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The presence of a no-slip, impermeable, adiabatic, sloped boundary in an otherwise
quiescent, stably stratified, Boussinesq flow generates baroclinic vorticity within a
diffusive boundary layer. Such conditions are typical of the oscillating boundary layers
on adiabatic abyssal slopes, sloped lake bathymetry and sloped coastal bathymetry in
the absence of high-wavenumber internal waves, mean flows, far-field turbulence on
larger scales, and resonant tidal–bathymetric interaction. We investigate the linear stability
of the oscillating flow within non-dimensional parameter space typical of the M2 tide
and hydraulically smooth, middle-latitude abyssal slopes through Floquet linear stability
analysis. The flow dynamics depends on three non-dimensional variables: the Reynolds
number for Stokes’ second problem, the Prandtl number, and a frequency ratio that
accounts for the resonance conditions (C, criticality) of the buoyant restoring force and
the tidal forcing. The Floquet analysis results suggest that oscillating laminar boundary
layers on adiabatic abyssal slopes are increasingly unstable as Reynolds number, criticality
parameter and/or spanwise disturbance wavenumber are increased. We also show that
the two-dimensional Floquet linear instability necessarily generates three-dimensional
baroclinic vorticity, which suggests that the evolution of the gravitational instabilities may
be nonlinear as t → ∞.

Key words: boundary layer stability, buoyancy-driven instability, stratified flows

1. Introduction

The dynamics of oscillating stratified boundary layers on sloping bathymetry may be an
important mechanism of diapycnal water mass transformation in the context of the global
overturning circulation of the ocean (Ferrari et al. 2016). A fundamental understanding
of the dynamical pathways between laminar, transitional and turbulent states is lacking.
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Figure 1. Illustration of Boussinesq boundary layers on abyssal slopes arising from the heaving of density
surfaces up and down slope by internal waves with wavelengths O(10) km.

Historically, analyses of turbulent flows begin by answering the questions: how stable is the
flow to linear disturbances, what are the relevant mechanisms of linear instability, and how
does disturbance growth change as a function of the relevant non-dimensional parameters?
We examine the linear stability of the laminar boundary layers that form as internal waves
heave isopycnals up and down infinite slopes to answer these questions for oscillating
stratified boundary layers on sloping bathymetry. Our use of a semi-infinite, constant-slope
model is justified by the large separation of length scales between the viscous length scale
of the laminar boundary layers, O(1) cm, and the internal-wave-generative abyssal slope
length scales of O(10) km (Jayne & St. Laurent 2001; Goff & Arbic 2010). The geometry
and scales that are typical of these boundary layers are illustrated by figure 1.

In the absence of shear, gravitational instabilities are often linear instabilities, as is the
case for Rayleigh–Taylor and Rayleigh–Bénard instabilities. In sheared, gravitationally
unstable flows, the transition pathways can be more complicated. Theoretical and
experimental evidence suggest that two-dimensional rolls, initiated by linear near-wall
gravitational instabilities and subsequently sheared into bursts of three-dimensional
turbulence, are the dominant transition-to-turbulence mechanism in gravitationally
unstable Couette flow (Bénard & Avsec 1938; Chandra 1938; Brunt 1951; Deardorff 1965;
Gallagher & Mercer 1965; Ingersoll 1966). Similar mechanisms have been observed in
direct numerical simulations (DNS) data of oscillating Boussinesq boundary layers on
adiabatic sloping boundaries, which are a potentially important regime in the context of
abyssal water mass transformation (Kaiser 2020). In this paper, the linear stability of the
non-rotating boundary layers is calculated to determine if the gravitational instability is a
significant linear instability across a much broader region of parameter space than can be
sampled by DNS.

The linear stability of stationary flows is conventionally analysed by introducing
infinitesimal disturbances to the flow and linearizing the governing equations about
the stationary base flow to form governing equations for the growth or decay
of the infinitesimal disturbances (Lin 1955; Drazin & Reid 1982; Schmid &
Henningson 2001). There are two standard techniques for linear stability analyses of
time-periodic flows, instantaneous instability theory (IIT), also referred to as ‘quasi-static’
instability theory (Davis 1976; Cowley 1987), and Floquet global instability theory
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Stability of oscillating boundary layers on adiabatic slopes

(Von Kerczek & Davis 1974; Hall 1984; Blennerhassett & Bassom 2002). IIT refers
broadly to the ad hoc application of the linear stability analysis of stationary flows to
examine the stability of a time-dependent base flow at a chosen instant in time (Von
Kerczek & Davis 1976; Blondeaux & Vittori 2021), although for some flows IIT can
be justified formally through asymptotic expansion (Cowley 1987; Wu & Cowley 1995).
One example is the case of Stokes’ second problem, also referred to as Stokes layers
in the literature (Von Kerczek & Davis 1974; Hall 1984), where the Orr–Sommerfeld
equation is solved for the growth rates of disturbances to base flow at a chosen instant
in the period. To evaluate the global stability, or stability over the entire period, the
instantaneous stability calculation must be performed over many instants within the period.
If one or more instantaneous modes exhibit positive growth rates throughout the period,
then the flow is globally unstable according to IIT (Luo & Wu 2010). However, the
validity of the IIT approach rests on the assumption that the instantaneous growth rates
are much larger than the frequency of the base flow, i.e. the quasi-steady flow assumption.
IIT has proved to be a successful and predictive approach for assessing the growth of
Stokes layer shear instabilities at moderate to high Reynolds number (Luo & Wu 2010),
possibly because instantaneous mode growth rates increase as a function of Reynolds
number (Monkewitz & Bunster 1987). Hall (1984) used IIT to identify time-periodic
Taylor–Görtler instabilities in centrifugal flows that are mathematically analogous to the
time-periodic Rayleigh–Bénard-like instabilities investigated in this study.

Floquet instability theory (Floquet 1883) pertains to the net growth or suppression of
instabilities over the course of one period. All periodic instantaneous globally unstable
linear modes are unstable Floquet modes, but the opposite is not true: an unstable Floquet
mode can correspond to linear energy exchange between two or more instantaneous modes
that do not produce IIT global instability (Luo & Wu 2010). Therefore, the evolution
of a Floquet mode over a period does not necessarily correspond to the evolution of
an instantaneous instability that occurs during that period, but it does represent the
global effect of linear instantaneous instabilities. While Floquet instability theory is a
mathematically rigorous approach to assessing the global linear stability of time-periodic
flows, it does not extend to flows in which nonlinear instabilities are amplified on time
scales shorter than the base flow period (Wu & Cowley 1995).

In this paper, we examine gravitational instabilities in laminar oscillating flow on
adiabatic slopes in which the oscillatory forcing is oriented in the across-isobath direction
for parameter regimes typical of super-inertial dynamics in abyssal ocean at low to middle
latitudes. First, we define the Floquet stability problem, and second, we discuss our
numerical methodology. Third, we discuss the neutral stability curves over a broad range
of subcritical and supercritical slopes, before concluding.

