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Sequential Order under PFA

Alan Dow

Abstract. It is shown that it follows from PFA that there is no compact scattered space of height greater

than ω in which the sequential order and the scattering heights coincide.

1 Introduction

In 1974, Bashkirov [2] proved that it follows from CH that there are compact spaces

of any sequential order up to and including ω1. We are interested in the question

of weakening the CH assumption to either of Martin’s Axiom or even ZFC. It is also

interesting to ask for a compact scattered space in which the scattering levels of points

coincides with their sequential order with respect to the first level. This is the natural

way to construct such spaces and is the method employed by Bashkirov.

The reader is referred to the excellent surveys [5] and [8] for general background

information. The survey by Shakhmatov [5] will provide detailed information about

the relations among convergence properties such as sequentiality and the Frechet-

Urysohn property. Vaughan’s article [8] is a good source for information about the

combinatorial consequences of Martin’s Axiom (and PFA) such as the values (and

meanings) of the cardinals such as p and b.

The sequential order of a point p with respect to a set A (see [5, 3.9]) is the mini-

mum ordinal α such that there is a sequence of points with sequential order less than

α that converges to p (the points of A have sequential order 0 with respect to A and

A(α) denotes the set of points that have sequential order with respect to A at most α).

A space X is scattered [4] if every subset has a relatively isolated point, and this gives

rise to the Cantor–Bendixson (scattering) levels of a scattered space. Namely, the set

X0 of isolated points are the level 0 of the space, and for each ordinal α, the points at

level α, denoted Xα, are the points that are isolated in the subspace remaining when

all points of level less than α are removed. The height of a scattered space is the min-

imum ordinal α for which Xα+1 is empty. If we just refer to the sequential order of

a point in a scattered space, we will understand it to mean with respect to the set of

points at level 0. It is easily seen that every compact scattered space with countable

scattering height is sequential. We define a space X to be CB-sequential if it is sequen-

tial, compact, scattered, and points in Xα have sequential order α with respect to X0.

We introduce the term CB-sequential because of the required connection between

the Cantor–Bendixson levels and the sequential order.

There is a compelling motivation for determining the maximum possible sequen-

tial order in the presence of the Proper Forcing Axiom (PFA) that comes from the
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Moore–Mrowka problem (see [1]). First of all, it is quite remarkable that the best

known lower bounds are 2 in ZFC and 4 under PFA [3]. Secondly, Balogh proved

that each compact space of countable tightness is sequential if PFA is assumed (PFA

is known to imply Martin’s Axiom and c = ω2). If there is some finite bound on the

sequential order of compact sequential spaces in models of PFA, it would mean that

compact spaces of countable tightness are literally only a few steps away from being

Fréchet–Urysohn.

To illustrate the two concepts above, let us recall the natural topological space

associated with an almost disjoint family A of subsets of the integers, N. On the

point set N ∪ A, let N be open and discrete, and a typical neighborhood of a ∈ A

is any set of the form {a} ∪ a \ n (we treat the integers as ordinals and recall that

an ordinal α is equal to its set of predecessors). This topology on N ∪ A is locally

compact, scattered, and certainly sequential, in fact first-countable. Let X be the

one-point compactification and notice that there is a subset of N converging to the

point at infinity if and only if A is not a maximal almost disjoint family. Thus the

point at infinity will be at scattering level 2 and will have sequential order at most 2; it

will attain sequential order 2 exactly when the family A is a maximal almost disjoint

family.

2 A Proper Poset

In this section we use PFA [6] and a technique introduced by Todorcevic [7] for

constructing proper posets. The technique is known as using elementary submodels

as side-conditions. We refer the reader to [6, 7] for any undefined notions from this

section. The Proper Forcing Axiom (analogous to MA(ω1)) is the statement that, for

each family of ω1 many dense subsets of a proper poset P, there is a P-filter that meets

each of these dense sets.

