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Historically, static symmetric bodies and ornaments are geometric
idealizations in the Platonic tradition. Actually, symmetries are locally and
globally broken by phase transitions of instability in dynamical systems
generating a variety of new order and partial symmetries with increasing
complexity. The states of complex dynamical systems can refer to, for
example, atomic clusters, crystals, biomolecules, organisms and brains, social
and economic systems. The paper discusses dynamical balance as dynamical
symmetry in dynamical systems, which can be simulated by computational
systems. Its emergence is an interdisciplinary challenge of nonlinear systems
science. The philosophy of science analyses the common methodological
framework of symmetry and complexity.

Symmetry and complexity in early culture and philosophy

In all ancient cultures, we find symmetric symbols with cosmic and mythological
meaning.1 A famous mystic diagram of Indian cosmology is the Shrı̂ Yantra
(yantra of eminence) with concentric rings of rotational symmetries, symbolizing
the birth of the universe in several phases from a central point (bindu) (Figure 1).
The two kinds of triangles in the centre with upward and downward pointing
vertices indicate the anti-symmetric energies of the goddess Shakti and the god
Shiva. In meditations, the phase transitions of the material world from the
shapeless origin can be followed in a backward direction, starting with our
experiences of the material world until our mind arrives at the bindu of shapeless
origin and unifies with the final state of harmony and happiness (sarva
ânandamaya). In Chinese natural philosophy, rotational symmetries of trigrams
from the I Ching symbolize diametrically opposed natural forces and entities like
fire (li) and water (khan), sea (tui) and mountain (kên), sky (chhien) and earth
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Figure 1. Symmetries of Indian cosmology (Shrı̂-Yantra)

(khun), wind (sun) and thunder (chen) which are also represented on old Chinese
coins.

In Greek cosmology, Plato’s cosmos is a centrally-symmetrically-ordered
system with the Earth in the centre. Sun, moon and planets turn on spheres. The
most external shell carries the sphere of the fixed stars. According to the
Platonic-Pythagorean conception, the motion of each one produces a sound so that
the tones of the movements of the spheres jointly form a harmony of the spheres
in the sense of a well-ordered musical scale, like the strings of a lyre. In Platonic
tradition, the observed retrograde movements (e.g. Mars along the ecliptic) are
considered symmetry breaking of cosmic harmony. Thus, they must be explained
by uniform, circular movements in order to ‘save’ the symmetry of heaven.2

According to Apollonius of Perga (ca. 210 BC), the planets rotate uniformly
on spheres (epicycles) whose imagined centres move uniformly on great circles
(deferents) around the centre (Earth). By appropriately proportioning the speed
and diameter of the circular-motions, the observed retrograde movements can be
produced, as it is seen by an observer on the central Earth. The variation in
planetary brilliance can be explained by the varying distance between the Earth
and the looped path of a planet. By the epicycle–deferent technique, a multiplicity
of elliptical orbits, mirror symmetry curves, periodic curves, and also non-periodic
and asymmetrical curves can be reduced to uniform and circular movements
(‘symmetry’) and approximated to observational data. Thus, in the Middle Ages,
a complicated ‘computus’ of celestial movements was generated, but without
physical explanation.
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Symmetry was not only assumed in the macrocosmos of the universe, but also
in the microcosmos of natural elements such as fire, air, water, earth, and the
quintessence of the cosmos. They are characterized by the five regular bodies
(‘Platonic bodies’) of the three-dimensional Euclidian space. In the Renaissance,
Kepler even used the Platonic bodies to determine the distances of celestial
spheres in the heliocentric system of planets (Mysterium cosmographicum).
Symmetry is still a topic in the Leonardo-world of modern times.