2. Problem formulation

Even in the absence of an oscillatory body force, motion arises in Boussinesq diffusive
boundary layers on adiabatic sloping boundaries because baroclinic vorticity is created
by the tilting density surfaces parallel to the wall-normal axis, such that the angle θ
separates density surfaces from the hydrostatic pressure gradient in the vertical within the
diffusive boundary layer (see figure 2). The production mechanism of baroclinic vorticity
is oriented in the along-isobath, constant isobath direction (y axis in figure 2), which
drives across-isobath wall-parallel flows with a net upslope transport. Phillips (1970) and
Wunsch (1970) simultaneously derived analytical solutions for these laminar flows that
were validated by the laboratory experiments of Peacock, Stocker & Aristoff (2004).
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Figure 2. Coordinate system and vorticity components.

The addition of an oscillating body force in the across-isobath direction (x axis in
figure 2) gives rise to a class of boundary layers that, in various limits, collapse to familiar
classical oscillating boundary layers (e.g. Stokes’ second problem if the stratification
vanishes, Stokes–Ekman layers in a rotating reference frame, Stokes buoyancy layers
if θ = π/2, etc.), and it is representative of the frictional interaction of low-mode
extra-critical baroclinic tidal flows in the ocean. The term ‘extra-critical’ refers to
both subcritical and supercritical slopes at angles that are sufficiently smaller/larger,
respectively, than the critical slope, where topographic–tidal resonance and other
critical-slope effects are not dominant. Baidulov (2010) derived the linear solutions
for the oscillating, stratified, viscous and diffusive boundary layer in a stationary (not
rotating) reference frame (hereafter the oscillating boundary layer, OBL) and found that
the linear flow is a superposition of two evanescent modes. Baidulov (2010) noted that
the phase of one of the boundary layer modes changes sign as the slope increases from
subcritical to supercritical, where critical slope is defined by the slope angle θc that
satisfies ω = N sin θc, and N is the buoyancy frequency. The criticality parameter, defined
by dimensional analysis of the governing equations, is

C = N sin θ
ω

, (2.1)

where if θ = θc, then C = 1, and subcritical and supercritical slopes can be defined as
C < 1 and C > 1, respectively. The change in sign of the boundary layer solution mode
indicates that the boundary layers share some of the dynamics of the parent flow (i.e. the
larger-scale internal wave field in the oceanic example), which undergoes a change of sign
of the group velocity of the radiated or reflected internal waves as the slope angle increases
from subcritical to supercritical topography. At critical slope, the flow resonates because
the across-isobath motions of the internal tide force the flow at the same frequency as that
of the buoyant restoring force component in the across-isobath direction.

A commonly observed OBL flow feature is the formation and growth of gravitational
instabilities produced by the upslope advection of relatively heavy water over relatively
light water trapped at the boundary by friction. The energy source for the boundary
layer gravitational instabilities investigated here is the baroclinic tide. Baroclinic tides are
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internal waves generated in response to oscillating stratified flow over variable bathymetry
by the forcing of the barotropic tide. The interaction of the barotropic tide and the
bathymetric variations can induce resonance near the boundary, such as overturning
formed by critically reflecting internal waves (Dauxois & Young 1999) and the nonlinear
baroclinic tide generation at critical slope (Gayen & Sarkar 2011; Rapaka, Gayen & Sarkar
2013; Sarkar & Scotti 2017). The barotropic tide can directly force stratified boundary
layers over flat bathymetry: Von Kerczek & Davis (1976) and Gayen & Sarkar (2010)
investigated the dynamics of these flows by linear stability analysis and by large eddy
simulation, respectively. However, gravitational instabilities at critical slope are formed
by primarily inviscid nonlinearities in the baroclinic response to the barotropic tide
(Dauxois & Young 1999), whereas the OBL gravitational instabilities are formed by
viscous, insulating boundary conditions (Hart 1971). OBL gravitational instabilities on
extra-critical slopes have been observed in experiments (Hart 1971), and observed in OBLs
in lakes associated with internal seiche waves (Lorke, Peeters & Wüest 2005) and internal
gravity waves (Lorke, Umlauf & Mohrholz 2008). Similar boundary layer gravitational
instabilities have been observed in the flood (i.e. upslope) phase of estuarine tidal flows
(Simpson et al. 1990; Chant & Stoner 2001; Geyer & MacCready 2014), formed by a
combination of bottom friction and the straining of horizontal buoyancy gradients over
shallow finite topography.

Supercritical-slope OBL laboratory experiments by Hart (1971) identified spanwise
plumes and rolls (described by the streamwise, or across-isobath vorticity component),
associated with the periodic reversals of the density gradient, that resembled qualitatively
the rolls that appeared in high-Rayleigh-number Couette flow experiments by Bénard
& Avsec (1938), Chandra (1938) and Brunt (1951). Perhaps due to the similarity to
the convection experiments, the rolls observed by Hart (1971) are often referred to as
‘convective rolls’ although the term is misleading because it implies diabatic boundary
conditions; the gravitational instabilities, rolls and overturns of interest in this study are
generated by adiabatic boundary conditions. Linear stability analyses by Deardorff (1965),
Gallagher & Mercer (1965) and Ingersoll (1966) revealed that the observed growth of
gravitationally unstable disturbances in high-Rayleigh-number Couette flows is suppressed
in the plane of the shear (the streamwise vertical plane) by the shear itself (i.e. the
suppression of the spanwise vorticity disturbances). However, they also found that the
growth of disturbances in the spanwise-vertical plane (streamwise vorticity disturbances)
is unimpeded by the shear and grows in the same manner as pure convection. It has since
been established that streamwise (the across-isobath direction) vortices with axes in the
direction of a mean shear flow (a.k.a. ‘rolls’) can arise due to heating or centrifugal effects
(Hu & Kelly 1997). Therefore, since the upslope phase of the OBL is dynamically similar
to gravitationally unstable Couette flow, we hypothesize that linear streamwise vorticity
disturbances may be an important mode of instability in OBLs.

