ON RING PROPERTIES OF INJECTIVE HULLSi)

B. L. Osofsky

(received November 7, 1963)

1. Introduction. Several authors have investigated
"rings of quotients' of a given ring R. Johnson showed that
if R has zero right singular ideal, then the injective hull of

RR may be made into a right self injective,.regular (in the

sense of von Neumann) ring (see [7] and [12]). In articles by
Utumi [10], Findlay and Lambek [6], and Bourbaki [2], various
structures which correspond to sub-modules of the injective

hull of R are made into rings in a natural manner. M [8],
Lambek points out that in each of these cases the rings con-
structed are subrings of Utumi's maximal ring of right quotients;
which is the maximal rational extension of R in its injective
hull. Lambek also shows that Utumi’ s ring is canonically

isomorphic to the bicommutator of the injective hull of RR

if R has 1. It thus appears that a "natural' definition of
the injective hull of RR as a ring extending module multipli-

cation by R has been carried out only in the case that the
injective hull is a rational extension of R. (See [12], [10],
or [6] for various definitions of this concept. )

The purpose of this note is to study what may happen if
one tries to make the entire injective hull of a2 ring R into a
ring extending module multiplication, rather than stopping at

1
) This note is taken from the author's doctoral dissertation

being written at Rutgers University under the direction of
Professor Carl Faith.
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Utumi' s ring of quotients. The author first exhibits an example
which shows that it may be impossible to do so. Then a ring is
constructed whose injective hull may be made into a ring,

although this ring properly contains Utumi's ring of quotients.
Finally some information about such a ring extension is derived.

In what follows, R will denote an associative ring with
identity. MR will signify that M 1is a unital right R module,

and M will denote its injective hull. M is a maximal essential
extension and minimal injective extension of M (see [5]}). Much
use will be made of the fact that MR is injective if and only if

for every right ideal I of R and every f{¢ HomR(I,M), there
is an m ¢ M such that f(x) =mx for all xel (see [1], or [3]
p.8}). Such an element m will be said to induce f.

¥ {a, b, ...} Q_MR, |2, b, ...) will denote the sub-
module of MR, and <a, b, ...> the subgroup of (M,+)

generated by {a, b, ...}. Z will denote the ring of rational
integers, and Zn will denote Z/nZ for ne Z.

a 2
2. An example where R is not a ring. ) Let R be the

ring
22
[_24 4
Lo z,

under usual matrix addition and multiplication.

2
) Feor further examples where R may fail to be a ring, see

the author's dissertation. In these other examples, the
associative law rather than the distributive law fails.
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One readily verifies that the map

0

0

gives an R isomorphism between [ and J.
to an isomorphism 217,

00
01
some injective hull of I,

~

Si
ince IR

by an element m ¢ T

Assume 2m' # 0.
I, [(2m')R)MI# 0; but

0 0 2
2 0 o0

Then { extends
One also readily verifies that

) is an essential extension of I, so it is contained in

say I.

is injective, the map f-1 € HomR(J,T) is induced

Let m' =m ; g . Then
0 0] 00
= , m' = 0
0 2] 0 1

3 b3 . - ‘ .
Since 1 is an essential extension of

2 0
[(2m')R) = <m'(2R)> = <m' > = <2m'> |,
0 2
00
! =
so that 2m [0 2}, and
00 1 0 1 0
0 = = 2m' = 2m'!
0 2 00 00

This contradicts our assumption that 2m' # 0.

A
Now assume R is a ring. Then, from the above,

" 00 00 0 2 0 0
0 = 2m')f§ = (m')f = m! =
' 01 0 2 00 0 2
a contradiction.
407

https://doi.org/10.4153/CMB-1964-039-3 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-1964-039-3

3. ﬁ a ring properly containing Utumi's ring of quotients.

Let R be an algebra over Z2 with basis {1, x, y, xy} and

multiplication defined by:
1 is a two sided identity,
2 2 2
0=x =y =(xy) =yx=x(xy)=y(xy) =(xy)x = (xy)y -
R is associative, since any triple product not involving 1 is 0.

We observe that the socle of R y) ® [xy). Hence

g =

P A /\ ~ - .
= ly) ® |xy) (see [9]). Moreover, since R is unital,
2R =0
~
By direct computation we obtain |y} =<y, m, n, v
where
mx =y, my =0,

nx =0, ny =y,
0.

]

ux = n, uy

This may be easily verified by showing that every map from a
right ideal of R into <y, m, n, uv> is induced by some element
thereof, and that we indeed have an essential extension of |y).

N
_~Since Ixy) is isomorphic to ]y), [xy) is isomorphic
to |y). We then get an injective hull of |xy) by taking
<xy, m, X%, 1-n> where
- mx = xy, my = 0.
Then a basis for R is {1, x, y, xy, m, n, u, @m}. We

construct the following multiplication table for R as an

algebra over ZZ.

408

https://doi.org/10.4153/CMB-1964-039-3 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-1964-039-3

1 x y Xy m n u m

1 1 x y xy m n u m
x x 0 xy 0 m x i-n 0
y y 0 0 0 0 y m 0
xy xy 0 0 0 0 xy @ 0
m m y 0 0 0 0 0 0
n n 0 y 0 m n u 0
u u n 0 Y 0 0 0 m
m m xy 0 0 0 0 0 0

That this multiplication is associative may be verified by
actually computing triple products. 3} The author was unable
to find a non-computational method for proving that R isa ring.

