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Abstract

In this paper, for an arbitrary `1-Munn algebra A over a Banach algebra A with a sandwich matrix P, we
characterise all homomorphisms from A to a commutative Banach algebra B. Especially, we study the
character space of this algebra. Then, as an application, its character amenability is investigated. Finally,
we apply these results to certain semigroups, which are called Rees matrix semigroups.

2010 Mathematics subject classification: primary 46H05, 43A22; secondary 43A07, 43A20.

Keywords and phrases: Banach algebra, semigroup, semigroup algebra, homomorphism, character space,
amenability, character amenability.

1. Introduction

Munn algebras were first introduced by Munn in [9] and the algebraic properties of
these algebras were studied there. This concept was generalised in [5] to characterise
amenability of semigroup algebras. Then some aspects of these algebras were
investigated in [4]. Munn algebras present a new category of Banach algebras which
can be used in the study of semigroup algebras of completely o-simple semigroups
with finitely many idempotents. These applications give a strong motivation to study
these algebras as abstract objects (see for example [4, 5]). In [11], the author studied
the ultrapowers of these algebras. Also, in [12], by using these algebras, weighted
Rees matrix semigroup algebras were investigated.

The first goal of this paper is to study all homomorphisms from a Munn algebra
A =M(A, P, I, J) to a commutative Banach algebra B in terms of homomorphisms
from A to B. Especially, the character space of Munn algebras is investigated. Then
we show that character amenability of A implies character amenability of A. We also
give some examples to show that the converse of this result is not true in general. We
recall that for a Banach algebra A and a character φ on A, A is called right φ-amenable
if there exists a right φ-mean on A∗; that is, a bounded linear functional m on A∗

satisfying a · m = φ(a)m and m(φ) = 1. The ‘left’ version is defined in a similar way
(see [7, 8]). In harmonic analysis, the interest in character amenability arises from the
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fact that left character amenability of both the group algebra L1(G) and the Fourier
algebra A(G) are characterised by amenability of G (see [10]). Here we characterise
the character space of Rees matrix semigroup algebras and present a relation between
character amenability of Rees semigroup algebras and amenability of their maximal
subgroups.

2. Main results

Let A be a unital Banach algebra, let I and J be nonempty sets and let P = (p ji) ∈
MJ×I(A) be such that sup{‖p ji‖ : i ∈ I, j ∈ J} ≤ 1. Then the set A = MI×J(A) of all
I × J matrices (ai j)i j over A with `1-norm ‖(ai j)‖ =

∑
i∈I, j∈J ||ai j|| < ∞ and product

a ◦ b = aPb, for all a, b ∈ A, is a Banach algebra, which is called the `1-Munn algebra
over A with sandwich matrix P and it will be denoted byM(A,P, I, J). If the index sets
I and J are finite with |I| = m and |J| = n, then we use the notationM(A, P,m, n) rather
thanM(A, P, I, J).

Throughout, we adopt the notation as above. Also, the identity of A is denoted by e
and, for i ∈ I and j ∈ J, we follow the terminology of [4] and denote by Ei j the element
of A with e in the (i, j)th place and 0 elsewhere. Thus, ‖Ei j‖ = ‖e‖ = 1. This notation
enables us to represent an element N = (Ni j)i j ∈ A by N =

∑
i∈I, j∈J Ni jEi j.

Let A and B be two Banach algebras. The space of all linear maps T : A→ B
is denoted by L(A, B). If for an element T ∈ L(A, B) and for all a, b ∈ A we have
T (ab) = T (a)T (b), then T is called a homomorphism. We firstly consider the existence
of a homomorphism in L(M(A, P, I, J), B), where B is a commutative Banach algebra.