Mathematical concept of symmetry

In modern times, symmetries are defined mathematically by group theory.1,3 The
symmetry of a set (e.g. points, numbers, functions) is defined by the group of
self-mappings (‘automorphisms’) that leaves unchanged the structure of the set
(e.g. proportional relations in Euclidean space, arithmetical rules of numbers). In
general, the composition of automorphisms satisfies the axioms of a mathematical
group: (1) the identity I that maps every element of a set onto itself, is an
automorphism; (2) for every automorphism T an inverse automorphism T’ can be
given with T ·T’ � T’ · T � I; (3) if S and T are automorphisms, then so is the
successive application S ·T. An example is mirror symmetry with the identical
inverse automorphism T ·T � I. The group of similarities leaves the shape of a
figure unchanged (invariant). The size of a figure is invariant with respect to the
group of (proper and improper) congruencies. Improper congruencies have the
additional property of mirror symmetry.

In one dimension, ornaments of stripes are classified by seven frieze groups,
which are systematically produced by periodic translations in one direction and
reflections transverse to the longitudinal axis of translations (Figure 2). In two
dimensions, there are 17 wallpaper groups, produced by translations in two
directions, reflections, inversions and rotations. In order to classify the discrete
space groups, one starts with the regular Platonic bodies of Euclidean geometry.
In general, one may ask which of the finite point groups of movements leave
spatial grids invariant. There are 32 groups that are of great importance in
crystallography, but if one considers translations too, there are 230 space groups
with three independent translations first classified by Federov and Schönflies.

In mathematics, there is a major difference between discrete and continuous
groups. Examples of discrete groups are the finite rotation groups of polygons,
ornaments, and crystals. An example of a continuous group with infinitely many
infinitesimal transformations is the rotation of a circle or Lie groups, and these
have importance in physics. In geometry, symmetric properties of figures and
bodies indicate invariance with respect to automorphisms like rotations,
translations and reflections. In general, geometric theories can be classified under
the viewpoint of geometric invariants, which remain unchanged by metric, affine,
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Figure 2. Symmetries and ornaments (frieze groups)

projective, topological and other transformations. As an example, the concept of
a regular triangle is an invariant of Euclidean, but not of projective, geometry:
it remains invariant with respect to metric transformations, while a projective
transformation distorts the triangle’s sides. In algebra and number theory,
solutions of equations can also be characterized by symmetric properties. Thus,
symmetry becomes a universal property of mathematical structures.

Global and local symmetry in dynamical systems

Applications of symmetries in the natural sciences refer to dynamical systems.
Dynamical systems (e.g. planetary systems, fluids, organisms) consist of elements
i (1  i  n) (e.g. planets, atoms, molecules, cells) in states si (e.g. a planet’s state
of movement with location and momentum at time t). The state dynamics si(t) at
time t is determined by time-depending differential equations (e.g. equations of
motion for planets). In a first example, symmetries of space and time can be
introduced as form-invariance of the equations of dynamical systems with respect
to transformations between reference systems of space and time. In classical
mechanics, inertial systems are reference systems for force-free bodies moving
along straight lines with uniform velocity (Newton’s lex inertiae). Mechanical
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laws are preserved (invariant) with respect to Galilean transformations between
all inertial systems moving uniformly relative to one another (Galilean
invariance).

Intuitively, Galilean invariance means that a natural law of mechanics is true
independently of the particular inertial system of an observer. Einstein’s special
relativistic space–time unifies Maxwell’s electrodynamics and classical mechan-
ics by the common Poincaré transformation group, which leaves the Minkowskian
geometry of both theories invariant. Geometrical symmetries of space and time
have the remarkable property of implying conservation laws of physical
quantities. Examples are the conservation of linear momentum and energy, which
are implied by the homogeneity of space and time, i.e. spatial and time translation.