In this study, we analyse the Floquet stability of the coupled streamwise vorticity
component (ζ1, pointing in the across-isobath x direction in figure 2) and buoyancy
anomaly (aligned with the η coordinate in figure 2) in a diffusive, Boussinesq flow on
an adiabatic slope when forced by an oscillating body force that represents the pressure
gradient of a low-wavenumber internal wave,

F(t) = −A sin t, (2.2)

where A is the amplitude of the non-dimensional pressure gradient, and x is the
across-isobath coordinate (up/down the slope). The coordinate system, rotated angle θ
counterclockwise from horizontal, and the vorticity components are shown in figure 2.
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2.1. Stationary and oscillating base flow components
The Boussinesq, dimensional forms of the conservation equations for mass and
momentum are

∇ · ũ = 0, (2.3)

∂tũ + ũ · ∇ũ = −∇p̃ + ν ∇2ũ + (b̃ sin θ + F(t)) i + b̃ cos θ k, (2.4)

∂tb̃ + ũ · ∇b̃ = κ ∇2b̃, (2.5)

where θ is the counterclockwise angle of the slope from horizontal, and the coordinates i,
j and k point in the across-isobath, along-isobath and wall-normal directions, respectively.
Also, κ is the molecular diffusivity of buoyancy, and ν is the molecular kinematic viscosity
of abyssal seawater. The buoyancy is defined by density anomalies from the background
flow, b̃ = g(ρ0 − ρ̃)/ρ0, where g is the gravitational acceleration, ρ̃ is the anomalous
density, and ρ0 is the reference density. The pressure p̃ is defined as the mechanical
pressure divided by the reference density. The buoyancy frequency is defined by the
hydrostatic background N = √−g/ρ0((∂ρ̄/∂x) sin θ + (∂ρ̄/∂z) cos θ)where ρ̄(x, z)+ ρ0
is the hydrostatic background density field. The domain is semi-infinite, bounded only by
a sloped wall at z = 0 with no-slip, impermeable and adiabatic boundary conditions

ũ(x, y, 0, t) = 0, (2.6)

∂zb̃(x, y, 0, t) = 0. (2.7)

At z → ∞, the flow has two components: a stationary, quiescent, stably stratified and
hydrostatic component, and an across-isobath, adiabatic, balanced oscillation in the
buoyancy, velocity and pressure fields. These two components prescribe the boundary
conditions at z → ∞:

ũ(x, y,∞, t) = U∞(t) i, (2.8)

∂zb̃(x, y,∞, t) = N2 cos θ. (2.9)

Boundary conditions on the pressure field are satisfied automatically because the pressure
field is diagnosed analytically from the other variables for both flow components. Let
the prognostic variables be decomposed linearly into two components, denoted by the
subscript ‘S’ for the stationary component and the primed variables for the oscillating
component:

ũ( y, z, t) = uS(z)+ u′( y, z, t), (2.10)

b̃(x, y, z, t) = bS(x, z)+ b′( y, z, t). (2.11)

The stationary flow has no variability, other than hydrostatically balanced gradients, in
the wall-tangent directions such that ∂x = ∂y = 0, and contains non-zero velocities only
in the across-isobath component within a diffusion-driven boundary layer at the wall.
The stationary flow is itself a linear superposition of a diffusion-driven boundary layer
component and a quiescent, hydrostatic background component, and the stationary flow
solutions were derived by Phillips (1970) and Wunsch (1970).

Let us decompose the oscillating component into two components: a base flow
component that is the hydrostatic response to the across-isobath momentum forcing,
shown in (2.2), which includes a boundary layer in which friction and the diffusion of
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the adiabatic boundary condition break the inviscid balance of across-isobath heaving of
isopycnals, and infinitesimal disturbances to the buoyancy and across-isobath vorticity:

u′( y, z, t) = U(z, t)+ ε û( y, z, t), (2.12)

b′( y, z, t) = B(z, t)+ ε b̂( y, z, t), (2.13)

where 0 < ε � 1 and the capitalized variables represent the base flow, and the hatted
variables represent the infinitesimal disturbances. The base flow solutions include only an
across-isobath velocity component, and zero variability in the wall-tangent directions (x
and y) is also assumed for the base flow component.

The forcing amplitude of the oscillations, A, is prescribed uniquely by the linear internal
wave solution for a wave that is generated or reflected by a topographic feature, where the
horizontal length scales of both the topographic feature and the internal wave are much
greater than the relevant boundary layer length scales. The governing equations for the
inviscid internal waves (characterized by horizontal length scales of O(10) km) on the
relatively small length scale L = O(10) m (see figure 1) can be approximated by reducing
(2.3)–(2.5) to

∂tU∞ = B∞ sin θ − A sin t, (2.14)

∂tB∞ = −U∞N2 sin θ, (2.15)

where it is assumed that (a) there is no variability in any direction for the momentum and
buoyancy, and (b) the flow is adiabatic and quiescent in the along-isobath and wall-normal
directions everywhere (V∞,W∞ = 0) over length scale L. The solutions to the balanced,
inviscid oscillations governed by (2.14) and (2.15) are

U∞(t) = −U0 cos t, (2.16)

B∞(t) = B0 sin t, (2.17)

if and only if

A = U0ω(C2 − 1) (2.18)

is satisfied, where ω is the forcing frequency, and U0 is the forcing velocity amplitude.
The momentum and buoyancy amplitudes U0 and B0 must satisfy

B0

U0
= CN. (2.19)

Equation (2.18) diagnoses the internal wave forcing amplitude if ω, C, and U0 are known,
as is generally the case for abyssal slopes, and it indicates that the local approximation
of an isopycnal heaving by a large horizontal wavelength internal wave on a similarly
large horizontal wavelength topographic feature breaks down (A → 0) as the slope angle
vanishes , θ → 0 , or slope-parallel buoyancy oscillations resonate with the forcing
C → 1, a.k.a. critical slope. This is consistent with internal wave theory, which indicates
that no linear internal waves are generated by flat bathymetry, and that at critical slope,
internal waves become highly nonlinear (Dauxois & Young 1999).
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Baidulov (2010) derived solutions to the base flow,

U(z, t) = U0 Re
[
((α1 + iα2) exp((1 + i)zφ1/δ1)

+ (α3 + iα4) exp((1 + i)zφ2/δ2)− 1) exp(iωt)
]
, (2.20)

B(z, t) = B0 Re
[
((β1 + iβ2) exp((1 + i)zφ1/δ1)

+ (β3 + iβ4) exp((1 + i)zφ2/δ2)− 1) i exp(iωt)
]
, (2.21)

which satisfy the boundary conditions shown in (2.6), (2.7), (2.8) and ∂zB(z → ∞, t) = 0,
thus satisfying (2.9). The real solutions for U and B are split into two sets of solutions
corresponding to the sign of

φ = ω(1 + Pr)
ν

−
√
ω2(1 + Pr)2

ν2 + 4
Pr (N2 sin2 θ − ω2)

ν2 . (2.22)

If the Prandtl number

Pr = ν

κ
(2.23)

is unity, then (2.22) simplifies to

φ = 2ω
ν
(1 − C), (2.24)

thus whether the criticality parameter C is greater than or less than unity determines the
base flow boundary layer dynamics. If C = 1, then the base flow is an oscillation at the
natural frequency of the system.