Theorem 2.1. Let A =M(A, P, I, J) be the `1-Munn algebra over A with sandwich
matrix P = (p ji) such that {p ji : i ∈ I, j ∈ J} ∩ Inv(A) , ∅. Let B be a commutative
Banach algebra and let T ∈ L(A, B). Then T is a nonzero homomorphism if and only
if there exists a unique nonzero homomorphism L in L(A, B) such that

L(p ji plk) = L(p jk pli) ( j, l ∈ J, i, k ∈ I) (2.1)

and

T (N) =
∑

i∈I, j∈J

L(ni j)L(p ji) (N = (ni j) ∈ A). (2.2)

Proof. Suppose that T ∈ L(A, B) is a nonzero homomorphism. By our hypothesis,
there exist i0 ∈ I and j0 ∈ J with p j0i0 ∈ Inv(A). We define L ∈ L(A, B) by

L(a) = T (ap−1
j0i0Ei0 j0 ) (2.3)

for all a ∈ A. Since T is nonzero, there exists N = (Ni j)i j such that T (N) , 0. Now
we may use the representation N =

∑
i∈I, j∈J Ni jEi j to obtain ı ∈ I,  ∈ J such that

T (Nı Eı ) , 0. So,

T (Nı Eı ) = T (Nı Eı j0 ◦ p−1
j0i0Ei0 j0 ◦ p−1

j0i0Ei0 ) = T (Nı Eı j0 )T (p−1
j0i0Ei0 j0 )T (p−1

j0i0Ei0 ).
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This shows that L(e) = T (p−1
j0i0
Ei0 j0 ) , 0 and hence L is nonzero. Furthermore, for all

a, b ∈ A,

L(ab) = T (abp−1
j0i0Ei0 j0 ) = T (ap−1

j0i0Ei0 j0 ◦ bp−1
j0i0Ei0 j0 )

= T (ap−1
j0i0E j0i0 )T (bp−1

j0i0Ei0 j0 )
= L(a)L(b).

Therefore, L is a homomorphism.
Now we show that L satisfies the equality (2.1). For j, l ∈ J and i, k ∈ I,

L(p ji plk) = L(p ji)L(plk) = L(plk p ji) = T (plk p ji p−1
j0i0Ei0 j0 )

= T (Ei0l ◦ Ek j ◦ p−1
j0i0Ei j0 )

= T (Ei0l ◦ p−1
j0i0Ei j0 ◦ Ek j) (since B is commutative)

= T (Ei0l ◦ p−1
j0i0Ei j0 )T (Ek j)

= T (pli p−1
j0i0Ei0 j0 )T (Ek j)

= L(pli)T (p−1
j0i0Ek j0 ◦ Ei0 j)

= L(pli)T (Ei0 j ◦ p−1
j0i0Ek j0 )

= L(pli)T (p jk p−1
j0i0Ei0 j0 ) = L(pli p jk).

It remains to show that L satisfies the equality (2.2). Suppose that N = (ni j) ∈ A. By
using the representation N =

∑
i∈I, j∈J ni jEi j,

T (N) =
∑

i∈I, j∈J

T (ni jEi j) =
∑

i∈I, j∈J

T (ni j p−1
j0i0Ei j0 ◦ Ei0 j)

=
∑

i∈I, j∈J

T (Ei0 j ◦ ni j p−1
j0i0Ei j0 )

=
∑

i∈I, j∈J

T (p jini j p−1
j0i0Ei0 j0 )

=
∑

i∈I, j∈J

L(p jini j)

=
∑

i∈I, j∈J

L(p ji)L(ni j).

The uniqueness of L is easily verified by (2.3). Indeed, if there exists a
homomorphism L′ in L(A, B) which satisfies (2.1) and (2.2), we can choose i0 ∈ I
and j0 ∈ J such that p j0i0 ∈ Inv(A). For a given a ∈ A, by (2.2), we obtain L′(a) =

T (ap−1
j0i0
Ei0 j0 ), which is equal to L(a) by (2.3). This implies that L = L′, as required.