Classical mechanics and special relativity are examples of global symmetry.
In this case, the form of a natural law is preserved with respect to a common
transformation of all coordinates. Analogously, the shape of an elastic balloon
remains unchanged (invariant) after global symmetry transformation, since all
points were rotated by the same angle (Figure 3). For a local symmetry, the elastic
balloon must also retain its shape when the points on the surface are rotated
independently of one another by different angles. Thereby, local forces of tension
occur on the surface of the elastic balloon between the points caused by the local
changes (Figure 4). They compensate the local changes and preserve the shape
of the sphere (‘saving its symmetry’). Analogously, in general relativity, the
principle of equivalence demands that local gravitational fields can be
compensated by the choice of an appropriate accelerated reference system. This
fact is well known in the local loss of gravity in falling aeroplanes. The relativistic
field equations are form-invariant (‘covariant’) with respect to these local
symmetry transformations. We can also say that gravitation is introduced by

Figure 3. Global symmetry
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Figure 4. Local symmetry

demanding form-invariance (covariance) of field equations with respect to local
symmetry.

The application of global and local symmetry to gravitation can be generalized
for all physical forces. If field laws are form-invariant with respect to
transformations of global symmetry, form-invariance with respect to local
symmetry can only be realized by the introduction of new fields leading to new
forces of interaction. According to Weyl, these are called gauge fields, because,
historically, he referred to transformations of scales and their invariance (‘gauge
invariance’). In this sense, gravitation is the gauge field of local Poincaré-invari-
ance and the force of gravitation is a consequence of local Poincaré-symmetry.
In general, the gauge principle demands form-invariance of field equations with
respect to local symmetry (‘gauge’) transformations. In quantum field theories,
gauge groups are used to define electromagnetic, weak, and strong interaction.1,4

In general, the gauge principle only determines the form of the coupling term
of physical interaction. But the existence of a physical force is an empirical
question which, of course, cannot be derived from an a priori demand of local
symmetry. A gauge group characterizes a physical interaction mathematically in
terms of local symmetry. It is epistemically remarkable that only gauge-invariant
quantities have observable effects. For example, field force tensors are
gauge-invariant, but not gauge fields (potentials). Local phase transformations do
not change any measurable observable. Therefore, the gauge principle or demand
for local symmetry can epistemically be considered as a filter of observables in
a theory of physical interactions.

Actually, the fundamental physical forces of interaction can be characterized
by local gauge symmetries. In the standard model, gravitation, elctromagnetic,
weak and strong interaction are represented by local Poincaré-, U(1)-, SU(2)- and
SU(3)-gauge groups. Research on unified theories tries to unify the fundamental
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forces step by step in states of higher energy characterized by unified local
symmetries. In 1954, the Yang–Mills theory tried at first to unify the proton and
neutron by a gauge theory of isospin-symmetry. But the Yang–Mills theory only
forecasted massless gauge particles of interaction, in contradiction to empirical
observations. Later on, Goldstone and Higgs introduced the mechanism of
spontaneous symmetry breaking in order to give appropriate gauge particles the
desired mass. The intuitive idea is that a symmetric theory can have asymmetric
consequences. For example, the equations of a ball and the wheel of a roulette
are symmetric with respect to the rotation axis, but the ball always keeps lying
in an asymmetric position. In a first step, electromagnetic and weak forces could
already be unified at very high energies in an accelerator ring. This means that
at a very high energy the particles of the weak interaction (electrons, neutrinos,
etc) and electromagnetic interaction are indistinguishable and transformed into
one another. Their transformations are described by the same symmetry group
U(1) � SU(2). At a critical value of lower energy the symmetry spontaneously
breaks apart into two partial symmetries U(1) of electromagnetic force and SU(2)
of weak interaction. The gauge particles of weak interaction get their mass by the
Higgs mechanism, but the photon of electromagnetic interaction remains
massless.

After the successful unification of electromagnetic and weak interaction,
physicists tried to realize the ‘big’ unification of electromagnetic, weak and strong
forces, and in a last step the ‘superunification’ of all four forces. There are several
research strategies for super-unification, such as supergravity and superstring
theories. Mathematically they are described by extensions of richer structures of
local symmetries and their corresponding gauge groups. On the other hand, the
variety of elementary particles is actualized by spontaneous symmetry breaking.
The concepts of local symmetry and symmetry breaking play a central role in
cosmology. During cosmic expansion and the cooling temperature, the initial
unified supersymmetry of all forces broke apart into the subsymmetries of physical
interactions, and the corresponding elementary particles were crystallized in phase
stages leading to more variety and complexity.