Definition 2.1 A condition p in a poset P is said to be (P, M)-generic if for each

dense A ⊂ P (A ∈ M) and each q < p, there is an r ∈ A∩M such that r is compatible

with q. A poset P is proper if there is a cardinal λ such that for every regular θ ≥ λ
and every countable M ≺ H(θ) with P ∈ M, there is, for each p ∈ P ∩ M, a q < p

that is (P, M)-generic.

Definition 2.2 For families A,U ⊂ [ω]ω , we say that A is U-large if for each count-

able W ⊂ U, there is an a ∈ A such that a∩W is infinite for each W ∈ W. If a∩W is

infinite for each W ∈ W, we can denote this as a ∈ W+. A family of sets M separates

a set A if for each pair {a, a ′} ⊂ A, there is an M ∈ M such that |M ∩ {a, a ′}| = 1.

Say that a family A ⊂ [ω]ω is inseparable if there do not exist disjoint subsets of ω,

each of which contains (mod finite) uncountably many members of A.

We define a poset for the purpose of selecting an uncountable inseparable subcol-

lection of a collection A.

Definition 2.3 Given a family A ⊂ [ω]ω and an ultrafilter U on ω, define the poset

P(A,U) to be those p = (Ap, np,Mp) such that Ap is a finite subset of A, Mp is a

https://doi.org/10.4153/CMB-2010-099-3 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2010-099-3


272 A. Dow

finite elementary∈-chain of countable elementary submodels of 〈H((2c)+),∈,A,U〉,
np ∈ ω, Mp separates Ap, and if M ∈ Mp and a ∈ Ap \ M, then a ∈ (U ∩ M)+. We

define p < q if usual set extension holds in each coordinate, and for each M ∈ Mq,

a ∈ Aq \ M, and a ′ ∈ M ∩ (Ap \ Aq), we have a ∩ a ′ 6⊂ nq.

Lemma 2.4 If G is a P(A,U)-generic filter, then the family AG =

⋃
p∈G Ap is insep-

arable.

Proof If the family AG is countable, then it would be vacuously inseparable (al-

though it will follow from later results that it is uncountable). In any event, the fam-

ily AG satisfies what can be called the Hausdorff–Luzin condition. That is, there is a

well-ordering ≺ on AG such that for each a ′ ∈ AG and n ∈ ω, there are only finitely

many a ∈ AG such that a ≺ a ′ and a∩a ′ ⊂ n. The well-ordering is naturally defined

by a ≺ a ′ if there is a p ∈ G and M ∈ Mp such that M ∩ {a, a ′} = {a}. It then

follows easily from the definition of extension in P(A,U) that this Hausdorff–Luzin

condition holds and that the order type of (AG,≺) is (at most) ω1. Now we give the

standard argument that the family AG is inseparable. Assume otherwise and suppose

that there is a Y ⊂ ω and n ∈ ω such that both AY = {a ∈ AG : a \ Y ⊂ n} and

A¬Y = {a ∈ AG : a ∩ Y ⊂ n} are uncountable. Choose any a ′ ∈ AY such that

{a ∈ A¬Y : a ≺ a ′} is infinite and observe that this contradicts the Hausdorff–Luzin

requirement on a ′.

For each m ∈ ω and family A, let Am = {a ∈ A : m ∈ a}, and for t ⊂ ω,

At = {a ∈ A : t ⊂ a}.

Lemma 2.5 If U is an ultrafilter on ω and A∗ is any U-large family, then {m ∈ ω :

A∗
m is U-large} ∈ U.

Proof Let U ∈ U and assume that for each m ∈ U , A∗
m is not U-large. For each

m ∈ U , there is some countable Wm ⊂ U such that no member of A∗
m hits infinitely

each member of Wm. Consider the collection W = {U} ∪
⋃

m Wm and, using that

A∗ is U-large, select a ∈ A∗ such that a ∩ W is infinite for each W ∈ W. Fix any

m ∈ a ∩ U . It follows that a ∩ W is infinite for each W ∈ Wm, contradicting the

assumption on Wm.

