|m0ε1).

Clearly for sufficiently small ε1, we have

ν(Y ′) = |F ′|ν2(X
′
2) ≥ (1 − ε1|S|m0)(1 − ε2)|F | ≥ (1 − 2ε2)|F |. (5.4)

Write P := (F ∪ ∂F )× P2 ⊂ Y . By construction, the support of f is contained in P ⊂ Y .
Note that since P2 is a finite connected component of X2 and F ∪ ∂F is finite, the set P
will be a finite connected component of (X1 ×X2, ν, S) in the sense of Definition 4.1. Let
ν = ∫

Z
νz dτ(z) be the ergodic decomposition of ν as in §2.3. The set P is also a finite
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connected component of (X1 ×X2, νz, S) for almost every z ∈ Z. For every z ∈ Z, the
measure νz is invariant under the action of �, so that∫

f 2(x1, x2) dνz(x1, x2) =
∫
�

∫
f 2(x1γ

−1, x2γ
−1) dνz(x1, x2)dμ

m0(γ )

≥
∫
Y ′

∫
�

f 2(x1γ
−1, x2γ

−1) dμm0(γ ) dνz(x1, x2).

Since Y ′ = F ′ ×X′
2 and F ′γ−1 ⊂ F for any γ ∈ supp μm0 , we can use the identity

f = 1F × f2 to rewrite the last integral as∫
F ′×X′

2

( ∫
�

f 2
2 (x2γ

−1) dμm0(γ )

)
dνz(x1, x2).

We use equation (5.3) to estimate the innermost integral and obtain a lower bound on
‖f ‖2

νz
:

∫
P

f 2 dνz ≥(1 − ε2)νz(F
′ ×X′

2)

∫
X2

f 2
2 dν2 = (1 − ε2)νz(Y

′)‖f2‖2
ν2

.

By equation (5.4), we have ν(Y ′) ≥ (1 − 2ε2)|F |, so we can apply Markov’s inequality
to get a set Z′ ⊂ Z with τ(Z′) ≥ 1 − √

2ε2 such that νz(Y ′) ≥ (1 − √
2ε2)|F | for z ∈ Z′.

Finally, we get that for z ∈ Z′,

‖f ‖2
νz

≥ (1 − ε2)(1 − √
2ε2)|F |‖f2‖2

ν2
= (1 − ε2)(1 − √

2ε2)‖f ‖2
ν . (5.5)

This establishes properties (1) and (2) of Lemma 5.1. It remains to address property (3).
Using f2 ≥ 0, we estimate 〈f , Mf 〉ν in terms of 〈f2, Mf2〉ν2 as follows:

〈f , Mf 〉ν = |S|−1
∫
X1

∫
X2

1F (x1)f2(x2)
∑
s∈S

1F (x1s)f2(x2s) dν2(x2) dν1(x1)

≥ |S|−1
∫

int(F )

∫
X2

f2(x2)
∑
s∈S

f2(x2s) dν2(x2) dν1(x1)

= |int(F )|〈f2, Mf2〉ν2 .

Hence,

〈(I −M)f , f 〉ν ≤ |F |〈f2, f2〉ν2 − |int(F )|〈f2, Mf2〉ν2

= |F |〈f2 −Mf2, f2〉ν2 + |F |
(

1 − |int(F )|
|F |

)
〈Mf2, f2〉ν2 .

Since F is ε1-Følner, we have |int(F )|/|F | ≥ 1 − |S|ε1, so finally we obtain

〈(I −M)f , f 〉ν ≤ |F |(〈f2 −Mf2, f2〉ν2 + |S|ε1〈Mf2, f2〉ν2)

≤ |F |(〈f2 −Mf2, f2〉ν2 + |S|ε1‖f2‖2
ν2
).

By the defining property of f2 (see equation (5.2)), we then find

〈(I −M)f , f 〉ν ≤ |F |(1 − λ2 + ε2 + |S|ε1)‖f2‖2
ν2

= (1 − λ2 + ε2 + |S|ε1)‖f ‖2
ν .
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To finish the proof, choose ε2 > 0 such that (1 − ε2)(1 − √
2ε2) ≥ (1 − δ) and then

choose ε1 > 0 such that ε2 + |S|ε1 ≤ δ and such that equation (5.4) holds.

5.4. End of the proof. Let f , δ, Z′ be as in Lemma 5.1. Using property (3) of
Lemma 5.1, we have∫

Z′
〈(I −M)f , f 〉νz dτ (z) ≤

∫
Z

〈(I −M)f , f 〉νz dτ (z)
= 〈(I −M)f , f 〉ν
≤ (1 − λ2 + δ)‖f ‖2

ν .

By property (1), we can then estimate∫
Z′

〈(I −M)f , f 〉νz
‖f ‖2

νz

dτ (z) ≤ 1 − λ2 + δ

1 − δ
.

However, Proposition 4.4 and the fact that co-spectral radii of stabilizers are all at most λ2

yield the inequality

〈(I −M)f , f 〉νz
‖f ‖2

νz

≥ 1 − λ2 for almost all z ∈ Z.

Therefore, by Markov’s inequality, there is a positive η = O(
√
δ) and a subset Z′′ ⊂ Z

such that τ(Z′′) ≥ 1 − η and

〈(I −M)f , f 〉νz ≤ (1 − λ2 + η)‖f ‖2
νz

for z ∈ Z′′.

Here, η could be made explicit in terms of δ and λ2, but we will only need that η → 0 as
δ → 0. We have Z′′ ⊂ Zη, so it follows that τ(Zη) → 1 as η → 0. This ends the proof per
the discussion at the end of §5.2.
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