The phases of cosmic expansion are determined by properties of symmetry
breaking. For example, in the case of the weak interaction, neutrinos occur only
in a left-handed helix, but not a right-handed one, which means parity violation.
This kind of antisymmetry or dissymmetry seems also to be typical for molecular
structures of life. Protein analysis shows that amino acids have an antisymmetrical
carbon atom and occur only in the left-handed configuration. Weak interaction
takes part in chemical bonds. Thus, cosmic parity violation of weak interaction
is assumed to cause the selection of chiral molecules. The reason is that the
left-handed (L) and right-handed (D) examples of chiral molecules can be
distinguished by a tiny parity violating energy difference �Epv. The energetically
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stable examples (e.g. L-form of amino acids) are preserved. However, this
assumption is only based on theoretical calculations (e.g. Hartree–Fock
procedures in physical chemistry). We still miss exact measurements of
experiments because of the tiny small parity violation energy difference �Epv

(e.g. 4 � 10� 14(hc)cm� 1 (H2O2), 1 � 10� 12(hc)cm� 1 (H2S2)), although there are
proposed spectroscopic experiments.5

In classical physics, dynamical systems are invariant with respect to the discrete
symmetry transformations of parity P, charge C and time T. But quantum systems
are, in general, only invariant with respect to the combination PCT. For example,
parity violation with only left-handed neutrinos, but right-handed antineutrinos
with PC-symmetry satisfies PCT-symmetry. The PCT-theorem is a very general
result of quantum mechanics. But PCT-violation is not excluded forever.
T-violation during the decay of Kaons are first hints.

From symmetry breaking to complexity in dynamical systems

In classical physics, every orbit in a configuration space possesses one and only
one time-reversed counterpart: Let s(t) be the time-depending state (e.g. in
Hamiltonian mechanics s(t) � (qi(t), pi(t))i � 1 … 3N a point in the 6N-dimensional
phase space), then its time-reversed orbit sT( � t) � (qi( � t), –pi( � t)) is a solution
of the equations of motion too. In quantum mechanics, s(t) � �(t) is the
Schrödinger function, and sT( � t) � �*( � t) is Wigner’s time-reversal transform-
ation. But in thermodynamics, we observe asymmetry of time. A glass of water
falls down from a table, splits up in many parts, energy dissipates; but the
time-reversal process was never observed. According to Clausius, irreversible
processes are distinguished by increasing entropy: the change of the entropy S of
a physical system during time dt consists of the change deS of the entropy in
the environment and the change diS of the intrinsic entropy in the system,
i.e. dS � deS � diS. For isolated systems with deS � 0, the second law of
thermodynamics requires diS � 0 with increasing entropy (diS � 0) for irreversible
thermal processes and diS � 0 for reversible processes in the case of thermal
equilibrium.

According to Boltzmann, entropy S is a measure of the probable distribution
of microstates of elements (e.g. molecules of a gas), generating a macrostate
(e.g. a gas), i.e.

S � kB ln W

with kB the Boltzmann-constant and W the number of probable distributions of
microstates, generating a macrostate. According to the second Law, entropy is a
measure of increasing disorder in isolated systems. The reversible process is
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extremely improbable. In a statistical description, irreversible processes are of the
form

improbable state → probable state

However, for statistical reasons, there are just as many processes of the type

probable state → improbable state

If the entropy S of a state s is given by S � F(s) with F(s) � F(sT) and T-symmetric
dynamics, then Loschmidt’s objection to Boltzmann’s second law means that for
every solution with dS/dt � 0 one has precisely another one with dS/dt � 0, and
vice versa. In order to understand the thermodynamical arrow of time, one
therefore has to explain the initial improbable state.