Lemma 2.6 For each δ ∈ ω1, the set Dδ is a dense subset of P(A,U), where

Dδ = {p ∈ P(A,U) : (∃M ∈ Mp)M ∩ ω1 6⊂ δ and Ap \ M 6= ∅}.

Proof Fix any p ∈ P(A,U) and any countable elementary submodel M ≺ H((2c)+)

such that δ,A,U, p ∈ M. Set p̄ = (Ap, np,Mp ∪ {M}). We need to add an a to Ap

with a /∈ M. If Ap is empty, then we may select any a ∈ A such that a ∈ (U ∩ M)+

using that A is U-large. Otherwise, enumerate Ap in increasing order {a0, . . . , aℓ}
(i.e., so that for each i < ℓ, there is an Mi ∈ Mp so that Mi ∩Ap = {a0, . . . , ai}) and

inductively choose t = {m0, . . . , mℓ} so that At is U-large and mi ∈ ai \np for each i.

To see how to choose mi+1 (having chosen ti = {m0, . . . , mi}), we note that by the

definition of P(A,U) and Lemma 2.5, ai+1 must meet the set {m ∈ ω : Ati∪{m} is

U-large}.
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Now that we have selected t and we know that At is U-large, we may select a ∈ At

such that a meets every member of M ∩U. The condition q = (Ap ∪ {a}, np,M p̄) is

easily seen to be below p and in Dp.

Lemma 2.7 If A is U-large, then P(A,U) is proper.

Proof Let P(A,U) ∈ H(θ) for some regular cardinal θ. Assume that p and P(A,U)

are members of some countable M ≺ H(θ). Let n = np. We show that (Ap, n,Mp ∪
{M ∩ H((2c)+)}) is an (P(A,U), M)-generic condition.

Let r < (Ap, n,Mp ∪ {M ∩ H((2c)+)}) and r ∈ D ∈ M with D a dense subset of

P(A,U). Let A ′
= Ar ∩ M and ~Ar = Ar \ M = {a0, . . . , aℓ−1} listed in increasing

order (i.e., for each i < ℓ, there is an Mi ∈ Mr such that Mi∩Ap = A ′∪{a j : j < i}).

Set

E0 = {~A ∈ Aℓ : (∃q ∈ D)(∃M̄ ∈ Mq)(M̄ ∩ Aq = A ′ and ~A = Aq \ M̄)},

E1 = {~A ∈ Aℓ−1 : {b : ~A ∪ {b} ∈ E0} is U-large},

and more generally,

Ek = {~A ∈ Aℓ−k : {b : ~A ∪ {b} ∈ Ek−1} is U-large} for 0 < k ≤ ℓ.

By induction on k, we check that {ai : i < ℓ − k} ∈ Ek. We assume that

{a0, . . . , ai} ∈ Ek−1, and we, of course, have that Mi∩{a0, . . . , ai} = {a0, . . . , ai−1}.

If Y = {b : {a0, . . . , ai−1} ∪ {b} ∈ Ek−1} were not U-large, then, by elementarity,

there would be a subcollection W ⊂ U ∩ Mi for which no member of Y hits each

element in an infinite set. However, ai is a member of Y and is required to hit each

member of W in an infinite set.

Now that we know that ∅ ∈ Eℓ, let Y0
= {b : {b} ∈ Eℓ−1} ∈ M0. There is an

m0 ∈ a0 \ n such that Y0
m0

is U-large. Similarly we may choose m1 ∈ a1 \ n so that

Y0
m0,m1

is U-large, and, recursively, there is a finite set t0 such that Y0
t0

is U-large and

t0 ∩ ai \ n is not empty for each i < ℓ.

