JFP 14 (6): 623-633, 2004. (© 2004 Cambridge University Press 623
DOI: 10.1017/S0956796804005131 Printed in the United Kingdom

FUNCTIONAL PEARL

Linear lambda calculus and
PTIME-completeness

HARRY G. MAIRSON

Computer Science Department, Volen Center for Complex Numbers,
Brandeis University, Waltham, MA 02254, UA
(e-mail: mairson@cs.brandeis.edu)

Abstract

We give transparent proofs of the PTIME-completeness of two decision problems for terms
in the A-calculus. The first is a reproof of the theorem that type inference for the simply-
typed A-calculus is PTIME-complete. Our proof is interesting because it uses no more than the
standard combinators Church knew of some 70 years ago, in which the terms are linear affine —
each bound variable occurs at most once. We then derive a modification of Church’s coding
of Booleans that is linear, where each bound variable occurs exactly once. A consequence of
this construction is that any interpreter for linear A-calculus requires polynomial time. The
logical interpretation of this consequence is that the problem of normalizing proofnets for
multiplicative linear logic (MLL) is also PTIME-complete.

1 Type inference for simply typed A-calculus

The Circuit Value Problem (CVP) is to determine the output of a circuit, given
an input to that circuit. CVP is complete for PTIME, because polynomial-time
computations can be described by polynomial-sized circuits (Ladner, 1975). The
Cook-Levin NP-completeness theorem, it should be noticed, merely augments these
circuits with extra inputs which correspond to nondeterministic choices during a
polynomial-time computation. We show how to code CVP into simply-typed A-
terms, where both type inference and term evaluation are synonymous with circuit
evaluation.

The programs we write to evaluate circuits are not perverse: they are completely
natural, and are built out of the standard Church coding of Boolean logic (e.g. see
Hindley & Seldin (1986)). We use ML as a presentation device, without exploiting
its let-polymorphism. That is, we use the convenience of naming to identify A-terms
of constant size, used to build circuits. Had we expanded the definitions, the term
representing the circuit would grow by only a constant factor, and become harder
to read. Here, then, are the standard, classical combinators, coded in ML:

https://doi.org/10.1017/50956796804005131 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796804005131

624 H. G. Mairson

- fun True x y= x;

val True = fn : ’a -> ’b -> ’a
- fun False x y= y;
val False = fn : ’a -> ’b -> ’b

- fun Not p= p False True;

val Not = fn: ((’a -> ’b => ’b) -> (Pc -> ’d -> ’c) -> ’e) -> ’e
- fun And p g= p q False;

val And = fn : (a -> (b -> ’c -> ’¢) -> ’d) -> ’a -> ’d

- fun Or p g= p True q;

val Or = fn : ((’a -> ’b => ’a) -> ’¢c -> ’d) -> ’c -> ’d

Read True as the constant if true, where “if true then x else y” reduces to x.
Similarly, read the body of And as “if p then q else False.” Observe that True and
False have different types. Notice the read-eval-print loop where the interpreter
reads untyped code, and then returns procedures with inferred type information
automatically computed. We already know from our study of the untyped A-calculus
how these terms work to code Boolean functions. However, when these functions
are used, notice that they output functions as values; moreover, the principal types
(i.e. the most general types, constrained only by the typing rules of the simply-typed
lambda calculus, and nothing else) of these functions identify them uniquely as True
or False:

- Or False True;

val True = fn : ’a -> ’b -> ’a
- And True False;

val False = fn : ’a -> ’b -> ’b
- Not True;

val False = fn : ’a -> ’b -> ’b

As a consequence, while the compiler does not explicitly reduce the above expressions
to normal form, hence computing an “answer,” its type inference mechanism
implicitly carries out that reduction to normal form, expressed in the language
of first-order unification.

The computations over Boolean values can be understood in the context of the
graph representations of the types (see Figure 1). Notice how the nodes in the type
for And can be associated uniquely with subterms from the code for And — a linearity
very much in the spirit of linear logic.