The fluid just above abyssal slopes is composed of Antarctic bottom water (AABW) over
much of the low- to middle-latitude ocean, where AABW is characterized by temperatures
approaching 0 ◦C from above and practical salinities approximately 35 psu. At 0 ◦C
and 35 psu, the kinematic viscosity is 1.83 × 10−6 m2 s−1, and the thermal diffusivity
is 1.37 × 10−6 m2 s−1 (Chen et al. 1973; Talley 2011). Assuming that the density is
a function of only temperature, the buoyancy diffusivity κ might be interpreted as a
coefficient of molecular thermal diffusivity. Therefore the molecular Prandtl number for
seawater at AABW temperatures and pressures is Pr ≈ 13. However, we choose Pr = 1 to
simplify base flow analytical solutions, where the solution coefficients for both subcritical
and supercritical flows are provided in tables 1 and 2.

2.2. Ratio of stationary and oscillating flow component magnitudes
Across-isobath vorticity disturbances can be excited by the stationary flow component
and/or the oscillating base flow component. The ratio of time scales and velocity
magnitudes illustrates why, for the parameter ranges applicable to the abyssal ocean,
the stationary flow can be neglected from Floquet analyses of the disturbances. The
wall normal diffusive time scale is the relevant characteristic spin-up time scale of the
stationary diffusion-driven flow because the diffusion of the adiabatic boundary condition
into the interior induces the boundary layer baroclinic vorticity and momentum (Dell &
Pratt 2015). Following Dell & Pratt (2015), the spin-up time scale of the stationary flow
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φ1 −1
φ2 −1

δ1, δ2

⎛
⎝ ω

4ν
(1 + Pr)±

(
ω2

16ν2 (1 + Pr)2 + Pr

(
N2 sin2 θ − ω2

4ν2

))1/2
⎞
⎠−1/2

α1 (ωδ2
1 − 2ν Pr−1)/(Lbωδ1)

α2 0
α3 (2ν Pr−1 − ωδ2

2)/(Lbωδ2)

α4 0
β1 δ1/Lb
β2 0
β3 −δ2/Lb
β4 0
Lb (δ1 − δ2)(2ν Pr−1 + ωδ1δ2))/(ωδ1δ2)

Table 1. Solution coefficients for subcritical slopes, C < 1. Here, δ1, δ2 and Lb have units of length; all other
variables are dimensionless.

φ1 −1
φ2 i

δ1, δ2

⎛
⎝( ω2

16ν2 (1 + Pr)2 + Pr

(
N2 sin2 θ − ω2

4ν2

))1/2

± ω

4ν
(1 + Pr)

⎞
⎠−1/2

α1

(
δ1

ωL4
b

− 2κ
δ1ω2L4

b

)
(ωδ2

1δ2 − 2κδ2)

α2

(
δ1

ωL4
b

− 2κ
δ1ω2L4

b

)
(2κδ1 + ωδ1δ

2
2)

α3

(
2κ

δ2ω2L4
b

+ δ2

ωL4
b

)
(2κδ1 + ωδ1δ

2
2)

α4

(
2κ

δ2ω2L4
b

+ δ2

ωL4
b

)
(2κδ2 − ωδ2

1δ2)

β1
δ2

ωL4
b
(ωδ1δ

2
2 + 2κδ1)

β2
δ2

ωL4
b
(2κδ2 − ωδ2

1δ2)

β3
δ1

ωL4
b
(ωδ2

1δ2 − 2κδ2)

β4
δ1

ωL4
b
(ωδ1δ

2
2 + 2κδ1)

Lb

(
(δ2

1 + δ2
2)(ω

2δ2
1δ

2
2 + 4 Pr−2 ν2)

ω2δ1δ2

)1/4

Table 2. Solution coefficients for supercritical slopes, C > 1. Here, δ1, δ2 and Lb have units of length; all
other variables are dimensionless.
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Figure 3. The modulation ratio, the ratio of the spin-up time scale of the diffusion-driven component of flow
to the tide period, for two different Prandtl numbers.

component (Phillips 1970; Wunsch 1970) is

τκ ∼ δ2
0/κ (2.25)

∼
√

Pr
N sin θ

, (2.26)

where the boundary layer thickness of the stationary diffusion-driven boundary layer is

δ0 =
(

Pr
N2 sin2 θ

4ν2

)−1/4

. (2.27)

Therefore, the modulation ratio (Davis 1976) is

T = τκ

τω
∼ ω

√
Pr

N sin θ
. (2.28)

In the limit of T → ∞, the time scale separation between the stationary diffusion-driven
flow component and the oscillating flow component indicates that the slower stationary
diffusion-driven flow component does not modulate the faster oscillatory flow component.
If T → 0, then the oscillating flow component varies so slowly relative to the stationary
diffusion-driven flow component that the steady flow component may alter the instabilities
of the oscillating component.

The modulation ratios in (2.28) for typical abyssal parameter ranges for the M2 tide
are shown in figure 3, which indicates that as θ → 0, the stationary diffusion-driven
flow component does not modify the much faster dynamics of the oscillatory flow
component. The time scale separation of at least O(102), valid for approximately 0 < θ <

1◦ (0.0175 rad), a range of slopes commonly found in deep ocean bathymetry (Goff &
Arbic 2010), informs our neglect of the stationary diffusion-driven flow component and
application of Floquet analysis to the oscillatory flow component alone. While we consider
the case Pr = 1, note that the time scale separation increases for Pr = 10.

The characteristic velocity magnitude of the oscillating flow component is typically
three orders of magnitude larger than the stationary flow component on abyssal slopes.
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The stationary diffusion-driven velocity magnitude is estimated by uS ∼ 2κ/δ0 =
O(10−5–10−6) m s−1 for N = 1.0 × 10−3 s−1, ν = 1.83 × 10−6 m2 s−1, 1 � Pr � 13,
0 < θ � 10◦. Characteristic baroclinic tide magnitudes U ∼ 0.01 m s−1 are observed
widely near abyssal slopes (Simmons, Hallberg & Arbic 2004; Carter et al. 2008; Goff
& Arbic 2010; Turnewitsch et al. 2013) far from critical slopes, hydraulic spills and other
turbulence ‘hot spots’.

