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Translation of a non-spherical particle trapped at a membrane or at a complex interface
between fluids is a relevant situation occurring in biological, technological and everyday
life systems. Here, we consider prolate spheroidal particles, translating at a clean or
(insoluble) surfactant-laden planar interface located between a viscous fluid and air,
protruding into the surrounding subphase. Both the subphase and monolayer contribute
to the total resistance experienced by the particle, which in turn is a function of interface
and bulk viscosities, particle size and aspect ratio as well as the immersion depth of
the particle. We explore how the drag on a spheroidal particle at a viscous interface can
both rise or decrease with particle size depending on the dimensionless Boussinesq and
Marangoni numbers. For a surfactant-laden interface, the surfactant distribution in the
vicinity of the moving spheroid is significantly affected by the particle’s immersion depth.
When a particle sinks more in the viscous fluid, as determined by the involved surface
tensions, the difference in surfactant concentration between front and rear of the particle
decreases. For the drag coefficient of a spherical particle at an incompressible interface
at low shear Boussinesq numbers, we propose a correction to previously reported analytic
expressions. We probe both parallel and perpendicular friction coefficients as they are
significantly different depending on particle shape, qualitatively different depending on
surface shear viscosity, and we resolve the full three-dimensional distortion of the flow
field around the moving particle.
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1. Introduction

At vanishing Reynolds numbers, also known as creeping flow or the Stokes flow regime,
the flow field around a translating sphere fully immersed in an unbounded fluid is one
of the best characterized in fluid mechanics (Leal 2007). The analytical solutions of
the flow field around asymmetric prolate and oblate particles in an unbounded fluid
with no-slip boundary conditions on the particles are also known (Brenner 1963). In
the case of a sphere moving along the interface between two fluids, however, the
problem becomes more complex and cannot be solved analytically (Chisholm & Stebe
2021). This implies that the drag force on an adsorbed particle moving tangentially
to an interface cannot be calculated analytically for arbitrary contact angles. Adding
surfactant to the interface brings additional complications (Manikantan & Squires 2020).
The excess of surfactant molecules leads to an interface viscosity, which increases the
resistance of, and consequently the drag on, the particle. A translating particle disturbs
the surface concentration of the surfactant at the interface. The variation in the surfactant
concentration causes a gradient in interface tension and gives rise to an extra force, known
as the Marangoni force, in the opposite direction of the particle motion. A variation in
the surfactant concentration also generates a corresponding Marangoni flow, from the
high concentration (low interface tension) region to the low concentration (high interface
tension) region that counterbalances the Marangoni force (Pourali et al. 2021).

The aforementioned phenomena constituting a complex interaction between the
translating particle, bulk fluid, interface rheology and surfactant transport are such that
numerical or experimental methods are required to reveal the nature of this phenomena
and determine the frictional forces on particles moving along an interface (Jaensson,
Anderson & Vermant 2021). The drag coefficient is an important quantity in predicting and
analysing interfacial rheological properties or trajectories obtained from particle tracking
experiments (Bonales et al. 2007; Maestro et al. 2011). Knowledge about the motion and
diffusion of an anisotropic particle at the interface is crucial for the understanding of
biological systems (Ding, Warriner & Zasadzinski 2001), micro-organism motion (Lauga
et al. 2006; Masoud & Stone 2014; Shaik & Ardekani 2017), micrometre sized ‘Marangoni
surfers’ (Dietrich et al. 2020), and inclusions such as proteins, or other membrane-bound
particles, in biological membranes, and the design of artificial membranes (Ally &
Amirfazli 2010). Small particle probes also give microrheological methods increased
sensitivity compared with macroscopic methods (Samaniuk & Vermant 2014).