We now observe a certain weirdness: namely, that nonlinearity destroys the
isomorphism between terms and types. Suppose we define a function Same that
is a kind of identity function:

- fun Same p= p True False;
val Same = fn : ((’a => ’b -> ’a) -> (’c -> ’d -> ’d) -> ’e) -> ’e

- Same True;
val it = fn : ’a -> ’b -> ’a
- Same False;
val it = fn : ’a -> ’b -> ’b

https://doi.org/10.1017/50956796804005131 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796804005131

Functional pearl 625

and

/ \ true false

— —
~ B \ ./ \
Pq —> —
' 2 ﬂé>) Q
/ y

/ Yﬂse pq false
—

Fig. 1. Graph representations of the terms and principal types of And, True, False.

o not

p
S b .
true _{ P _»
p false
false —» >

- p true q /
_ true
_'\ p false true

—

¢

Fig. 2. Graph representations of the terms and principal types of Or, Not.

Now define a nonlinear function Weird that uses its input twice:

- fun K x y= x;

val K = fn : ’a -> ’b -> ’a

- fun Weird p= K (Same p) (Not p);

val Weird = fn : ((’a => ’a -> ’a) -> (’b -> ’b => ’b) -> ’¢c) -> ’c
- Weird True;

val it = fn : ’a -> ’a -> ’a
- Weird False;
val it = fn : ’a -> ’a -> ’a

Even though (Weird p) reduces to p, its type is not a function of p; thus the
principal type no longer identifies the normal form. The problem with Weird is that
its input occurs twice, and that each occurrence must have the same type. Thus the
types of Same and Not are unified: each gets type ((’a -> ’a -> ’a) -> (°b ->
’b => ’b) -> ’c¢) -> ’c. And then Same p returns a value (True or False), but

https://doi.org/10.1017/5S0956796804005131 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796804005131

626 H. G. Mairson

always of type ’a -> ’a -> ’a. Notice also that defining fun AlsoWeird p= Or
p p will produce a type error, for similar reasons.

We fix this problem with a functional fanout gate, which we call Copy, in the spirit
of the duplication in the exponentials of linear logic:

- fun Pair x y z= z x y;

val Pair = fn : ’a -> ’b -> (Pa -> ’b -> ’c) -> ¢

- fun Copy p= p (Pair True True) (Pair False False);

val Copy = fn : ((((’a -> ’b -> ’a) -> (’c -> ’d -> ’c) -> ’e) -> ’e)
=> ((Cf -> g ->’g) -> (Ch -> ’i -> ’i) -> ’j) -> ’j) => ’k) -> ’k
- Copy True;

val it = fn : ((Ca -> ’b -> ’a) -> (Pc -> ’d -> ’c) -> ’e) -> ’e

- Copy False;

val it = fn : (Ca -> ’b -> ’b) -> (Cc -> ’d -> ’d) -> ’e) > ’e

Copy restores the linearity of terms, so that each variable occurs at most once. Now
we can again compute unweirdly:

- fun Unweird p= (Copy p) (fn pil=> fn p2=> K (Same pl) (Not p2));

val Unweird = fn : ((((’a -=> ’b => ’a) -> (’c => ’d -> ’c) -> ’e)

-> ’e) > ((Cf -> g ->"’g) > (Ch -> i -> i) -> ’j) -> ’j) > ((Ck
-> 1 -> k) > (’m -> ’n -> ’n) -> ’0) -> ((C’p -> ’q -> ’q) -> (r
=>’s => ’r) => ’t) -> ’0) -> ’u) -> ’u

- Unweird True;

val it = fn : ’a -> ’b -> ’a
- Unweird False;
val it = fn : ’a -> ’b -> ’b

In this coding, Copy p produces a pair of values, each f-equivalent to p, but not
sharing any type variables. The elements of the pair are bound to pl and p2,
respectively, and the computation thus proceeds linearly.

A Boolean circuit can now be coded as a A-term by labelling its (wire) edges and
traversing them bottom-up, inserting logic gates and fanout gates appropriately. We
consider the circuit example shown in Figure 3; the circuit is realized by the ML
code

- fun circuit el e2 e3 e4 eb e6=
let val e7= And e2 e3 in
let val e8= And e4 e5 in
let val (e9,e1l0)= Copy (And e7 e8) in
let val ell= Or el €9 in
let val el2= Or el0 e6 in
Or ell el2
end
end
end
end
end;

Removing the syntactic sugar of let, this essentially straight-line code “compiles”
to the less comprehensible simply-typed term

https://doi.org/10.1017/50956796804005131 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796804005131

Functional pearl 627

Fig. 3. Labelling of a Boolean circuit.