Conversely, suppose that T ∈ L(A, B) and there exists a nonzero homomorphism L
in L(A, B) such that (2.1) and (2.2) hold. Again using the fact that {P ji : i ∈ I, j ∈ J} ∩
Inv(A) , ∅, we may obtain i ∈ I and j ∈ J with L(p ji) , 0. Hence, T (Ei j) = L(p ji) , 0
and therefore T is nonzero.
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Now we claim that T is a homomorphism. Indeed, for a = (ai j) and b = (bi j) in A,

T (a ◦ b) = T
( ∑

k∈J,l∈I

aik pklbl jEi j

)
=

∑
j,k∈J,i,l∈I

L(aik pklbl j p ji)

=
∑

j,k∈J,i,l∈I

L(aikbl j pkl p ji) (since B is commutative)

=
∑

j,k∈J,i,l∈I

L(aikbl j pki p jl) (since (2.1) holds)

=
∑

k∈J,i∈I

L(aik pki)
∑

l∈J, j∈I

L(bl j p jl) (again, since B is commutative)

= T (a)T (b),

which completes the proof. �

Corollary 2.2. Let A =M(A, P, I, J) be the `1-Munn algebra over A with sandwich
matrix P = (p ji) such that {p ji : i ∈ I, j ∈ J} ∩ Inv(A) , ∅ and let Φ ∈ A∗. Then Φ is a
character on A if and only if there exists a unique character φ on A such that

φ(p ji plk) = φ(p jk pli) ( j, l ∈ J, i, k ∈ I) (2.4)

and

Φ(N) =
∑

i∈I, j∈J

φ(ni j)φ(p ji) (N = (ni j) ∈ A). (2.5)

Proof. Since a character on a Banach algebra A is a homomorphism from A onto the
commutative complex field C, the result follows from Theorem 2.1. �

Remark 2.3. For a Banach algebra A, the character space of A is denoted by ∆(A). By
Corollary 2.2, we obtain a bijection between a certain subset of ∆(A) and the character
space of A. Indeed, we may write ∆(A) ⊆ ∆(A). By choosing an appropriate sandwich
matrix P, one may obtain a Munn algebra A for which, up to a bijection, we have
∆(A) = ∆(A).

Example 2.4. Let A be a Banach algebra, I and J be nonempty sets and {a j : j ∈ J} be
a set of nonzero elements of the unit ball of A. For every i ∈ I, j ∈ J, define the J × I
matrix P by p ji = a j. If A =M(A, P, I, J), then, for each character φ ∈ A, (2.4) holds.
Therefore, up to a bijection, we obtain ∆(A) = ∆(A).

Now we are ready to present an application of our result.

Theorem 2.5. Let A =M(A, P,m, n) be the `1-Munn algebra over A with sandwich
matrix P = (p ji) such that {p ji : 1 ≤ i ≤ m,1 ≤ j ≤ n} ∩ Inv(A) , ∅. Let Φ be a character
on A with φ(p ji plk) = φ(p jk pli) for all 1 ≤ j, l ≤ n, 1 ≤ i, k ≤ m and

Φ(N) =

m∑
i=1

n∑
j=1

φ(ni j)φ(p ji)
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for all N = (ni j) ∈ A. If A is right (respectively left) Φ-amenable, then A is right
(respectively left) φ-amenable.

Proof. Suppose that A is right Φ-amenable. Then A has a right Φ-mean in A∗∗, say
M, such that M(Φ) = 1 and N · M = Φ(N)M for all N ∈ A. By [6, Lemma 3.2], we
have A∗∗ ' M(A∗∗, P,m, n). (Note that both A∗∗ and A∗∗ are equipped with the first
or the second Arens product; see [1, 2] for more details.) Hence, we may suppose
that M = (mi j)i j with mi j ∈ A∗∗ for all i, j. Also, we may extend the equality (2.5) to
A∗∗ by Goldstine’s theorem to obtain M(Φ) =

∑m
i=1

∑n
j=1 mi j(φ)φ(p ji). Since M(Φ) = 1,

there exist 1 ≤ i0 ≤ m and 1 ≤ j0 ≤ n such that φ(p j0i0 ) , 0. For N = Ei0 j0 , by applying
formula (1) of [6],