The explanation is delivered by quantum cosmology. According to unified
theory, the expansion of the universe starts with an initial quantum state of
supersymmetry, followed by symmetry breaking and generating elementary
particles, leading to increasing diversity and complexity of galactic structures.
High symmetry and order means a distinguished state of less entropy and,
according to Boltzmann, less probability. Thus, the cosmic arrow of time can be
explained by transitions from the improbability of high order (‘symmetry’) to the
probability of increasing disorder and entropy (‘symmetry breaking’) without
contradiction to the T-symmetric laws of physics.6,7

In the expanding universe of globally increasing entropy, local islands of new
order and less entropy emerge like, e.g. stars, planets, and life with increasing
diversity and complexity. The local emergence of order is made possible by phase
transitions (symmetry breaking) of equilibrium states in open systems interacting
with their environment. The emergence of order by symmetry breaking can be
studied in many examples: a ferromagnet is a complex system of upwards and
downwards pointing dipoles. During annealing the temperature to a critical value
(Curie point), the old state becomes unstable and changes into a new state of
equilibrium with one of two possible regular patterns of upwards or downwards
pointing dipoles (‘symmetry breaking’). In the same way, the emergence of ice
crystals can be explained. During annealing to the freezing point, water molecules
arrange themselves in regular patterns of rotational and mirror symmetries,
breaking the full symmetry of a homogeneous distribution.

Order and structure do not only emerge by decreasing, but also by increasing
energy.9,17 In a Bénard-experiment, during heating a fluid from below, regular
patterns of convection-rolls emerge spontaneously at a critical value of instability
with two possible directions. The selection of order depends sensitively on tiny
initial fluctuations (‘spontaneous symmetry breaking’). In fluid dynamics and
aerodynamics, one can study the emergence of new order and structure by
symmetry breaking when a dynamical system is driven further and further away
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Figure 5. Bifurcation tree of symmetry breaking (non-equilibrium dynamics)

from thermal equilibrium (‘non-equilibrium dynamics’). During increasing fluid
velocity, old states of equilibria break down, and new fluid patterns in new states
of local equilibria emerge with increasing complexity, from a homogeneous
surface of a stream behind an obstacle (fixed point attractor) to oscillating vortices
(limit cycles) and structures of turbulence (chaos). Symmetry breaking in
non-equilibrium dynamics is a fundamental procedure in understanding the
emergence of new order and structure with increasing complexity. In general,
the emergence of order by symmetry breaking is explained by phase transitions
of complex dynamical systems, which can be illustrated by a bifurcating tree of
local equilibria (Figure 5). By increasing control parameters (e.g. temperature,
fluid velocity), old equilibria become unstable at critical points of instability, break
down and new branches of local equilibria with new order emerge, which, again,
can become unstable etc.

The mathematical formalism of symmetry breaking in nonlinear dynamics does
not depend on physical applications, but can be generalized for biological and even
social models.8–10 For example, Darwin’s evolution of species can be represented
as a bifurcation tree of local equilibria. The states of species become unstable by
random fluctuations such as mutations, generating bifurcating branches.
Selections are the driving forces in the branches for further local equilibria with
new species of increasing complexity.

Complex organisms are generated with new functional symmetries, which are
more or less optimally adapted to their ecological niches. An example is the mirror
symmetry of flying, swimming, and walking animals.
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(a) (b)

Figure 6. Symmetry breaking of cognition (a) and its mathematical
model (b)

There is a remarkable relationship between the formation of order in nature and
the recognition of order in brains by spontaneous symmetry breaking. Do we see
a symmetric vase or two diametrically opposed faces with mirror symmetry
(Figure 6(a))? The ambiguity of perceptions and the spontaneous decision of the
cognitive system of the human brain for one interpretation is a psychological
example of symmetry breaking, depending on tiny fluctuations of awareness for
details, e.g. in the foreground or background of the picture.

Mathematically, spontaneous symmetry breaking means that, at the maximum
of a potential, a state (e.g. position of a ball at the top of a symmetric curve) is
symmetric but unstable, and tiny initial fluctuations decide which of the two
possible stable states of minima the state will finally reach (Figure 6 (b)).