Fix any t0 ⊂ b0 ∈ Y0
t0
∩ M ⊂ Eℓ−1, and define Y1

= {b : {b0, b} ∈ Eℓ−2} ∈ M.

Repeat the process to find a finite t1 so that Y1
t1

is U-large and t1 ∩ ai \ n is not empty

for each i < ℓ. Select any t1 ⊂ b1 ∈ Y1
t1

and continue the induction. In this way we

find a sequence 〈bi : i < ℓ〉 so that ti ⊂ bi and ti ∩a j \n is not empty for each i, j < ℓ
and 〈bi : i < ℓ〉 ∈ E0 ∩ M.

It follows, by definition of E0 and elementarity, that there is a q ∈ D ∩ M with

Aq = A ′ ∪ {b0, . . . , bℓ−1}. The fact that q is compatible with r follows from the

choices of the ti and the fact that Mq ⊂ M ∩ H((2c)+), and so each M̃ ∈ Mq is an

elementary submodel of M0.

Following Lemma 2.4, for a filter H ⊂ P(A,U), let AH denote the set
⋃

p∈H Ap.

Lemma 2.8 Let X be a compact scattered sequential space containing a discrete copy

of ω. Suppose that A is any maximal almost disjoint family of infinite subsets of ω
consisting of sequences converging in X. For each a ∈ A, let xa denote the point in X to

which a converges. If U extends the neighborhood trace of some point z ∈ ω\(ω)(1), then
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there is a family of ω1-many dense subsets of P(A,U) such that for each P(A,U)-filter

H that meets each of these dense sets, z is a complete accumulation point of XH = {xa :

a ∈ AH}.

Proof Fix any q ∈ P(A,U) and M0 ∈ Mq. Let p < q be arbitrary such that there

is some M ∈ Mp with q ∈ M. We may assume that M is a countable union of

countable elementary submodels {Mn : n ∈ ω} ⊂ M. It suffices to show that there

is a countable family D of sets that are predense below p such that for any D-generic

filter H ∋ p, z is in the closure of XH \ M0. Let T ⊂ [ω]<ω be the set of all t such

that At is U-large. For each t ∈ T, let Tt = {t ′ ∈ T : t ⊂ t ′}. For t ∈ T, let

XM
t = {xa : a ∈ At ∩ M}.

Define KM = {y : (∃ty ∈ T) y ∈ XM
t \ Mn for all t ∈ Tty

and n ∈ ω}. We

first check that z ∈ KM with witness tz = ∅. Fix any n ∈ ω. Since At is U-large

for each t ∈ T and At ∩ Mn is countable, it follows that At \ Mn is again U-large.

Furthermore, z ∈ M and X has countable tightness, hence z is a limit of XM
t ∩M\Mn.

Therefore z ∈ KM . Now, using that KM is scattered, we have that there is a countable

set of relatively isolated points of KM , the closure of which contains z. Our proof

is complete once we show that for any isolated point y of KM , there is a countable

family D of predense below p subsets of P(A,U) such that y is in the closure of XH

for each D-generic filter H. Fix any clopen set W y that satisfies W y ∩ KM = {y}. For

each x ∈ W y \ {y}, fix a clopen set Wx ⊂ W y \ {y} such that Wx contains no other

points at the same scattering level as x.

Claim 1. For each t ∈ Tty
and each n ∈ ω, the set of r ∈ P(A,U) such that xa ∈ W y

for some a ∈ At ∩ Ar ∩ M \ Mn is predense below p.

Let r < p and t ∈ Tty
be arbitrary and assume (by possibly increasing n) that n is

large enough so that Mr ∩ M ⊂ Mn. As in the proof of Lemma 2.7, there is t ′ ∈ Tt

such that t ′ ∩ a \ nr is not empty for each a ∈ Mr \ M. Since W y ∩ Xt ′ ∩ M \ Mn

is not empty, we may fix some a ∈ At ′ ∩ M \ Mn such that xa ∈ W y . The condition

〈Ar ∪ {a}, nr,Mr ∪ {Mn}〉 is below r and is a member of the prescribed predense

below p set. This completes the proof of the claim.