- fun circuit el e2 e3 e4 eb e6=
(fn e7=>
(fn e8=>
(Copy (And e7 e8))
(fn e9=> fn e10=>
(fn el1=>
(fn e12=> Or ell el2)
(Or e10 e6))
(0r el e9)))
(And e4 eb5))
(And e2 e3);

The use of procedure naming is incidental: we could just plug in the code for the
logic gates instead of using their names. We can now plug inputs into the circuit,
and the type inference mechanism is forced to “evaluate” the circuit:

- circuit False True True True True False;
val it = fn : ’a -> ’b -> ’a

The output is “True”—True is the only closed, normal form with the given type!
We can make the code for the circuit look even more like “straight-line code” by

introducing the continuation-passing version of unary and binary Boolean functions:

- fun cpl fnc p k= k (fnc p);

val cpl = fn : (a => ’b) -> ’a -> (b -> ’¢c) -> ’c

- fun cp2 fnc p q k= k (fnc p q);

val cp2 = fn : (a => ’b => ’c) -> ’a -> ’b -> (’c -> ’d) -> ’d

https://doi.org/10.1017/5S0956796804005131 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796804005131

628 H. G. Mairson

- val Notgate= cpl Not;
val it = fn : (C’a -> ’b -> ’b) -> (’c -> ’d -> ’c) -> ’e) —>
(’e => ’f) -> °f
- val Andgate= cp2 And;
val it = fn : (Pa -> (’b -> ’c => ’¢c) -> ’d) -> ’a > (°d -> ’e) -> ’e
- val Orgate= cp2 Or;
val it = fn : ((’a -> ’b => ’a) -> ’c -> ’d) -> ’c -> (°d -> ’e) -> ’e
We now write instead:
- fun circuit el e2 e3 e4 eb5 eb6=

(Andgate e2 e3 (fn e7=>

(Andgate e4 e5 (fn e8=>

(Andgate e7 e8 (fn f=>

Copy £ (fn e9=> fn el0=>

(Orgate el €9 (fn ell=>

(Orgate €10 e6 (fn el2=>

Or ell e12))))));
val circuit = fn : ((’a -> ’b -> ’a) -> ’c -> (°d -> ’e -> ’d) -> ’f
=>g) => Ch -> (i ->’j => ’j) => 'k => (1L -> ’m => ’m) -> (((’n
-> 0 => ’n) -> Cp ->’q -> ’p) -> ’r) => ’r) > ((Cs -> 't -> ’t)
=> Cu -> v > ’v) > ’w) -> ’w) > (Cc > (COx ->’y -> ’x) -> ’z >
£) -> ’g) -> ’ba) -> *h -> (’bb -> (’bc -> ’bd -> ’bd) -> ’k) -> ’bb
-> ’z -> ’ba
- circuit False True True True True False;
val it = fn : ’a -> ’b -> ’a

Why does the above contruction imply a PTIME-completeness result for type
inference? Containment in PTIME is well known for this problem, because type
inference is synonymous with finding the solution to a set of first-order constraints
over type variables, possibly constants, and the binary contructor —.

The PTIME-hardness is more interesting: a property ¢ is PTIME-hard if, given
any fixed PTIME Turing machine M and an input x, the computation of M on
x can be compiled, using O(log|x|) space, into a problem instance I, where I has
property ¢ iff M accepts x. The circuit value problem is such a problem: given
circuit C and input 9, is the output of C “true”? Such a circuit can be computed by
a compiler using only logarithmic space, and a further logarithmic space algorithm
(which we have essentially given here) compiles C and ¥ into a A-term E, where
E has the principal type of True iff C outputs “true” on . Composing these two
compilers gives the PTIME-hardness of type inference.

2 Linear A-calculus and multiplicative linear logic

The above coding uses K -redexes as well as linearity in an essential way: the codings
of True and False each discard one of their arguments. Now we construct Boolean
terms and associated gates where each bound argument is used exactly once, so
that we have constructions in linear A-calculus. We then see that the process of
normalizing terms is complete for PTIME.