A starting point for the analysis and quantitative understanding of these systems is the
hydrodynamic model for the translation of a cylindrical particle in a slab of a viscous,
incompressible membrane with thickness d, which mimics the protein motion in bilayers
presented by Saffman & Delbrück (1975). According to Saffman’s model, the drag force
should be a logarithmic function of particle size. The bulk-surface coupling is described
by a hydrodynamic length scale, the Saffman–Delbrück length L (Saffman & Delbrück
1975; Saffman 1976),

L = ηs

ηa + η
, (1.1)

where ηs is the membrane surface viscosity, usually considered proportional to membrane
thickness d, and ηa and η are bulk viscosities of the adjacent fluids, here air (vanishing
ηa) and a viscous fluid. Consider a situation where the particle axis of symmetry is in
the direction normal to the membrane and translating with a constant velocity normal to
its axis of rotational symmetry. The model predicts the following relation for the drag
coefficient f for a non-protruding cylindrical particle with radius R whose length l is
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Spheroids at clean and surfactant-laden interfaces

identical with the membrane thickness (Saffman 1976; Dimova et al. 2000):

f = 4πηs

ln(L/R) − C
. (1.2)

Here C = 0.5772257 is the Euler–Masceroni constant and the ratio L/R is called the
Boussinesq number. Equation (1.2) assumes L � R. In general, for a particle with
characteristic linear size a, the Boussinesq number L/a quantifies the relative importance
of the interfacial shear stress to bulk stress. In the rest of this work we will denote this
number by Bq1, as we are going to consider a dilatational surface viscosity as well, giving
rise to an additional dimensionless number Bq2.

Numerous biological studies refer to Saffman’s continuum approach and some of them
show disagreement with the original study. For example, Gambin et al. (2006) measured
translational diffusion coefficients D = kBT/f of cylindrical peptides in a surfactant
bilayer and showed that the drag coefficient f is proportional to the radius R of the
diffusing object, f ∝ ηsR, and, therefore, there is a sharp qualitative disagreement with
the Saffman–Delbrück model concerning the dependence on R. The effects of inclusion
size in the membrane was studied by Levine & MacKintosh (2002) and Levine, Liverpool
& MacKintosh (2004). They calculated the drag coefficient of a non-protruding rigid
cylindrical rod (l � R) by solving the coupled equations for in-plane and out-of-plane
fluid motions, assuming incompressibility of both the bulk and the membrane. In their
work, the rod’s axis of symmetry is parallel to the interface. They showed that (i) for small
objects (specifically, l � L ), the drag coefficients become independent of both the rod
orientation and aspect ratio; and (ii) for larger rods (l > L), with high aspect ratio, the
drag coefficient in perpendicular motion f ⊥ becomes purely linear in the rod length l.
These results are qualitatively different from the motion of a rod in a three-dimensional
bulk fluid with viscosity η. In the limit of low Reynolds number, the viscous drag on a rod
is anisotropic and exhibits a logarithmic length dependency,

f = 2πηl
ln(Al/R)

, f ⊥ = 2f , (1.3)

where f is the drag coefficient in parallel motion (the particle’s centre moves in the
direction of the particle’s symmetry axis), and A is a numerical factor of order of unity
(Kirkwood & Auer 1951; Klopp, Stannarius & Eremin 2017). Comparing the results in
two and three dimensions shows that the relation in (1.3) breaks down in two dimensions.

Exploiting a similar approach, Fischer (2004b) derived the drag force on an ideal needle
of vanishing thickness moving in a surface film overlying a fluid of depth H. He showed
that for a parallel motion at high Boussinesq numbers, at similar viscosities and water
depths, the drag on a needle equals that on a disk if its length is 3.3 (for H � R) or 10.9
(for H � R) times longer than the diameter of the disk. For perpendicular motion at high
Boussinesq number, a needle experiences the same drag as for parallel motion, if it is
shorter by the factor 1/e than the edge-on moving needle.