Claim 2. For each x ∈ W y \ {y} and t ∈ Tty
, there is a t ′ ∈ Tt and n ∈ ω such that

Wx ∩ At ′ ∩ M \ Mn is empty.

We prove this claim by induction on the scattering level of x. Since x /∈ KM , there

is a t0 ∈ Tt and an n0 ∈ ω such that x is not in the closure of Xt0
∩M \Mn0

. Since X is

scattered, there is a finite subset {x1, . . . , xℓ} of Wx such that Wx \ (Wx1
∪ · · · ∪Wxℓ

)

contains only finitely many points of Xt0
∩M\Mn0

. Recursively applying the inductive

hypothesis, there is a tℓ ∈ Tt0
and an nℓ ∈ ω such that (Wx1

∪ · · · ∪ Wxℓ
) is disjoint

from Atℓ ∩ M \ Mnℓ
. We then have that Wx ∩ Xtℓ ∩ M \ Mnℓ

is finite, and so for some

n ≥ nℓ, Wx is disjoint from Xtℓ ∩ M \ Mn.

Claim 3. There is a countable collection D of predense below p sets such that for

each D-generic filter H, y is in the closure of XH ∩ M.

Let D include the set described in Claim 1 for each t ∈ Tty
and n ∈ ω. It follows

then that W y ∩XH ∩Xt ∩M \Mn is infinite for each t ∈ Tty
. A typical neighborhood

W of y has the form W y \ (Wx1
∪ · · · ∪ Wxℓ

) with {x1, . . . , xℓ} ⊂ W y \ {y}. By

https://doi.org/10.4153/CMB-2010-099-3 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2010-099-3


Sequential Order under PFA 275

Claim 2, we can again, recursively, select tℓ ∈ Tty
and nℓ such that Wxi

∩Xtℓ ∩M \Mnℓ

is empty for each 1 ≤ i ≤ ℓ. It follows then that W ∩ XH ∩ Xtℓ ∩ M is infinite.

Theorem 2.9 (PFA) If X is compact, scattered, and sequential and z is a limit point

of a set A but no sequence from A converges to z, then there is an uncountable set {xα :

α ∈ ω1} of points in A(1) such that z is the unique complete accumulation point.

Proof Without loss of generality, A is countable and so we may identify the set A

with ω. Let U be any ultrafilter on ω that extends the neighborhood trace of z. Set

A to be any maximal almost disjoint family of converging subsequences of ω (in the

sequentially compact space X). Before applying Lemmas 2.7 and 2.8, we have to show

that A is U-large. Let W be any countable subset of U. Of course we can assume that

W is descending. There is a sequence b ⊂ ω that is (mod finite) contained in each

W ∈ W and that converges in X. It follows then that there is an a ∈ A that meets b

in an infinite set.

Now by Lemma 2.7, P(A,U) is proper. Then by Lemma 2.8 and PFA, we may

assume that we have a filter H ⊂ P(A,U) that ensures that z is a complete accu-

mulation point of XH and that AH is inseparable. The uniqueness of z follows from

the fact that X is Hausdorff and that each neighborhood of a complete accumulation

point will (mod finite) contain uncountably many members of AH .

Corollary 2.10 (PFA) Each madf on ω contains an inseparable (Hausdorff–Luzin)

subfamily of cardinality ω1.

3 Obstructions to Large Sequential Order

Theorem 3.1 (PFA) There is no CB-sequential space with sequential order greater

than ω.