2.3. Governing equations for along-isobath disturbances
The non-dimensional parameters of the linearized governing equations for the
across-isobath vorticity component and buoyancy disturbances are chosen in the same
manner as was used by Blennerhassett & Bassom (2002) to investigate the linear stability
of Stokes’ second problem, with the exceptions that we include the Boussinesq buoyancy
and we analyse the across-isobath (streamwise) vorticity instead of the spanwise vorticity.
The oscillating flow variables are non-dimensionalized as

x = xd

δ
, u′ = u′

d
U0
, t = ωtd, p′ = p′

d

U2
0
, b′ = ωb′

d

N2U0 sin θ
, (2.29a–e)

where subscript ‘d’ denotes dimensional variables – and from here onwards, the variables
without this subscript are dimensionless – and δ is the Stokes layer thickness, defined in
(2.35). Also, p′ is the mechanical pressure divided by the reference density ρ0, and the
buoyancy is b′ = g(ρ0 − ρ′)/ρ0. Note that the Eulerian time scale is not proportional to
the advective time scale (i.e. U0/δ /=ω). The two-dimensional flow governing equations
for mass, momentum and thermodynamic energy (buoyancy) for the disturbances in the
y–z plane are

0 = ∂yv̂ + ∂zŵ, (2.30)

∂tv̂ = −Re
2
∂yp̂ + 1

2
(∂yy + ∂zz)v̂, (2.31)

∂tŵ = −Re
2
∂zp̂ + 1

2
(∂yy + ∂zz)ŵ + C2b̂ cot θ, (2.32)

∂tb̂ = −
(

Re ∂zB(z, t)
2

)
ŵ + 1

2 Pr
(∂yy + ∂zz)b̂, (2.33)

where the Reynolds number and Stokes layer thickness are

Re = U0δ

ν
, (2.34)

δ =
√

2ν
ω
. (2.35)

For all analyses in this study, Pr = 1. The streamwise vorticity component (see figure 2)
is defined as

ζ̂1 = ∂yŵ − ∂zv̂. (2.36)
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Let the infinitesimal disturbances (hatted variables) take the form of a normal mode
decomposition in the spanwise (y) direction:

ζ̂1( y, z, t) = ζ1(z, t) eily + c.c., (2.37)

b̂( y, z, t) = b(z, t) eily + c.c., (2.38)

where the modal streamfunction ψ and modal velocities are defined by

ζ1 = (∂zz − l2)ψ, (2.39)

(v,w) = (−∂zψ, ilψ), (2.40)

l = ldδ = 2π

λ
δ, (2.41)

where λ is the disturbance wavelength in the along-isobath direction. Finally, the
governing equation for the evolution of the streamwise vorticity modes is

∂tζ1 = ∂zz − l2

2
ζ1︸ ︷︷ ︸

diffusion

+ ilC2b cot θ︸ ︷︷ ︸
baroclinic

production of vorticity

, (2.42)

and the governing equation for the evolution of the associated buoyancy is

∂tb = ∂zz − l2

2 Pr
b︸ ︷︷ ︸

diffusion

− ∂zB(z, t) il Re
2

ψ︸ ︷︷ ︸
advection of

base buoyancy

. (2.43)

There are no terms representing vorticity tilting or the advection of disturbances by the
base flow in (2.42) and (2.43). The basic state flow enters the equations only through
the advection of base flow buoyancy by the buoyancy disturbances (the first term on
the right-hand side of (2.33)). Equations (2.42) and (2.43) indicate that the investigated
instability is a manifestation of time-periodic Rayleigh–Bénard instability because the
growth of disturbances is attributable solely to gravitational instabilities associated with
the time-periodic boundary layer stratification. The state vector for (2.42) and (2.43) is

x(z, t) =
[
ζ1(z, t)
b(z, t)

]
, (2.44)

and the dynamical operator for the evolution of the system is

A(z, t) =

⎡
⎢⎢⎣

∂zz − l2

2
ilC2 cot θ

−∂zB(z, t) il Re(∂zz − l2)−1

2
∂zz − l2

2 Pr

⎤
⎥⎥⎦ , (2.45)

such that the evolution of the system is governed by

dx
dt

= Ax, (2.46)

where the operator A(t) is periodic:

A(z, t + T) = A(z, t). (2.47)
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2.4. Boundary conditions
The oscillatory forcing was imposed by imposing a ‘moving wall’ boundary condition
rather than applying a body force directly on the evolving modes. At the moving wall, the
total flow boundary conditions on the momentum are no-slip and impermeable, therefore
at z = 0,

u′ = Ui + εû = cos t i, (2.48)

where 0 < ε � 1 is a small parameter, and

U(0, t) = cos t, (2.49)

therefore

∂zψ = 0 (2.50)

is required to satisfy the no-slip condition at z = 0. The streamfunction must be constant
along an impermeable wall, therefore it is numerically convenient to choose

ψ = 0 (2.51)

at z = 0 to satisfy w = ∂yψ = 0. The wall is adiabatic, therefore

∂zb′ = ∂zB + ε ∂zb̂ = 0. (2.52)

Since the basic state stratification satisfies

∂zB = 0, (2.53)

the disturbance stratification must satisfy

∂zb̂ = 0 (2.54)

at z = 0.
At z → ∞, the boundary conditions for Stokes’ second problem are parallel and

irrotational flow (Blennerhassett & Bassom 2002). Parallel flow is ensured if

ψ = 0 (2.55)

at z → ∞. Irrotational flow at z → ∞ is prescribed by

ζ1 = 0. (2.56)

The background hydrostatic stratification is constant in the far field, therefore at z → ∞,
the base flow and disturbance stratification must be adiabatic:

∂zb = 0. (2.57)

2.5. Discrete Floquet exponents, modes and multipliers
Let the disturbance state vector x be composed of two dynamical variables that vary in a
single spatial dimension (z): the across-isobath vorticity ζ1 and the Boussinesq buoyancy b.
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Both variables are discretized onto a grid of Nz discrete points in the z coordinate:

x(t) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

ζ1(z1, t)
...

ζ1(zNz, t)
b(z1, t)
...

b(zNz, t)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=
⎡
⎣ x1(t)

...

xM(t)

⎤
⎦ , (2.58)

where the length of state vector x is M = Nv × Nz (the number of variables, Nv , multiplied
by the number of grid points). The principal fundamental solution matrix Φp(t) for state
vector x(t) is defined as

Φp(t) =
⎡
⎣ x1,1(t) . . . x1,M(t)

...
. . .

...

xM,1(t) . . . xM,M(t)

⎤
⎦ , (2.59)

such that each column of the principal fundamental solution matrix is the state vector
for each separate initial condition for all Nz possible initial conditions. The principal
fundamental solution matrix at time t = T (where T is the oscillation period) can be
analysed to determine the fastest growing Floquet mode and discrete grid location of the
largest Floquet multiplier (see Appendix A for the derivation and formal properties of the
principal fundamental solution matrix). At time t = 0, the principal fundamental solution
matrix is an identity matrix that can be interpreted physically as a set of independent
linear disturbances of the system; thus each Floquet mode represents an initial disturbance
at each discrete grid location.

The innovation of Floquet (1883) was the recognition that without loss of generality,
the initial conditions specified at time t = t0 can be expressed in terms of the eigenvectors
of the principal fundamental solution matrix after one oscillation period has elapsed, t =
t0 + T . Floquet theory utilizes the principal fundamental solution matrix to calculate the
mapping of the state vector from t = t0 to t = T:

x(T) = Φp(T) x(0), (2.60)

where we have arbitrarily chosen t0 = 0. The eigenvectors of Φp(T) are mapped from x(0)
to x(T) by the eigenvalues of Φp(T):

Φp(T) xk(0) = μk xk(0), (2.61)

where μk is the kth eigenvalue of Φp(T). The eigenvalues are the Floquet multipliers, and
the real components of the multipliers indicate the stability of the system.