- fun True x y= Pair x y;

val True = fn : ’a -> ’b -> (’a => ’b -> ’¢c) -> ’c
- fun False x y= Pair y x;
val False = fn : ’a -> ’b -> (°b -> ’a -> ’c) -> ’c

https://doi.org/10.1017/50956796804005131 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796804005131

Functional pearl 629

Observe that the Booleans are now coded by abstract pairs, where the first component
is our old, “real” value, and the second is some kind of garbage that preserves
linearity. Negation is easy:

- fun Not P x y= P y x;
val Not = fn : (a => ’b -> ’¢c) -> ’b -> ’a -> ’c

- Not True;
val False = fn : ’a -> ’b -> (°b -> ’a -> ’c) -> ’c
- Not False;
val True = fn : ’a -> ’b => (’a -> ’b -> ’c) -> ’c

Now consider what happens if we code Or P Q as P True Q—it doesn’t work.
Observe that Or True False = True True False = Pair True False. In gen-
eral, Or P Q will equal Pair (PV Q) (P — Q). The second component of the pair is
garbage: we need to dispose of it while preserving linearity. The function id below
turns Boolean garbage into the identity function:

- fun I x= x;

val I = fn : ’a -> ’a

- fun id B=B I I I;

val id = fn : ((’a -> ’a) -> (b => ’b) -> (’c -> ’c) -> ’d) > ’d

- id True;
val it = fn : ’a -> ’a
- id False;
val it = fn : ’a -> ’a

We use id to collect garbage in Boolean gates:

- fun Or P Q= P True Q (fn u=> fn v=> (id v) u);

val Or = fn

(CCa -> b > (Pa => ’b => ’¢c) => ’¢c) > ’d > (e > ((Cf -> ’f) >
(g => ’g) => (Ch -> ’h) -> ’e => ’i) => ’i) -> ’j) -> ’d -> ’j

- Or True False;

val it = fn : ’a -> ’b -> (’a -> ’b -> ’¢c) -> ’c
- Or False False;
val it = fn : ’a -> ’b -> (b -> ’a -> ’¢c) -> ’c

- fun And P Q= P Q False (fn u=> fn v=> (id v) u);

val And = fn

(’a => (b => ’c => (’c => b => ’d) -> ’d) -> (e => ((f -> ’f) >
(’g => ’g) -> (Ch => ’h) -> ’e => ’i) => ’i) -> ’j) -> ’a -> ’j

- And True True;

val it = fn : ’a -> ’b -> (Pa => ’b -> ’c) -> ’c
- And False True;
val it = fn : ’a -> ’b -> (b -> ’a -> ’c) -> ’c

Again, we have a gate that copies Boolean values, with a slightly more complicated
garbage collector:

https://doi.org/10.1017/50956796804005131 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796804005131

630 H. G. Mairson

- fun Copy P= P (Pair True True) (Pair False False)
(fn U=> fn V=>
U (fn ul=> fn u2=>
V (fn v1=> fn v2=>
(Pair ((id v1) ul) ((id v2) u2)))));
val Copy = fn
(((Ca => ’b => (a => ’b => ’¢c) -> ’¢c) => (’d -> ’e => (’d -> ’e >
£) -> f) > ’g) > ’g) > ((Ch -> i -> (°1 -> ’h => ’j) -> j) >
()k -> 71 -> ()1 -> 7k -> Jm) -> 7m) ->)n) -> 3n) -> (((Jo -> Jp ->
@) -> ’r) > (((Cs => ’s) > Ct =>’t) => (Cu -> ’uw) -> 0 > ’v)
=> (Cw => ’w) > (Cx -> ’x) -> Cy -> ’y) => ’p -> ’z) > (v -> ’z
-> ’ba) -> ’ba) -> ’q) -> ’r) -> ’bb) -> ’bb

Now we take the continuation-passing versions of the logic gates:

- val Notgate= cpl Not;
val Notgate = fn : (a -> ’b -> ’c) -> ((’b -> ’a -> ’c) -> ’d) -> ’d
- val Orgate= cp2 Or;
val Orgate = fn :
(CCa ->"'’b -> (Ca ->"’b ->’c) ->’c) > ’d > (e -> (Cf -> f) >
(:g ->)g) -> (’h -> :h) -> e => ’i) -> ’i) N)J) -> ’d >
j -> k) >’k
- val Andgate= cp2 And;
val Andgate = fn
(’a => (b => ’c => (Pc => b => *d) -> ’d) -> (e > (Cf -> f) >
()g ->)g) -> ()h -> 3h) -> 7e -> 3i) -> 7i) -> lj) ->)a ->
Cj -> k) >’k

Once again, we have a circuit simulator:

- fun circuit el e2 e3 e4d eb e6=

Andgate e2 e3 (fn e7=>

Andgate e4 e5 (fn e8=>

Andgate e7 e8 (fn f=>

Copy £ (fn e9=> fn e10=>

Orgate el e9 (fn ell=>

Orgate e10 e6 (fn e12=>

Or ell e12))))));
val circuit = fn : ((’a -> ’b -> (Pa => ’b -> ’c) -> ’c) -> ’d > (’e
-> (()f ->)f) -> ()g ->)g) -> ()h -> Jh) ->)e -> 3i) ->)i) -> (7j
-> Jk -> ()j -> Jk ->)1) -> 71) ->)m -> ()n -> (()0 -> JO) -> (Jp ->
’p) > (°q -> ’q) -> ’n -> ’r) -> ’r) -> ’s) > (t -> (Cu -> v >
Cv => u ->’w) > w) > Cx > (Cy -> ’y) -> (°z => ’z) > (Pba >
’ba) -> ’x -> ’bb) -> ’bb) -> ’bc -> (’bd -> ’be -> (’be -> ’bd ->
'bf) -> ’bf) -> (’bg -> ((’bh -> ’bh) -> (’bi -> ’bi) -> (’bj -> ’bj)
-> ’bg -> ’bk) -> ’bk) -> (((°bl -> ’bm -> (°bl -> ’bm -> ’bn) -> ’bn)
-> (’bo -> ’bp -> (’bo -> ’bp -> ’bq) -> ’bg) -> ’br) -> ’br) ->
((Cbs -> ’bt > (bt -> ’bs —> ’bu) —> ’bu) -> (bv -> ’bw -> (Cbw ->
’bv => ’bx) -> ’bx) -> ’by) -> ’by) -> (((’bz -> ’ca -> ’cb) -> ’cc)
=> (((Ccd -> ’cd) -> (Pce -> ’ce) —> (Pcf -> ’cf) -> ’bz -> ’cg) —>
(C’ch => ’ch) -> (Pci -> ’ci) -> (’cj => ’cj) -> ’ca => ’ck) —> (’cg
-> ’ck -> ’cl) -> ’cl) -> ’cb) -> ’cc) -> (°d => ((’cm => ’cn -> (Pcm

https://doi.org/10.1017/50956796804005131 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796804005131

Functional pearl 631

-> ’cn -> ’co) -> ’co) > ’cp -> (’cq -> ((Pcr -> ’cr) -> (’cs -> ’cs)
-> (’ct => ’ct) -> ’cq > ’cu) -> ’cu) -> ’m) -> ’s) -> ’cv) -> 't ->
Cew => (Pcx => ’cy -> (Pcy => ’cx => ’cz) -> ’cz) -> (’da -> ((’db —>
’db) -> (’dc -> ’dc) -> (°dd -> ’dd) -> ’da -> ’de) -> ’de) -> ’bc) ->
cw => ’cp -> ’cv

It is said that the proof of the pudding is in the tasting; here, the proof of the coding
is in the testing:

- circuit False True True True True False;
val it = fn : ’a -> ’b -> (Pa -> ’b -> ’c) -> ’c

We further assert the following pearl theorem: the fn-normal form of any simply-
typed, linear A-term E, with or without free variables and K-redexes, may be
inferred from only its principal type ¢. Moreover, every linear term is simply typable
(Hindley, 1989). Notice that it is the multiple occurrence of variables, (for example,
in iterators such as Church numerals) which weakens this pearl theorem, and all that
is left is parametricity, where the type indicates a property instead of identifying the
exact normal form; see, for instance, Mairson (1991) and Wadler (1989). Multiple
occurrences of a variable are also the way to make this problem one of typability;
for example, in the non-affine coding presented in this section, we may define

- fun Test puv= (p u v) (fn a=> fn b=> b u);
val Test = fn : (Ca -> b => (’c => (Pa -> ’d) -> ’d) -> ’e) -> ’a ->
b -> e

Then Test True has a type, but Test False does not.

We conclude by mentioning some more technical connections of the above
constructions to the normalization of proofs in linear logic. Every typed linear
A-term represents a proof in multiplicative linear logic (MLL) (Girard, 1987), where
the conclusions of the proof represent the types of the free variables and output
of a term, and the structure of the proof represents the term. Here is the logic:

) A A A+ IA AB I,A,B
—— Axiom —— Cut ® 4
A, AL T, A AA®B T,4%B

These rules can type graphs and graph reduction for linear A-calculus, an expressive
subset of MLL proofnets. A wire (Axiom rule) has (expression) type A in one
direction, and (continuation) type A+ in the other. The Cut connects an expression
to a continuation. The ® pairs a continuation and input for a function, and thus
represents an application (@) node. The *@ unpairs them, representing a A-node; the
associated function can be thought of dually as either transforming the continuation,
or the expression.

https://doi.org/10.1017/50956796804005131 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796804005131

632 H. G. Mairson

The reduction rule for this logic is like f-reduction in the J-calculus. We negate
variables appropriately to make this analogy transparent.