Even in social dynamics, the emergence of order can be modelled by symmetry
breaking. For example, in economy, two competing firms provide a bifurcation
of an initial equilibrium state into a winner and a loser. If, at a critical point of
competition, a product has some tiny competitive advantages on the market, then
the market leader will dominate in the long run and even enlarge his/her market
shares without necessarily offering the better product: the winner takes all.
Symmetry and complexity are general features of culture and society. In ancient
cultures, social symmetry was identified with the cosmic symmetry of the
universe. In modern societies, symmetry breaking and socio-economic transitions
are related to critical instabilities and shifts of historical, economic, and political
developments with increasing complexity.
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Symmetry and complexity in computational systems

In the age of computers with increasing computational power, a fundamental
relationship between dynamical systems and computational systems becomes
obvious. Dynamical systems are modelled by time-dependent differential
equations, which can be digitalized as the computational processes of computers
(Ref. 8, chapter 7). Thus, in the tradition of G.W. Leibniz, the principle of
computational equivalence demands that all processes in nature and society can
be viewed as computations on universal computational systems (e.g. Turing
machines). According to Church’s thesis, there are several computational systems
that are equivalent to Turing machines. Cellular automata have turned out to be
appropriate discrete and quantized models of complex systems with nonlinear
differential equations describing their evolution dynamics.

Imagine a chessboard-like plane with cells. A state of a one-dimensional
cellular automaton consists of a finite string of cells, each of which can take
several states (e.g. ‘black’ (0) or ‘white’ (1)) and is connected to a neighbourhood
of cells (e.g. only to its two nearest neighbours), with which it exchanges
information about its state. The following (later) states of a one-dimensional
automaton are the following strings on the space–time plane, each of which
consists of cells taking one of the allowed states, depending on their preceding
(earlier) states and the states of their distinguished neighbourhood. In the case of
binary states and two direct neighbours inclusively of the cell itself (i.e. a
neighbourhood of three cells), there are 23 � 8 possible rules of transition for each
automaton. Each rule is characterized by the eight-digit number of the states
that each cell of the following string can take. These binary numbers can be
ordered by their corresponding decimal numbers. There are 28 � 256 one-
dimensional automata of this simple type. The time evolution of these simple
rules already produces all kinds of complex patterns we observe in nature,
regular and symmetric ones, random ones and complex patterns with localized
structures.

Cellular automata can generate time-symmetric (reversible) and time-
asymmetric (irreversible) patterns of behaviour like dynamical systems (Figure
7).12 In the first class, cellular automata always evolve after finite steps to a uniform
pattern of rest, which is repeated for all further steps in the sense of a fixed point
attractor. The fixed-point dynamics do not depend on the initial states of the
automata: All initial states lead to the same attractor. Therefore, we have no chance
to go backwards from the attractor and reconstruct the initial states from which
the automata actually started. In the second class, the development of repeated
patterns is obviously reversible for all future developments. In random patterns
of the third class, all correlations have decayed, and therefore, the evolution is
irreversible. For localized complex structures of a fourth class, we have the chance
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Figure 7. Cellular automata with reversible and irreversible dynamics

to recognize strange or chaotic attractors, which are locally complex and
correlated patterns, like islands of complex order in a sea of randomness with
complete loss of structure. In the third and fourth classes, the evolution of patterns
sensitively depends on the initial states (like the butterfly effect in nonlinear
dynamics). Obviously, these classes of cellular automata correspond to the
increasing degrees of complexity in dynamical systems we discussed in the last
section, from fixed point attractors to periodic oscillations (limit cycles) and
finally chaos and randomness.