Proof Assume that X is a CB-sequential space and that {wn : n ∈ ω} is a subset of

the set of points that have scattering rank ω. Let {Wn : n ∈ ω} be a family of pairwise

disjoint clopen sets such that Wn∩Xω is {wn} for each n. For each n, fix any sequence

{w(n, m) : m ∈ ω} of points in Wn such that w(n, m) ∈ Xm. Since the scattering

levels diverge to ω, it follows that {w(n, m) : m ∈ ω} converges to wn. Now we apply

Theorem 2.9. For each n < m, select {x(n, m, α) : α ∈ ω1} ⊂ Xn ∩ Wn so that

w(n, m) is the unique complete accumulation point.

We start an ω1 length induction. Set ξ0 = 0. Choose an infinite set I0 ⊂ ω so that

for each n ∈ ω, the sequence {x(n, m, 0) : m ∈ I0} is a converging sequence with

limit y(n, 0) ∈ Xn+1 ∩Wn. Next choose an infinite J0 ⊂ ω so that {y(n, 0) : n ∈ J0}
is a converging sequence with limit v0 ∈ Xω . Fix a clopen neighborhood V0 of v0

such that v0 is the only point of Xω in V0. We observe that v0 /∈ Wn for each n, and

therefore that V0∩{w(n, m) : m ∈ ω} is finite for each n. Furthermore, for each n, m

such that w(n, m) /∈ V0, V0 ∩ {x(n, m, α) : α ∈ ω1} must be countable. Therefore,

for sufficiently large ξ1 ∈ ω1, we have that for each n, V0 ∩ {x(n, m, ξ1) : m ∈ ω} is

finite.

For the next step of the induction, we select an infinite I1 ⊂ I0, so that, for each

n, {x(n, m, ξ1) : m ∈ I1} converges to a point y(n, 1) ∈ Xn+1 ∩ Wn \ V0. Then
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select J1 ⊂ J0 so that {y(n, 1) : n ∈ J1} converges to some point v1 ∈ Xω \ V0,

and select V1 so that V1 ∩ Xω = {v1}. We continue to choose the sequence of sets

{Iα : α ∈ ω1} (descending mod finite), { Jα : α ∈ ω1} (descending mod finite),

ordinals {ξα : α ∈ ω1} ⊂ ω1, points y(n, α) ∈ Xn+1 ∩ Wn \
⋃

β<α Vβ so that

{x(n, m, ξα) : m ∈ Iα} converges to y(n, α) for all n ∈ Jα, and {y(n, α) : n ∈ Jα}
converges to vα ∈ Xω \

⋃
β<α Vβ .

After these ω1 many steps, we have a look at the sequence {Vα : α ∈ ω1}, the

canonical clopen sets for wα. Since PFA implies that p > ω1, there are infinite sets I, J

that are mod finite contained in every member of {Iα : α ∈ ω1} and { Jα : α ∈ ω1}
respectively.

For each α ∈ ω1, there is a function fα such that

{x(n, m, α) : m ∈ I \ fα(n)} ⊂ Vα, and {w(n, m) : m > fα(n)} ∩Vα = ∅

for all but finitely many n. Again by PFA, b > ω1, and we may choose some f ∗> fα for

all α ∈ ω1, and consider any limit w ∈ Xω of the sequence S = {w(n, f (n)) : n ∈ J}.

It follows that w 6= vα, since Vα ∩ S is finite. We now assume that W is a clopen

neighborhood of w satisfying that W∩Xω = {w}. Since w(n, f (n)) ∈ W for infinitely

many n ∈ J, there is an α such that x(n, f (n), ξα) ∈ W for infinitely many n ∈ J.

But this means that W ∩ Vα contains an infinite subset of {x(n, f (m), ξα) : n ∈ J}
contradicting that W ∩Vα ∩ Xω is supposed to be empty.

4 Questions

Question 1. Does Theorem 2.9 hold for sequential spaces that are not necessarily

scattered?

Question 2. Does Theorem 3.1 follow from Martin’s Axiom and c > ω1?

Question 3. Does Corollary 2.10 follow from Martin’s Axiom and c > ω1?
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