ILB- A A > A B Bt = 4.B
® P ——— Cut
ILAB*®A4 T, At % B = I,z A+ A A
Cut Cut
I,%,A [,ZA

This says: to reduce the connecting of a function (of type A* »® B) to an application
context (of type B+ ® A), connect the output of the function (B) to the continuation
(B1), and the input (4) to the parameter request of the function (44).

Every time an MLL proof is reduced, the proof gets smaller. Reduction is then
easily seen to be polynomial time. Given that our circuit simulation is a linear
A-term, it is representable by an MLL proof. Thus proof(net) normalization for
multiplicative linear logic is complete for polynomial time. We observe finally that
with the introduction of second-order quantification in the style of System F (Girard,
1972), we can define the linear type Bool = Vo.oo —o o —o o ® o, and give binary
Boolean functions the uniform type Bool —o Bool —o Bool. The programming
techniques we have described above then let us code projection functions of type
Bool ® Bool —o Bool and duplication functions Bool —o Bool ® Bool, without
weakening or contraction. In this limited way, we recover the features of exponentials
from linear logic. This analysis is generalized in Mairson & Terui (2003), where the
types other than Bool for which exponentials can be simulated are characterized;
in addition, we show that light multiplicative linear logic, a proper subset of light
affine logic (where copying is restricted), can represent all the PTIME functions. At
this point, however, the discussion is no longer a pearl.

Historical note

The analysis of type inference through linear J-calculus is something I understood
while working on this subject roughly a decade ago. While the linear features were
very apparent, it is only recently that I saw the real connection with linear logic.
The results of section 1 were outlined in more technical terms in a paper joint with
Fritz Henglein (Henglein & Mairson, 1994), where they were used to derive lower
bounds on type inference for Systems F and F,. I wish to acknowledge both his
collaboration in this presentation, as well as the previous appearance of these ideas
in this very journal. I take the liberty of repeating them here — it is not for nothing
that this endeavor is called research — not only because the ideas form a pearl
that deserves to be known more widely, but also because the clarity of the original
version in the journal was lost due to numerous production errors.

Acknowledgements

I am deeply grateful to Kazushige Terui, whose invited lecture at the 2002 Linear
Logic workshop in Copenhagen (Terui, 2002), as well as continued discussions
afterwards, have inspired me to think more about many of these issues.

https://doi.org/10.1017/50956796804005131 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796804005131

Functional pearl 633

References

Girard, J.-Y. (1972) Interprétation fonctionnelle et élimination des coupures de l'arithmétique
d’ordre supérieur. These de doctorat d’état, Université Paris VII.

Girard, J.-Y. (1987) Linear logic. Theor. Comput. Sci. 50.

Henglein, F. and Mairson, H. G. (1994) The complexity of type inference for higher-order
typed lambda calculi. J. Functional Program. 4(4), 435-477.

Hindley, J. R. (1989) BCK-combinators and linear lambda-terms have types. Theor. Comput.
Sci. 64(1), 97-105.

Hindley, J. R. and Seldin, J. P. (1986) Introduction to Combinatory Logic and Lambda Calculus.
Cambridge University Press.

Ladner, R. (1975) The circuit value problem is log space complete for P. SIGACT News
(ACM Special Interest Group on Automata and Computability Theory), 7.

Mairson, H. G. (1991) Outline of a proof theory of parametricity. Proceedings International
Conference on Functional Programming Languages and Computer Architecture: LNCS 523,
pp- 313-327. Springer-Verlag.

Mairson, H. G. and Terui, K. (2003) On the computational complexity of cut elimination in
linear logic. Proceedings Italian Conference on Theoretical Computer Science: LNCS 2841,
pp. 23-36. Springer-Verlag.

Terui, K. (2002) On the complexity of cut-elimination in linear logic (invited lecture). Federated
Logic Conference (FLOC) 2002, Workshop on Linear Logic, Copenhagen, Denmark.

Wadler, P. (1989) Theorems for free! Proceedings International Conference on Functional
Programming Languages and Computer Architecture, pp. 347-359. ACM Press.

https://doi.org/10.1017/5S0956796804005131 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796804005131