We can simulate the thermodynamical arrow of time and Loschmidt’s
reversibility objection by cellular automata with reversible rules. Reversible rules
remain the same when turned upside-down. In this case, the rules are affected by
the dependence on states two steps back. For example, let us take the eight rules
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of the cellular automaton with the decimal number 122 and add the eight additional
reversible cases:

1 1 1 1 1 1 1 1
111 110 101 100 011 010 001 000
1 0 0 0 0 1 0 1

0 0 0 0 0 0 0 0
111 110 101 100 011 010 001 000
0 1 1 1 1 0 1 0

According to the second law of thermodynamics, increasing disorder and
randomness (‘entropy’) is generated from simple and ordered conditions of closed
dynamical systems. On the macrolevel, irreversibility is highly probable in spite
of the time-symmetric laws of molecular interactions on the microlevel
(‘microreversibility’). Some cellular automata with reversible rules generate
patterns of increasing randomness, starting from simple and ordered initial
conditions. For example, the reversible cellular automaton of rule 122R can start
from an initial condition in which all black cells or particles lie in a completely
ordered pattern at the centre of a box (Figure 8).12 Running downwards, the
distribution seems to become increasingly random and irreversible, in accordance
with the second law.

Figure 8. Second law of thermodynamics and computational irreversibility
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In principle, with respect to Loschmidt’s reversibility objection, a symmetric
solution is also possible. Tracing backwards through the actual evolution of a
reversible system one can find initial conditions leading to decreasing
randomness. But it can take an irreversible amount of computational work. In this
case, there is no shortcut to predict future behaviour: we must wait for the actual
development step by step. Further on, it is a remarkable fact of computational
systems that, on the macrolevel, complex patterns with randomness, turbulence,
and chaos emerge, although there is microreversibility at the microlevel of
interacting cells, as in dynamical systems. Consequently, computational systems
are not necessarily computable and decidable like dynamical systems in nature
and society. In the case of randomness, there is no shortcut to the actual dynamics.
Modern sciences of complexity are basically characterized by computational
irreducibility. Even if we know all the laws of behaviour on the microlevel, we
cannot predict the development of a random system on the macrolevel in a shorter
way than the actual process. And that means: even if, one day, we will know all
laws of symmetry in a unified theory, the world will be too complex for total
computability.

Symmetry and complexity in the philosophy of science

Figure 9 shows a classification of symmetries we have discussed. There are the
main distinctions of discrete symmetries (e.g. P, C, T-symmetry) and continuous

Figure 9. Classification of symmetry
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Figure 10. Further classification of complexity

symmetries, global symmetries (e.g. space–time symmetries and conservation
laws) and local symmetries (gauge principle). Figure 10 is a classification of
complexity with the main distinction of dynamical and computational complexity.
Dynamical complexity refers to increasing digression from fixed point attractors
to periodic and quasi-periodic behaviour (limit cycles), chaos attractors and finally
randomness. Randomness means the complete decay of all correlations and
complete irregularity. Thus, there is no chance of any prediction. In the case of
deterministic chaos, predictions depend sensitively on initial data, which can be
measured by Lyapunov-exponents. Another measuring method of complexity
degrees is the fractal dimension of an attractor. In our context, it is remarkable
that the fractal dimension measures the degree of symmetry in the sense of
self-similarity. On different time scales, the fractal dimension determines the
self-similarity of a time series (e.g. stocks, weather, climate), which is a necessary
(but not sufficient) condition of a strange attractor. Computational complexity
relates to computational time and program size in order to compute the equations
and functions of dynamical systems.9

From a logical point of view, symmetry and complexity are syntactical and
semantical properties of theories and their models (Figure 11). For example,
consider a mathematized theory of a four-dimensional Riemannian manifold with
an automorphism group of infinitesimal isometries and form-invariance of certain
tensors. By an appropriate physical interpretation of the terms and quantities, we
can get a model of a homogeneous and isotropic vector field of expanding galaxies
which is, more or less approximately, confirmed by observational data of the real
world. The expanding galaxies are represented by the model of a dynamical
system satisfying the laws and axioms of a mathematized theory. Symmetry refers
to group-theoretical form-invariance of mathematical terms and equations. In this
sense, symmetries are meta-laws of mathematized theories.

https://doi.org/10.1017/S1062798705000645 Published online by Cambridge University Press

https://doi.org/10.1017/S1062798705000645


45Symmetry and complexity in dynamical systems

Figure 11. Symmetry and complexity as structural properties of theories,
models and the world

