Pico-scale Distortions in Encapsulated Monolayer α-RuCl$_3$ Characterized with 3D Electron Diffraction

Yin Min Goh1, Suk Hyun Sung2, Bowen Yang3,4, Gaihua Ye5, Sananda Biswas6, David A. S. Kaib6, Ramesh Dhakal7, Shaohua Yan8, Chenghe Li5, Shengwei Jiang9,10, Fangchu Chen3,4, Hechang Lei8, Rui He5, Roser Valentí6, Stephen M. Winter7, Adam W. Tsen3,11, Robert Hovden2,12

1. Department of Physics, University of Michigan, Ann Arbor, MI, USA.
2. Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI, USA.
3. Institute for Quantum Computing, University of Waterloo, Waterloo, ON, Canada.
4. Department of Physics and Astronomy, University of Waterloo, Waterloo, ON, Canada.
5. Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, TX, USA.
6. Institut für Theoretische Physik, Goethe-Universität Frankfurt, Max-von-Laue-Strasse 1, Frankfurt am Main, Germany.
7. Department of Physics and Center for Functional Materials, Wake Forest University, Winston-Salem, NC, USA.
8. Department of Physics and Beijing Key Laboratory of Opto-electronic Functional Materials & Micro-nano Devices, Renmin University of China, Beijing, China.
9. Department of Physics, Cornell University, Ithaca, NY, USA.
10. Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, China.
11. Department of Chemistry, University of Waterloo, Waterloo, ON, Canada.
12. Applied Physics Program, University of Michigan, Ann Arbor, MI, USA.

Two dimensional (2D) α-RuCl$_3$ is a promising candidate for realizing the Kitaev quantum spin liquid (QSL)—an exactly solvable spin model on a 2D honeycomb lattice [1]. QSL have strong magnetic frustration and competing magnetic ground states, which collectively leads to long-range quantum entanglement that is ideal for quantum computing [2]. Due to the highly two-dimensional (2D) nature of α-RuCl$_3$, stacking faults and interlayer spacing could play a role in the magnetic response of the system [3]. More generally, magnetic materials are sensitive to bond coordination and small structural distortions of the lattice. Monolayer α-RuCl$_3$ can have energy and properties different from its bulk counterpart, and pico-scale distortions that increases the material’s proximity to QSL [4]. However, observations of the magnetic excitations and associated atomic configuration are challenging, especially in a single layer of α-RuCl$_3$ that readily degrades with oxygen exposure. By encapsulating an exfoliated α-RuCl$_3$ monolayer between single layer graphenes, we realize a protected monolayer α-RuCl$_3$ sample in the true 2D limit. However, encapsulation poses an additional challenge: real-space imaging methods such as AFM or HAADF-STEM are incapable or poorly suited for structural characterization of encapsulated samples. We employ 3D electron diffraction that probes the out of plane structure to extract the thickness and pico-scale distortions of encapsulated materials.
Here, we characterize the crystal structure and pico-scale distortions of an encapsulated 2D magnetic system—monolayer α-RuCl$_3$—using 3D electron diffraction and a kinematic scattering model of the 3D reciprocal structure for 2D materials. The real space structure of monolayer α-RuCl$_3$ is a honeycomb lattice in projection (Fig. 1a). The spacing between Cl and Ru atomic planes is denoted by λ_{Cl}, and Ru atoms may buckle out-of-plane as denoted by $\Delta\zeta_{\text{Ru}}$ (Fig. 1b). Acquiring electron diffraction patterns at various tilt angles is akin to slicing through the reciprocal structure consisting of Bragg rods (Fig. 1c).

The in-plane reciprocal lattice positions $(h, k \in \mathbb{Z})$ and continuous out-of-plane $(k_z \in \mathbb{R})$ oscillations of the Bragg rods encode information about the structural parameters (Fig. 1d). For α-RuCl$_3$, specific Bragg rods in reciprocal space advantageously decouple structural parameters that can be quantified by the Bragg intensity oscillations. The $(h, k) = \{1, 0\}$ peaks are useful for quantifying the number of layers and the $\{1, 1\}$ and $\{3, 0\}$ peaks oscillate along k_z-direction with a direct dependence on λ_{Cl}.

Fitting of the Bragg rod structure to experimental diffraction intensities confirms the successful isolation of monolayer α-RuCl$_3$ in between single sheets of graphene. In 3D electron diffraction, we acquired selected area electron diffraction (SAED) patterns while tilting the sample from $+35^\circ$ to -35° in 1° increment and each Bragg peak intensity is mapped as a function of k_z [4]. The integrated diffraction intensities as a function of k_z (Fig. 2b–c, scatter points) matches closely with the kinematic model of a monolayer α-RuCl$_3$ (Fig. 2b–c, solid lines) thereby confirming the realization of α-RuCl$_3$ in 2D.

Small structural distortions away from the ideal crystal can also be measured by 3D electron diffraction. By fitting a more general reciprocal structure, distortions in the Ru-Cl interatomic distance and pico-scale buckling of Ru atoms are extracted for our encapsulated monolayer sample. In an undistorted structure, we expect the $(h, k) = \{1, 0\}$ peaks to be symmetric and centered about $k_z = 0$ (Fig 2c: no buckling). However, experimental diffraction intensities exhibit a symmetry reduction (Fig. 2c) which correspond to out-of-plane buckling of the Ru atoms, $\Delta\zeta_{\text{Ru}}$. Simultaneous curve fitting of the kinematic model to the $\{10\overline{1}0\}, \{11\overline{2}0\}, \{30\overline{3}0\}$ peaks of α-RuCl$_3$ gives $\lambda_{\text{Cl}} = 1.3101 \pm 0.0257\text{Å}$ and $\Delta\zeta_{\text{Ru}} = 0.30 \pm 0.15\text{Å}$. These values are consistent with previously reported interatomic plane spacing and modes of distortion in monolayer α-RuCl$_3$ [5, 6].

To extract the structural information of an encapsulated 2D magnet, we combined 3D electron diffraction with a kinematic model of the reciprocal space structure. Experimental diffraction intensities provide a representative average of the real-space structure of an encapsulated α-RuCl$_3$ sample—including its thickness, interatomic plane spacing, pico-scale Ru buckling out-of-plane. The technique proposed here provides precise atomic coordinates for *ab-initio* calculations and is applicable to other 2D materials that require encapsulation.

References:

Figure 1. Real and reciprocal space structure of monolayer α-RuCl$_3$. (a) A schematic of our monolayer α-RuCl$_3$ sample encapsulated in between graphene layers, and a plane view of the 2D honeycomb lattice. (b) Structural parameters indicated on α-RuCl$_3$ with and without Ru buckling. (c) Bragg rods occupy the reciprocal space of α-RuCl$_3$. The thickness and color of rods represent their complex amplitude and phase of oscillation. (d) Side view of the Bragg rods showing out-of-plane momentum (k_z) dependence.

Figure 2. Kinematic model fitting to α-RuCl$_3$ Bragg peaks of an electron diffraction tilt series. (a) Selected area electron diffraction (SAED) pattern of graphene-encapsulated α-RuCl$_3$. Twin diffraction peaks highlighted in gray are due to encapsulating graphene layers. Various orders of α-RuCl$_3$ diffraction peaks (circled) are used in model fitting. (b, c) Experimental diffraction intensities as a
function of k_z (scatter points) fitted with kinematic model (solid lines) of monolayer α-RuCl$_3$. Color and indices of data correspond to circled peaks in (a). In (c), symmetry-breaking of (01$\bar{1}$0) and (0$\bar{1}$10) Bragg rod intensities signifies out-of-plane buckling of Ru atoms.