0 = (Ei0 j0 · M − Φ(Ei0 j0 )M)i0 j0 =

m∑
k=1

p j0k · mk j0 − φ(p j0i0 )mi0 j0 . (2.6)

On the other hand, for each a ∈ A,

0 = (aEi0 j0 · M − Φ(aEi0 j0 )M)i0 j0 =

m∑
k=1

ap j0k · mk j0 − φ(p j0i0 )φ(a)mi0 j0 . (2.7)

By (2.6) and (2.7),

φ(p j0i0 )(a · mi0 j0 − φ(a)mi0 j0 ) =

(
φ(p j0i0 )a · mi0 j0 −

m∑
k=1

ap j0k · mk j0

)
+

( m∑
k=1

ap j0k · mk j0 − φ(a)φ(p j0i0 )mi0 j0

)
= 0.

Set m = mi0 j0/mi0 j0 (φ). Then m(φ) = 1 and a · m − φ(a)m = 0 for all a ∈ A. This means
that A is right φ-amenable. The ‘left’ part of the result holds analogously. �

By [5], A =M(A, P,m, n) is amenable if and only if A is amenable, m = n and P
is invertible in Mn(A). Unexpectedly, this result does not hold in terms of character
amenability. Indeed, if P is invertible in Mn(A), then the Munn algebra is isomorphic
to the matrix algebra Mn(A) via a 7→ P−1a and Mn(A) does not have any characters
when n > 1. Also, there are some `1-Munn algebras A =M(A, P,m, n) such that the
character amenability of A implies the character amenability of A, but m , n, as the
following example shows.

Example 2.6. Let n ∈ N and choose a right (respectively left) φ-amenable Banach
algebra A with φ ∈ ∆(A). Then A =M(A, P, 1, n) is right (respectively left) Φ-
amenable, even if n , 1. Indeed, if m ∈ A∗∗ is a right (respectively left) φ-mean for
A, then, by [6, Lemma 3.2], we may consider M = (m1 j) with m1 j = m (1 ≤ j ≤ n) as
an element of A∗∗. It is easily seen that M is a right (respectively left) Φ-mean for A.

Next we give an example which shows that the converse of Theorem 2.5 is not
necessarily true.
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Example 2.7. Let A = C, P =
(0 0
0 1

)
and A =M(A, P, 2, 2). It is easy to see that φ = idC

is the only character on A and A is right φ-amenable, but A is not right Φ-amenable.
Indeed, if it was, then there would exist m =

(m1 m2
m3 m4

)
∈ A∗∗ such that Λ ·m = Φ(Λ)m and

m(Φ) = 1 for all Λ ∈ A and we may suppose that for each i ∈ {1, 2, 3, 4}, mi ∈ A∗∗. For
each Λ =

(λ1 λ2
λ3 λ4

)
∈ A,

Λ · m =

(
λ1 λ2
λ3 λ4

) (
0 0
0 1

) (
m1 m2
m3 m4

)
=

(
λ2m3 λ2m4
λ4m3 λ4m4

)
.

On the other hand, by Corollary 2.2, Φ(Λ) = λ4 and so we obtain

Φ(Λ)m =

(
λ4m1 λ4m2
λ4m3 λ4m4

)
.

Since Φ(Λ)m = Λ · m, (
λ4m1 λ4m2
λ4m3 λ4m4

)
=

(
λ2m3 λ2m4
λ4m3 λ4m4

)
.

But Λ is arbitrary, so we see that m1 = m2 = m3 = m4 = 0, in contradiction to m(Φ) =

m4 = 1.

3. Applications to semigroup algebras

In this section, we apply our results to some special semigroups, which are called
Rees matrix semigroups, mainly to characterise their character space.

