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Abstract. Let ρ : G ↪→ GL(n, �) be a representation of a finite group over the
field �, V = �n the corresponding G-module, and �[V ] the algebra of polynomial
functions on V . The action of G on V extends to �[V ], and �[V ]G, respectively �[V ]G,
denotes the ring of invariants, respectively coinvariants. The theorem of Steinberg
referred to in the title says that when � = �, dim� (Tot(�[V ]G)) = |G| if and only if
G is a complex reflection group. Here Tot(�[V ]G) denotes the direct sum of all the
homogeneous components of the graded algebra �[V ]G and |G| is the order of G.
Chevalley’s theorem tells us that the ring of invariants of a complex pseudoreflection
representation G ↪→ GL(n, �) is polynomial algebra, and the theorem of Shephard
and Todd yields the converse. Combining these results gives: dim�(Tot(�[V ]G) = |G|
if and only if �[V ]G is a polynomial algebra. The purpose of this note is to show that
the two conditions

(i) dim�(Tot(�[V ]G)) = |G|,
(ii) �[V ]G is a polynomial algebra

are equivalent regardless of the ground field; in particular in the modular case.
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Let ρ : G ↪→ GL(n, �) be a representation of a finite group over the field �,

V = �n the corresponding G-module, and �[V ] the algebra of polynomial functions on
V . The action of G on V extends to �[V ], and we denote by �[V ]G, respectively �[V ]G,
the ring of invariants, respectively coinvariants. As a general reference for invariant
theoretic matters we use [2]. The theorem of Steinberg referred to in the title is the
equivalence (a) ⇐⇒ (e′) in Theorem 1.3 of the amazing paper [3]. It says that when
� = �, dimC(Tot(�[V ]G)) = |G| if and only if G is a complex reflection group. Here
Tot(�[V ]G) denotes the direct sum of all the homogeneous components of the graded
algebra �[V ]G and |G| is the order of G. Chevalley’s theorem tells us that the ring of
invariants of a complex pseudoreflection group G ↪→ GL(n, �) is a polynomial algebra,
and the theorem of Shephard and Todd yields the converse, [2, Theorem 7.4.1]. The
purpose of this note is to prove the following theorem, which is a characteristic free
analog of Steinberg’s theorem.

THEOREM. Let G
ρ

↪→ GL(n, �) be a representation of a finite group over the field �.
Then the conditions

(i) dim�(Tot(�[V ]G)) = |G|,
(ii) �[V ]G is a polynomial algebra,

are equivalent.
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Proof. Suppose (i) holds. By definition

�[V ]G = � ⊗�[V ]G �[V ]

is the module of �[V ]G-indecomposable elements of the module �[V ] (see e.g.,
[2, Section 5.1]). Therefore we can find an epimorphism

ϕ : �[V ]G ⊗ �[V ]G −→ �[V ]

of �[V ]G-modules. We claim that ϕ is actually an isomorphism. To see this let � =
FF (�[V ]G) be the field of fractions of �[V ]G and � = FF (�[V ]) that of �[V ] and note
that ϕ induces a map (the classic Cartan–Eilenberg change of rings map)

Φ : � ⊗ �[V ]G = � ⊗�[V ]G (�[V ]G ⊗ �[V ]G) −→ � ⊗�[V ] �[V ] = �

of �-vector spaces. We claim Φ is an epimorphism. For, if f/h ∈ �, then by multiplying
numerator and denominator by

∏
1�=g∈G gh we may suppose that h is G-invariant, so

1/h ∈ �. Since ϕ is an epimorphism we may write

f = ϕ

( ∑
i∈�

fi ⊗ ui

)
,

where � is a finite index set, fi ∈ �[V ]G, and ui ∈ �[V ]G. Then

f
h

= 1
h
ϕ

( ∑
i∈�

fi ⊗ ui

)
= Φ

(
1
h

⊗ ϕ

( ∑
i∈�

fi ⊗ ui

))
,

showing Φ is an epimorphism.
Since (i) holds, � ⊗ �[V ]G has dimension |G| as a �-vector space, and since � ↪→ �

is Galois with Galois group G so does �. Hence Φ is an isomorphism.
The functor �⊗�[V ]G —is an exact functor, so ker(� ⊗ ϕ) = � ⊗�[V ]G ker(ϕ). Since

ker(ϕ) is �[V ]G-torsion free ker(ϕ) �= 0 implies that � ⊗�[V ]G ker(ϕ) �= 0 and this
implies ker(Φ) �= 0 contrary to what was just shown. Hence ker(ϕ) = 0 and ϕ is an
isomorphism. Therefore �[V ] is a free �[V ]G-module and the result follows from
[2, Theorem 6.4.4] or [1].

The implication (ii) ⇒ (i) follows from the Degree theorem, [2, Theorem 5.5.3].
Specifically, if �[V ]G = �[ f1, . . . , fn] then f1, . . . , fn ∈ �[V ] are a system of parameters
since �[V ]G ↪→ �[V ] is a finite extension. Since �[V ] is Cohen–Macaulay f1, . . . , fn ∈
�[V ] is a regular sequence so �[V ] is a free �[V ]G module. Let deg( fi) = di for i =
1, . . . , n. Then the Poincaré series of �[V ]G is

P(�[V ]G, t) = P(�[V ], t)
P(�[V ]G, t)

=
1

(1 − t)n

1∏n
i=1(1 − tdi )

=
n∏

i=1

(1 + t + · · · + tdi−1)

and evaluating P(�[V ]G, t) at t = 1 then gives

dim�(Tot(�[V ]G)) = d1 · · · dn = |G|

by a corollary to the Degree theorem [2, Corollary 5.5.4]. �
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REMARK. The argument in the proof of the theorem that shows that Φ is an
epimorphism is valid in general. It implies the following elementary fact which shows
that the condition (i) is an extremal condition, namely a minimum condition.

COROLLARY. Let G
ρ

↪→ GL(n, �) be a faithful representation of a finite group over the
field �. Then dim�(�[V ]G) ≥ |G|.
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