(i) If all Floquet multipliers satisfy Re[μk] < 1, for k = 1, . . . ,M multipliers, then all
disturbances decay as t → ∞ and the system is stable.

(ii) If any Floquet multipliers satisfy Re[μk] = 1, and the rest satisfy Re[μ] < 1, then
the stability of the system is periodic as t → ∞.

(iii) If any Floquet multiplier satisfies Re[μk] > 1, then the disturbance will grow in
amplitude as t → ∞ and the system is unstable.
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The Floquet exponents γk satisfy

γk = logμk

T
(2.62)

for each kth eigenvalue, and the Floquet modes are defined as the solution of (2.46), with
the initial conditions defined as the eigenvectors of (2.61), such that the modes satisfy

xk(T) = μk xk(0) (2.63)

= exp(γkT) xk(0). (2.64)

Additional Floquet theory details are provided in Appendix A.

3. Numerical methods

As described in § 2.5, the length of the disturbance state vector x is Nv × Nz,
where Nv is the number of variables, and Nz is the number of grid points. In the
streamfunction-vorticity formulation in this study, Nv = 2 for vorticity and buoyancy. The
number of grid points in z, the wall-normal direction, for all calculations was Nz = 200.
Therefore, the discrete principal fundamental solution matrix is a square matrix with
2Nz rows and columns. The variables were computed at the cell centres of a uniform
grid of height H/δ = 32, where the non-dimensional grid encompassed z = [0,H/δ].
Previous studies found that Floquet stability calculations for Stokes’ second problem were
unaffected by an upper domain boundary as long as it was located at H/δ = 32 or greater
(Blennerhassett & Bassom 2006; Luo & Wu 2010).

Centred second-order finite difference schemes were used to compute the discrete
forms of all first and second derivatives, and the vorticity inversions that appear the
dynamical operator A(z, t). To implement the no-slip, impermeable boundary conditions
at the wall, (2.50) and (2.51), the streamfunction and its z derivative were set to zero.
However, to guarantee unique solutions at second-order accuracy, the vorticity at the
wall was required to compute the second derivatives of the vorticity. The second-order
accuracy was confirmed with grid convergence tests shown in Appendix B. A second-order
accurate extrapolation of the vorticity at the wall that accounts for no-slip and impermeable
boundary conditions was derived by Woods (1954) for this purpose. The Woods (1954)
boundary condition is

ζ(0, t) = 3
(�z)2

ψ(z1, t)− 1
2
ζ(z1, t), (3.1)

where z = 0 denotes variables located at the wall, and z = z1 denotes variables located
at the first cell centre. All of the other boundary conditions (2.54), (2.55), (2.56) and
(2.57) were implemented readily into the discrete derivatives within the discrete form of
the operator A(z, t). Finally, test functions were used to ensure that the truncation error for
all discrete derivatives and inversions decreased with (�z)−2, where �z is the height of a
grid cell.

To obtain the principal fundamental solution matrix at time t = T , (A5) was integrated
over one period with the standard explicit fourth-order Runge–Kutta time advancement
method, equivalent to solving simultaneously the evolution of the state vector in (2.46)
in which each linearly independent solution begins with each linearly independent initial
condition as defined in (A4). The method for computing the principal fundamental solution
matrix in this study is formally second-order accurate.

953 A29-15

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

97
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.975


B.E. Kaiser and L.J. Pratt

0.95 1.15 1.350.750.550.35

(Least squares) N = 200, H = 32, neutral stability

Blennerhassett & Bassom (2002), neutral stability

Luo & Wu (2010), linear neutral stability

0.15
600

1000

1400

1800

2200

2600

21.6

18.9

16.2

13.5

10.8

8.1

5.4

2.7

0

–2.7

log10 (Re[μ])

k

Re

Figure 4. The neutral stability curve for Stokes’ second problem. Verification of spatial discretization,
temporal discretization and eigenvalue calculation. The computed Floquet multipliers are shown by the grey
shading, and the calculated Re[μ] = 1 contour is represented with the blue line. Here, k is the streamwise
wavenumber (analogous to the across-isobath wavenumber on a slope); see Appendix D for the governing
equation for spanwise vorticity disturbances for Stokes’ second problem.

3.1. Solver verification
The neutral stability curve for Stokes’ second problem was computed as a code verification
test, shown in figure 4. There, the blue line is the computed neutral stability curve, and the
pink line is a least squares fit of the computed neutral stability curve. The yellow line is
a least squares fit of the computed stability curve by Blennerhassett & Bassom (2002),
who used a spectral method for the computation, and the blue dots were calculated by
linearized direct numerical simulations by Luo & Wu (2010). The variations in the neutral
stability curve about the pink line can be attributed to the spatial discretization method.
This hypothesis is supported by the Floquet results for the neutral stability curve for
Mathieu’s equation (see Appendix B), which has no spatial derivatives and was computed
to graphical accuracy using the same code for time integration and eigenvalue calculation.

The irregularities of the blue neutral stability curve in figure 4 occur because of the
combined effect of the initialization of the principal fundamental solution matrix as
an identity matrix and finite difference spatial discretization. In the first time step of
the calculation, the finite difference of discontinuous functions (specifically Dirac delta
functions, one for each column of the principal fundamental solution matrix) introduces
discretization errors (e.g. numerical dispersion from forward differences) that do not
converge with increased grid resolution because the initial conditions remain an identity
matrix for any possible grid resolution. Recall that Floquet theory requires that the
principal fundamental solution matrix at time t = t0 must be an identity matrix. To verify
that the discontinuities of the initial conditions are the source of non-convergent numerical
error, the stability of Stokes’ second problem was computed for varied Reynolds numbers
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Figure 5. Grid convergence occurs only for stable calculations. Stable Floquet multiplier calculations achieve
grid convergence. Near the neutral stability curve, the Floquet multiplier calculations fail to achieve grid
convergence because finite differences of the identity matrix initial condition of the principal fundamental
solution matrix introduce grid independent noise. Therefore the ‘wiggles’ of the blue curve in figure 4 are due
to the sensitivity of the multiplier value to noise introduced at just after t = 0 when finite differences are taken
of discontinuities in the principal fundamental solution matrix.

and grid resolutions at k = 0.35, as shown in figure 5. The Floquet multipliers in figure 5
that correspond to stable points in the neutral stability plot of figure 4 converge quickly
with increasing grid resolution. However, for Re � 1400, k = 0.35 (inside or near the
unstable region of figure 4), the multipliers in figure 5 do not converge with increasing
grid resolution. For comparison, the grid convergence of the derivative and inversion
discretization was verified by using a smooth test function (Appendix C). Since the
non-convergent error does not arise from the calculation of temporal or spatial derivatives
of smooth functions, by process of elimination the non-convergent error must arise from
the calculation of the spatial derivatives of the discontinuous functions at time t = t0.
Therefore, the neutral stability curves calculated by our finite difference method must be
considered an approximate and conservative estimate.