For a group G and m, n ∈ N, we consider the set

S = {(g)i j : g ∈ G, 1 ≤ i ≤ m, 1 ≤ j ≤ n} ∪ {o},

where (g)i j denotes the element of Mm×n(Go) with g in the (i, j)th place and o
elsewhere, o is the zero matrix and Go = G ∪ {o}. Let P = (p ji) be an n × m matrix
over Go. Then the set S with the composition

(a)i j ◦ o = o ◦ (a)i j = o and (a)i j ◦ (b)lk = (ap jlb)ik ((a)i j, (b)lk ∈ S )

is a semigroup, which is called a Rees matrix semigroup with a zero over G. We
denote it by S =Mo(G,P,m,n). By [3, Lemma 2.46 and Theorem 3.5], G is a maximal
subgroup of G. Further, by [5, Proposition 5.6],

`1(S )/Cδo =M(`1(G), P,m, n),

where the zero of Go is identified with the zero of the `1-Munn algebra
M(`1(G),P,m,n) and P is considered as a matrix over `1(G) (for more details, see [5]).

Theorem 3.1. Let G be a group and S =Mo(G, P,m, n) be a Rees matrix semigroup
with a zero over G. Then Φ ∈ `1(S )∗ is a character on `1(S ) if and only if there is a
character φ on Go such that, for each f ∈ `1(S ),

Φ( f ) =
∑

g∈G,1≤i≤m,1≤ j≤n

f ((g)i j)φ(g)φ(p ji) (3.1)
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and

φ(p ji plk) = φ(pli p jk) (1 ≤ j, l ≤ n, 1 ≤ i, k ≤ m). (3.2)

Proof. Suppose that Φ is a character on `1(S ). Since δo is an idempotent of `1(S ), two
cases may happen.

Case 1. Suppose that Φ(δo) = 1. Then Φ is the augmentation character, that is, Φ( f ) =∑
s∈S f (s) for all f ∈ `1(S ). Indeed, we have Φ(δs)Φ(δo) = Φ(δo) and so Φ(δs) = 1 for

all s ∈ S , as required. Now it is sufficient to define a character φ on Go by φ(s) = 1
for all s ∈ Go. Then (3.1) and (3.2) hold.

Case 2. Suppose that Φ(δo) = 0. The equality

`1(S )/Cδo =M(`1(G), P,m, n)

shows that Φ induces a character of the `1-Munn algebraM(`1(G), P,m, n), which we
denote by Φ̃. Since, for at least one (i, j) (1 ≤ i ≤ m, 1 ≤ j ≤ n), p ji is a point mass
(that is, δg for some g ∈ G), we have {p ji : 1 ≤ i ≤ m, 1 ≤ j ≤ n} ∩ Inv(A) , ∅. By
Corollary 2.2, there is a character φ on `1(G) such that (2.4) and (2.5) hold. Further,
there exists a character φG on G such that φ(

∑
αgδg) =

∑
αgφG(g) (see [4, Chs. 3

and 4]). So, φG can be extended to a character on Go if we define φG(o) = 0 and
this extension of φG satisfies (3.1) and (3.2) when Φ is replaced by Φ̃. The identity
Φ(δ0) = 0 ensures that Φ satisfies (3.1).

The ‘only if’ part holds immediately. �

Corollary 3.2. Let G be a group and S =Mo(G, P,m, n) be a Rees matrix semigroup
with a zero over G. If Φ ∈ ∆(`1(S )) is such that Φ(δo) = 0 and `1(S ) is right
(respectively left) Φ-amenable, then there exists a character φ ∈ ∆(`1(G)) such that
G is right (respectively left) φ-amenable.

Proof. Suppose that Φ ∈ ∆(`1(S )). Define Φ̃ : `1(S )/Cδo → C with Φ̃( f + δo) = Φ( f ).
Since Φ(δo) = 0, Φ̃ is well defined. Further, Φ̃ ∈ ∆(`1(S )/Cδo) and Φ̃ ◦ π = Φ,where π :
`1(S )→ `1(S )/Cδo is a natural embedding. By [8, Proposition 3.5], `1(S )/Cδo is right
(respectively left) Φ̃-amenable. On the other hand, `1(S )/Cδo =M(`1(G), P,m, n).
Now Theorem 2.5 implies that `1(G) is right (respectively left) φ-amenable and so
is G. �
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