To prove that R is not Utumi's ring of quotients, we use
the fact that Utumi' s ring consists precisely of those elements
-~ A A
of R which are annihilated by all Xe HomR(R. R) such that

A(1) =0 (see Lambek [8]). It is easily verified that the following
induce R homomorphisms of R:

flm) =y ; £(1) =£(m) =£(u) =0 ;

g(m) =y ; g(1) =g(m) =g(u) =0 ;

h(u) =m; h(41) =h(m) =h(m) =0 .
Since each homomorphism is 0 on the identity and each element

of <m, n, u, M> is not sent into 0 by some one of {f, g, h},
we conclude that Utumi' s ring of quotients is precisely R.

4. R isa ring. In this section we generalize a result
of Lambek [8] to the case where R may be made into a ring,
although that ring may properly contain Utumi' s ring of quotients.

3)

A table of these triple products may be found in the author's
doctoral dissertation.
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Assume that (ﬁ, +, ©) is a ring, where mer =mr for
all meR, reR. Let /\ =HomR(§, R). We first prove a

standard embedding lemma.
LEMMA 1. (ﬁ, +, ©) is isomorphic to a subring of A.

Proof. Define a2 map from R to A by m —m, where

m(x) =mex for all m, xc¢ R. For all m, n, x¢ R,

(m¥n)(x) = (m+n)ex =mex +nex = M(x) + f(x) = (M+o)}(x) ,

(Men)(x) = (men)ex =me(nex) = M(A(x)) = (MA)(x) ,
so this map is a ring homomorphism. If m =0
O=m(4)=mei =mi=m,
so the map is one-to-one.

We will denote the image of R under this map by &,
and the image of R by K.

LEMMA 2. A is a unital 2 module.

Proof. Let e be the identity of A. 11=1e1=1, so
T is an idempotent of A . Hence e - 1 is also idempotent,
and (e - 1)(r)=r-r =0 for all reR.

Since A 1is the endomorphism ring of the injective
module RR, the Jacobson radical of /A consists precisely of

those elements of /\ which annihilate an essential submodule
of RR. (see [11], Lemma 8). Then (e - 1) is an idempotent

in the Jacobson radical, so e - 1=0. Thus, e actually
belongs to A .

We wish to show that A,é is an injective module. To do

so we need some more information about the structure of A .
Let R ={x ¢ A|\1) =0}.

= > i
LEMMA 3. A/e -/g?@ ,el.
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Proof. Let A\, pe R, reR. (M1 pu){1)=0 so
ANtpe £5. AF(1)=X(r)=0 so \Fe£*. Thus R* isan
/A module.

Let ¢ A, m:X(i).A Then (A - mM){1)=m -m=0,
so \-melt and A =R + RY. U xe RNARL, let
R be such that x=m. Then 0=x(1) =m(1) =m, so

m
0=m =x. Thus the sum is direct.

T

We are now ready to prove the theorem.

A

THEOREM. A 1is an injective £ module.

Proof. ' Since /\? is unital by Lemma 2, to prove that
A is injective we need only show that every fe¢ Homé(‘/, A,

for « a right ideal of &, is induced by some element 8¢ A .

For A ¢ A, let IIX be the projection of )\ onto /é
with respect to £*. Then It Hom((/\ ,”Z2). Let V bea

A A
right ideal of £, fe¢ Homé(g/,/\ ). Then Ife Horn/e(g/, ).
A

Since f{R is injective, by the isomozlphism of Lemma 1, A2

2
is injective. Then there exists 8¢ Hom/e(l?, /é) such that 8

restricted to «/ is If. For all me R, define 8 ¢ A by
8 (m) =[6([)](1). Then

8 (mr) = [8(mF)](1) = [8(@)F](1) = [6(F)](r) = [§(@)](1)r =6 (m)r ,
so O is indeed an R homomorphism.
For all ¥ ¢ 7,

(£(R) - 0F)1) = £(R(1) - 68(x) = £(R)(1) - [3(D](1)
= [£(®) - mER)](1) =0 .

Hence f(X)- 0X=u_¢ L.
lLet m be any element of R.

a M= (f(%) - 0%)E =£{(Nf@M - (0X)@ = f(%x@M) - 0FA = u e R
X Xom
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Hence uxfﬁ(i) = ux(m) =0, so u = 0. Thus f(X) =6Xx for all

Xevw and A,é‘ is injective.

COROLLARY. Let R be a ring with 1 such that the

injective hull R of RR is a rational extension of RR. Then

A

R

A is injective.
R

A
Proof. In this case, R 1is Utumi's ring of quotients,
and it is a ring isomorphic to A . Then Rﬁ = A & is injective

by the theorem.

This corollary is just (2)=>(6) in the proposition of
section 5 of Lambek [8].

The author does not know whether fiﬁ must always be

injective if R may be made into a ring. In the example of
section 3, we do get a self injective ring. For there is only

one irreducible left R module and one irreducible right R module,
and they are the duals of each other. Hence ﬁﬁ is injective

(see [4], section 58). Similarly, one may show that A

A
is not injective in this example.
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