4. Results

Figure 6 depicts the results of Floquet analysis of vorticity and buoyancy disturbances
governed by (2.42) and (2.43), respectively, which indicate that the system is
increasingly linearly unstable as the Reynolds number, criticality parameter and
non-dimensional spanwise disturbance wavenumber are increased. Here, Re < 10 and l <
0.5, approximately, give maximum Reynolds number and disturbance wavelength required
for stability for the entire investigated parameter space. At C � 1, the minimum Reynolds
number necessary for global linear instability increases, and the forcing of vorticity
disturbances by buoyancy disturbances decreases because the baroclinic production term
on the right-hand side of (2.42) vanishes in the limit C → 0. Therefore, increased stability
at small C � 1 suggests that baroclinic production of disturbance vorticity is the primary
mechanism of instability. This result is in agreement with the empirical and approximate
stability criteria of Hart (1971), which posits that the flow is globally stable if C2 � 1.
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Figure 6. log10(Re[μ]) for the streamwise vorticity ζ1 for subcritical and supercritical slopes as functions of
criticality parameter (C = N sin θ/ω), Reynolds number (Re = U0δ/ν) and spanwise disturbance wavenumber
(l = 2πδ/λ). The pink lines are the Floquet neutral stability curves (Re[|μ|] = 1, Re[|γ |] = 0).

If ω, N and θ are constant, then (2.19) indicates that increasing the oscillation velocity
amplitude U0 and thus the Reynolds number will increase the amplitude of the buoyancy
oscillations B0 as well. Since the boundary layer thicknesses δ1, δ2 do not depend on U0,
and they determine the length scale of the boundary layer buoyancy gradient, the boundary
layer buoyancy gradient increases with increasing Reynolds number, and both quantities
force buoyancy disturbances through the second term on the right-hand side of (2.43).
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Figure 7. Integrated ζ1, b budgets for Re = 420, l = 1.0. Percentages of the right-hand sides of (2.42) and
(2.43) are calculated by spatio-temporal integration of A(z, t), for the most unstable Floquet mode at each
value of C. The flow is Floquet unstable at Re = 420, l = 1.0 for all C investigated, therefore the dominant
mechanisms induce disturbance growth.

The system is stable to small along-isobath wavenumber disturbances because all of
the terms on the right-hand sides of (2.42) and (2.43) vanish except for the diffusion of
disturbances in the wall-normal direction in the limit as l → 0. Growing disturbances
described by (2.45) are confined to the boundary layer because they are forced by the
base flow buoyancy gradient that vanishes outside the boundary layer; disturbances that
propagate outside of the boundary layer are diffused.

The fingers on the neutral stability curves shown in figure 6 merit further examination by
different numerical methods, particularly at C = 1/2, 3/4 and 5/4. The convergence of the
time integration and spatial derivative schemes were verified independently (Appendices B
and C), therefore by elimination, the irregularities in the neutral stability curves in figures 4
and 6 are attributed to the spatial discontinuities in the initial conditions of the principal
fundamental solution matrix (A4). Nevertheless, comparison of the approximate behaviour
of neutral stability curves in figures 4 and 6 suggests that the global gravitational instability
is generally unstable at lower Reynolds numbers than Stokes’ layer instabilities.

Each equation term in matrix A(z, t) (see (2.45)) was integrated in z and t for the fastest
growing Floquet mode (the mode with maximum μ, where μ > 1) to assess qualitatively
the dominant physical mechanisms of the fastest growing linear disturbances. The terms
were normalized by the total right-hand-side forcing, corresponding to the rows of A(z, t),
such that the temporally and spatially integrated forcings sum to unity. The magnitudes
of the equation terms, shown in figure 7, suggest that on both subcritical and supercritical
slopes, the fastest growing linearly unstable disturbances are amplified by the non-diffusive
terms in (2.42) and (2.43), and that the diffusive terms increasingly inhibit the growth of
linear instabilities as C → 0.

The inherent three-dimensionality of the gravitational instability initiated by
along-isobath buoyancy disturbances (2.38) to the across-isobath vorticity component is
evident in the baroclinic vorticity production term of the governing equation for the total
vorticity. The total baroclinic vorticity production can be derived by taking the curl of
(2.4):

time rate of change of total
baroclinic vorticity production = C2(il b(z, t) eily cot θ i − ∂zB j − il b(z, t) eily k), (4.1)

where the total vorticity is defined as ∇ × ũ. Equation (4.1) reveals that growing
along-isobath buoyancy disturbances force the across-isobath and wall-normal
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vorticity components. This suggests that the growth of linear gravitational instabilities
induced by along-isobath disturbances may induce three-dimensional motion, a
phenomenon that is observed widely in stratified shear flow instabilities (Peltier &
Caulfield 2003), and it suggests that the full three-dimensional dynamics may need
to be considered to assess accurately the growth of linear modes as t → ∞ because
three-dimensional diffusive damping or other relaminarization mechanisms may affect
the growth of unstable modes over the course of one period (Blondeaux, Pralits
& Vittori 2021). DNS by Kaiser (2020) suggest that at low Reynolds number, the
growth of linear instabilities is dissipated by three-dimensional chaotic motion. The
total baroclinic vorticity production may also be necessary to describe the evolution of
two-dimensional rolls in the along-isobath plane, initiated by gravitational instabilities,
into three-dimensional motions and subsequently a relaminarized state as observed by
Hart (1971) in experiments. Further experiments and DNS of relevant flows are needed.

5. Conclusions

Floquet linear stability theory was applied to laminar, oscillating, stratified, viscous
diffusive boundary layers on infinite slopes in non-rotating reference frames. The linear
stability of two-dimensional disturbances in the y–z plane (described by the across-isobath
vorticity ζ1) was evaluated within the non-dimensional parameter ranges 0 < Re � 1750,
1/8 � C � 7/4, 0 < l � 3 and Pr = 1. The parameter regime is consistent with idealized
M2 tidal heaving of isopycnals up and down smooth, middle-latitude abyssal slopes where
N/ω ∼ 7.1, 0 < θ � π/12, ν ∼ 2.0 × 10−6 m2 s−1, ω ∼ 1.4 × 10−4 rad s−1, 35.4 � λ <
∞ cm and 0.0 < U∞ � 2.1 cm s−1. The most salient results of the Floquet analyses are
as follows.

(i) Only the low along-isobath wavenumber modes, l � 0.1, were stable for all
Re investigated, corresponding to boundary layer disturbance wavelengths of
approximately λ � 0.3 m on low- to midddle-latitude abyssal slopes.