According to the principle of computational equivalence, the models of
dynamical systems can also be considered computational systems with different
degrees of computability. A Turing machine can be interpreted in the framework
of classical and relativistic deterministic physics. But stochastic computing
machines and quantum computing machines, representing stochastic and quantum
systems, do not compute functions in that sense. The output state of a stochastic
machine is random, with only a probability function for the possible outputs
depending on the input state. The output state of a quantum machine, although
fully determined by the input state (e.g. by a Schrödinger equation), is not an
observable and so the observer cannot in general discover its label. In general,
computational systems must not be computable and decidable. Uncertainty,
uncomputability, undecidability, and incompressibility of information are
fundamental insights of modern sciences of complexity.

The epistemic question arises of whether symmetry and complexity are only
syntactical and semantical properties of scientific theories and their models, or are
they real structures of the world. Empirical structuralism defends a strict empirical
view:13 symmetry and complexity only refer to syntactical and semantic properties
of mathematical structures, which are inventions of the human mind. But if they
are only syntatical and semantical constructions, why do observations, measure-
ments and predictions display these regularities? It seems to be a wonder or a
miracle. Putnam put it in the ‘no miracle-argument’ of scientific realism: ‘The
positive argument for realism is that it is the only philosophy that doesn’t make
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the success of science a miracle’.14 But realism of what? Is it the entities, the
abstract structural relations, the fundamental laws or what?

Structural realism assumes that mathematical structures refer to real structures
of the world, independent of syntactical and semantical representations in the
human mind. The question is which mathematical terms and models refer to
ontological structures.15 I have argued that gauge groups of local symmetries can
be considered epistemic filters of observables. Only gauge-invariant quantities
such as field forces have measurable effects. But what about field potentials that
are not gauge-invariant? Are they only theoretical terms and inventions of the
human mind, like the epicycles of Greek astronomy to ‘save’ the symmetry of
the universe? In this case, the precise confirmation of field theories by modern
accelerators seems to be a fantastic miracle. On the other hand, measurable field
forces are derivations of field potentials, which also determine the freedom of
gauging in a field theory.

Complex degrees of dynamical systems have been considered as attractors that
are invariant structures of the corresponding phase spaces. Obviously, phase
spaces are not observable, like height, depth and breadth of a room. They are
mathematical constructions, referring to the state dynamics of a dynamical system.
But attractors have measurable consequences on predicting future developments
of dynamical systems. They seem to be miracles if we neglect structurally
invariant features of their system dynamics. The principle of computational
equivalence demands that dynamical systems can be considered computational
systems with different degrees of complexity. Otherwise, the application of
mathematics and computational procedures in science is an obscure miracle.
Algorithmic procedures refer to structural features of dynamical processes with
different degrees of complexity. Obviously, deterministic Turing machines are
only approximations like deterministic dynamical systems in classical physics.
But quantum computers refer to the dynamics of basic building blocks of the
universe. Statistical procedures represent stochastic processes in nature and
society. Thus, in the tradition of Leibniz, it seems to be not only a metaphoric facon
de parler that even ‘every organic body of a living being is a kind of divine
machine or natural automaton surpassing all artificial automata infinitely’
(Monadology).

On the other hand, one of the principal arguments against realism is the
hypothetical status of theories and models: ontological commitments can be
refuted by empirical tests. A mathematized theory may contain more or less
structural relations and constraints than are satisfied by measurements and
observations of the real world. Therefore, from an epistemic point of view,
structures of the world remain more or less uncertain and indeterminate without
denying their existence. My view of symmetry and complexity defends an
epistemic structuralism between structural realism and empiristic structuralism.
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Symmetries of theories and their models open insights into invariant structures
of the world. Symmetry-breaking opens insights into the variety and complexity
of the world. There seems to be a complementary relationship of symmetry and
symmetry breaking that was already recognized by the pre-Socratic philosopher
Heraclitus who emphasized: ‘What is opposite strives toward union, out of the
diverse there arises the most beautiful harmony.’16
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