A NOTE ON THE GENERALIZED (POSITIVE) CAUCHY DISTRIBUTION

B. Raja Rao and M. L. Garg

In this note, a certain generalization of the Cauchy distribution is obtained, using the result of Malik [2].

1. Introduction. The generalized gamma distribution having the density

$$
\begin{equation*}
f(x, a, d, p)=\frac{p}{\Gamma(d / p) a^{d}} x^{d-1} e^{-(x / a)^{p}}, x>0 ; a, d, p>0 \tag{1}
\end{equation*}
$$

is introduced by Stacy [1], who studied some of its properties. As remarked by Stacy [1], the familiar gamma, chi, chi-squared, exponential and Weibull distributions are special cases of (1), as are the distributions of certain functions of a normal variable - viz., its positive even powers, its modulus, and all positive powers of its modulus.

Malik [2] obtained the distribution of the ratio $W=X / Y$ where X and Y are independent random variables distributed according to (1) with parameters $\left(a_{1}, d_{1}, p\right)$ and $\left(a_{2}, d_{2}, p\right)$. The density of W is (see [2, Eq..2.6])*
$(2) g(w)=\frac{p\left(\frac{a_{1}}{a_{2}}\right)^{2}}{B\left(\frac{d_{1}}{p}, \frac{d_{2}}{p}\right)} \frac{w^{-d_{2}-1}}{\left[1+\left(\frac{a_{2}}{a_{1}}\right)^{-p} w^{-p}\right]^{\frac{d_{1}+d_{2}}{p}}}, w>0$.
It is the purpose of this note to examine Stacy's remark as applied to the distribution of W and to obtain a generalized Cauchy distribution. Incidentally Malik's result (2) may be called a generalization of the beta distribution of the second kind, to which it will reduce if we specialize to $p=1$ and $a_{1}=a_{2}$.
2. The generalized Cauchy and other allied distributions. It is well known that the ratio of two independent normal random variables has a Cauchy distribution. Further, the ratio of the moduli of two independent normal random variables $U=|X| /|Y|$ has the (positive) Cauchy distribution with the density
*Malik's Eq. 2.6 is slightly incorrect. The factor $\log \left(\frac{a_{1}}{a_{2}}\right)$ in the exponent of the denominator is to be multiplied by p.

$$
\begin{equation*}
p(u)=\frac{2}{\pi} \frac{1}{\left(1+u^{2}\right)}, \quad u \geq 0 \tag{3}
\end{equation*}
$$

To pursue Stacy's remark, let X be distributed according to $N(0,1)$. Then the distribution of $Z=|X|^{\ell}$ for $\ell>0$ is

$$
\begin{equation*}
g(z)=\frac{2}{\ell \sqrt{ }(2 \pi)} z^{\frac{1}{\ell}-1}\left\{\exp -\frac{1}{2} z^{2 / \ell}\right\} \quad z \geq 0 \tag{4}
\end{equation*}
$$

which is in $S t a c y^{\prime} s$ form $f\left(z, 2^{\frac{1}{2} \ell}, \frac{1}{\ell}, \frac{2}{\ell}\right) \cdot$
Now let X_{1} and X_{2} be independent standard normal variables and write

$$
Y=\left|X_{1}\right|^{\ell} \text { and } Z=\left|X_{2}\right|^{\ell}, \quad \ell>0
$$

Then Y and Z are independently and identically distributed according to Stacy's form $f\left(., 2^{\frac{1}{2} \ell}, \frac{1}{\ell}, \frac{2}{\ell}\right)$. If we now define

$$
W=\frac{Y}{Z}=\left\{\frac{\left|x_{1}\right|}{\left|x_{2}\right|}\right\}^{\ell}
$$

the density of W is obtained from Malik's equation 2.6 (our equation (2)) by choosing in particular

$$
a_{1}=a_{2}=2^{\frac{1}{2} \ell}, \quad d_{1}=d_{2}=\frac{1}{\ell}, \quad p=\frac{2}{\ell}
$$

Thus the density of W is

$$
\begin{equation*}
g(w)=\frac{2}{\ell B\left(\frac{1}{2}, \frac{1}{2}\right)} \cdot \frac{w^{\frac{1}{\ell}-1}}{\left[1+w^{2 / \ell}\right]}, \quad w>0 . \tag{5}
\end{equation*}
$$

For $\ell=1$, this reduces to equation (3). Thus (5) may be called the generalized (positive) Cauchy distribution.

Next, a generalization of the Beta distribution of the first kind, analogous to (2), may be obtained as follows. Let X and Y be independently distributed according to (1) with parameters $\left(a_{1}, d_{1}, p\right)$ and ($\left.a_{2}, d_{2}, p\right)$.
If we define

$$
V=\frac{X}{X+Y}=\frac{1}{1+\frac{Y}{X}}=\frac{1}{1+W^{\prime}} \text { with } W^{\prime}=\frac{Y}{X}
$$

the distribution of W^{\prime} is obtained from (2) by interchanging the suffixes 1 and 2 as

so that the density of V is
(6) $p(v)=\frac{p\left(\frac{a_{2}}{a_{1}}\right)^{d_{1}}}{B\left(\frac{d_{1}}{p}, \frac{d_{2}}{p}\right)} \frac{v^{d_{1}-1}(1-v)^{-d_{1}-1}}{\left[1+\left(\frac{a_{2}}{a_{1}}\right)^{p}\left(\frac{v}{1-v}\right)^{p}\right]^{\frac{d_{1}+d_{2}}{p}}}, 0 \leq v \leq 1$.

For $a_{1}=a_{2}$ and $p=1$, (6) reduces to the beta distribution of the first kind.

Acknowledgement. The authors wish to thank Professor A. Ciocco for his constant stimulating encouragement.

REFERENCES

1. E.W. Stacy, A generalization of the gamma distribution. Ann. Math. Statist. 33 (1962) 1187-1192.
2. H.J. Malik, Exact distribution of the quotient of independent generalized gamma variables. Canad. Math. Bull. 10 (1967) 463-465.

Departments of Biostatistics and Mathematics
University of Pittsburgh
Pittsburgh
Pennsylvania 15213

Department of Biometrics
Temple University School of Medicine
Philadelphia, Pa. 19140