(ii) The critical Reynolds number (the lowest unstable Reynolds number for all
along-isobath disturbance wavenumbers) decreases with increasing slope criticality,
ranging from Re ≈ 300 (corresponding to an oscillating abyssal tide amplitude
U0 ∼ 10−3 m s−1) at C = 1/8 to Re ≈ 10 (corresponding to an oscillating
abyssal tide amplitude U0 ∼ 10−4 m s−1) at C = 3/4 and C = 5/4. Therefore
our analysis predicts that oscillations of the M2 tide at typical abyssal
magnitudes (U0 ∼ 10−2 m s−1) are Floquet unstable to along-isobath gravitational
disturbances characterized by wavenumbers l � 0.1, corresponding to wavelengths
of approximately λ � 0.3 m.

(iii) The mathematical description of the investigated linear instability is similar to
that of the linear gravitationally unstable Couette flow (Ingersoll 1966), where
the growth of along-isobath/spanwise buoyancy disturbances are not suppressed
or excited by across-isobath/streamwise shear. The investigated instabilities may
alternatively be considered as manifestations of time-dependent Rayleigh–Bénard
instability. However, further experiments on the investigated flow in the range of
parameter space relevant to abyssal slopes are needed, as are nonlinear and/or
three-dimensional stability analyses.

(iv) Our finite difference numerical approach is more sensitive to numerical noise near
the neutral stability curve than spectral methods. Temporal derivative discretization
was verified by comparison with analytical Floquet solutions, and spatial derivative
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discretization was verified by grid convergence of the spatial derivatives and
inversions for a smooth test function. Therefore, the source of the numerical errors
near the neutral stability curves is attributable solely to finite difference errors arising
from the approximation of the derivatives of the discontinuities in the identity matrix
initial conditions. The identity matrix initial conditions are prescribed by Floquet
theory and must remain an identity matrix regardless of grid resolution, thus the
numerical errors of concern cannot be eliminated by increasing the grid resolution.
Therefore, our finite difference method yields an approximate estimate of the extent
of the neutral stability curve.
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Appendix A. Floquet theory fundamentals

In this appendix, Floquet theory for tensors is summarized briefly to show how Floquet
multipliers can be calculated directly for base flow solutions across spatial grids. The
reader is referred to Iooss & Joseph (2012) for the complete derivation. In Floquet theory,
the principal fundamental solution matrix is a mapping of the state vector x at time t = 0
to one period, t = T . For a state vector x(t) of shape [M × 1], where M is the number of
variables times the number of grid points, there exists a fundamental solution matrix Φ(t)
of shape [M × M] and coefficient vector c of shape [M × 1] such that

x(t) = Φ(t) c. (A1)

The fundamental solution matrix is a non-unique matrix in which the columns are the
structure of the linearly independent solutions. The magnitudes of the elements in Φ
depend on the choice of c, and the only restriction to the choice of a tenable c is that
Φ be invertible. In that case, at time t = 0,

c = Φ(0)−1 x(0). (A2)

Substitution of (A2) into (A1) yields

x(t) = Φ(t)Φ(0)−1 x(0). (A3)

The principal fundamental solution matrix Φp is just a fundamental solution matrix chosen
such that at t = 0, it is an identity matrix:

Φp(0) = I. (A4)

Substitution of (A4) into (A3) yields (2.60), therefore the principal fundamental solution
matrix at time t = T maps the initial state x(0) to the final state after one period, x(T).
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Figure 8. The neutral stability curve for Mathieu’s equation; verification of the temporal discretization scheme
and the eigenvalue calculation. The computed Floquet multipliers are shown by the grey shading, and the
Re[μ] = 1 contour lies under the yellow line of Kovacic, Rand & Sah (2018) to graphical accuracy.

By definition, (2.46) can be written in terms of the principal fundamental solution matrix,

dΦp

dt
= A(t)Φp(t), (A5)

so Φp(T) can be obtained directly by integrating (A5) forward in time one period. The
direct application of Floquet theory to a state vector describing a fluid flow has been used
by Noack & Eckelmann (1994), Robichaux, Balachandar & Vanka (1999) and Barkley
& Henderson (1996) to study instabilities in the periodic von Kármán vortex streets that
develop in the wakes of cylinders.

Appendix B. Floquet analysis of Mathieu’s equation

The Mathieu equation is an ordinary differential equation of the form

∂tty + f (t) y = 0, (B1)

where
f (t) = δ + ε cos(t). (B2)

The neutral stability curve of Mathieu’s equation was computed to verify the temporal
discretization and is shown in figure 8.

Appendix C. Finite difference grid convergence

Second-order accurate finite difference stencils were used to form discrete matrices for
the calculation of the first and second derivatives of the buoyancy disturbances (2.43),
for the calculation of the second derivatives of the vorticity disturbances (2.42), and for
calculating the streamfunctions by inverting the vorticity (2.39). Figure 9 shows the grid
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Figure 9. Grid convergence of buoyancy derivatives.
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Figure 10. Test function for ψ .

convergence of the buoyancy derivative stencils when applied to the test function b =
cos(2πz/H). The test function for checking the inversions and vorticity derivatives,

ψ(z) = ((z + 1)3 − z2 − 3z − 1)e−mHz, (C1)

was chosen because it satisfies the same boundary conditions as were required for the
Floquet analysis. The test ψ(z) is shown in figure 10. The grid convergence of the
Woods (1954) vorticity boundary condition (which imposes no-slip and impermeable
boundary conditions on the diffusion of vorticity), the second derivative of vorticity, and
the inversion of vorticity to obtain the streamfunction are shown in figure 11.

Appendix D. Stokes’ second problem governing equations

The governing equation for the spanwise vorticity disturbances is

∂tζ2 = ∂zz − k2

2
ζ2︸ ︷︷ ︸

diffusion

− Uik Re
2

ζ2︸ ︷︷ ︸
mean

advection

+ (∂zzU)ik Re
2

ψ︸ ︷︷ ︸
vorticity line tilting

by mean flow

+ C2(∂z − ik cot θ)b︸ ︷︷ ︸
baroclinic

production of vorticity

, (D1)
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Figure 11. Grid convergence of finite differences for the vorticity.

and the governing equation for the buoyancy disturbances in the x–z plane is

∂tb = ∂zz − k2

2 Pr
b︸ ︷︷ ︸

diffusion

− Uik Re
2

b︸ ︷︷ ︸
mean

advection

+ (∂zB)ik Re
2

ψ︸ ︷︷ ︸
advection of

mean buoyancy

. (D2)

Equation (D2) and the baroclinic vorticity term in (D1) are eliminated for Stokes’ second
problem, where C = 0 and b(z, t) = 0. The remaining spanwise vorticity disturbance
equation (Blennerhassett & Bassom 2006) was used to calculate the linear stability of
Stokes’ second problem shown in figure 4:

∂tζ2 = ∂zz − k2

2
ζ2 − Uik Re

2
ζ2 + (∂zzU)ik Re

2
ψ. (D3)
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