There have been attempts to solve the Stokes equation for a protruding particle, at finite
contact angles. Danov et al. (1995) were the first to solve the Stokes equation numerically
for a three-dimensional particle that protrudes into the subphase. They modelled a
compressible interface characterized by interface shear and dilatational viscosity. They
reported the results for particles with contact angles between 20◦ and 90◦. In this model,
the interface surface tension was assumed to be a constant, therefore, the effect of the
Marangoni force was neglected. Dimova et al. (2000) later considered the Marangoni
effect and surfactant diffusion by using the Gibbs elasticity of the interface in their
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modified model, but they still neglected a coupling between interface and subflow. These
calculations are only valid for small deviations in the surfactant excess concentration, i.e.
for small Péclet numbers. Fischer, Dhar & Heinig (2006) used an approach different from
Levine et al. (2004), solving for the stresses due to the subphase and at the contact line
separately for interfaces with a shear viscosity, under the assumption that the interface is
incompressible. They presented solutions for contact angles between 0◦ and 180◦, as well
as for immersed particles in the liquid near to the interface. Stone & Masoud (2015) studied
the protrusion of oblate particles at the interface. They used a perturbation expansion for
the velocity and drag force on the particle as a function of particle protrusion. Using the
Saffman drag force as a zero order term in the expansion and applying the reciprocal
theorem they calculated the first-order term in the expansion which is due to the protrusion.
We are not aware of previous works that considered a spheroid at a viscous, compressible
interface that generates Marangoni flows.

To fill this gap of insight, we here investigate the effect of contact angle on the
Marangoni flow and the drag coefficient of spherical and prolate spheroidal particles
(ellipsoids of revolution) translating with a constant velocity, both parallel and tangential
to their principle axis, at the flat interface between fluid and air, while the interface is
possibly carrying insoluble surfactant. The interface is characterized by both shear and
dilatational viscosities. This work extends our previous study (Pourali et al. 2021) in two
directions: to particles with different contact angles and to non-spherical particles.

For those readers mainly interested in real-world applications, it important to stress
that the present work does not take into account any specific coupling between surface
viscosities and surfactant concentration; all three are treated as independent parameters.
This artificial setting allows us to explore the effects of the individual contributions
to the flow fields and drag coefficients. A majority of the past literature suggests that
insoluble surfactant monolayers are almost inherently incompressible due to Marangoni
flow (Klingler & McConnell 1993; Steffen et al. 2001; Wurlitzer, Schmiedel & Fischer
2002; Fischer 2004a; Fischer et al. 2006; Manikantan & Squires 2020), while it has
been recently clarified that the interface can be incompressible by dilatational viscosity,
Marangoni effects or a combination of both (Pourali et al. 2021). The same work had
shown that the drag coefficient of a spherical particle, symmetrically immersed at an
incompressible interface, within the limit of vanishing interface shear viscosity, exhibited
the same value regardless of the origin of incompressibility. The aforementioned empirical
findings thus do not allow us to draw conclusions about the relevance of Marangoni effects.
In fact, for the special case of inviscid interfaces carrying surfactants, the product between
Marangoni (Ma) and Péclet (Pes) numbers, but not just Ma alone, plays a crucial role
in determining the dilatation of the interface (Pourali et al. 2021). At high values of
Ma Pes the interface is incompressible. A high value of interface dilatational viscosity
makes the interface incompressible regardless of Ma Pes. When we are going to study
drag coefficients at incompressible interfaces we are thus free to choose one out of the two
routes. Treating the surface viscosities as independent variables is furthermore supported
by recent experiments where the rheological (extra) stresses are large with respect to the
thermodynamic ones (Peppicelli et al. 2019). Since there are different routes to interface
(in)compressibility, inferring the exact nature of the interface using particle probes was
shown to possibly lead to inconsistent results, e.g. when changing the particle size or
aspect ratio (Samaniuk & Vermant 2014), giving further motivation to the current work.

After presenting the governing equations, definitions of dimensionless numbers like
Ma and Pes, and the numerical scheme in § 2, within the results § 3 we are going to
investigate various extremal and less extremal situations, focus on the drag coefficient,
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Spheroids at clean and surfactant-laden interfaces

discuss the effect of the flow and surfactant concentration fields, compare with theoretical
results, for both spherical and spheroidal particles. Assumptions to be made, concerning
the interfacial equation of state or the neglect of the interface deformations are discussed in
§§ 2.3 and 3.1, respectively. We here choose the length of the axis of rotational symmetry
of the spheroid to define dimensionless quantities. All results to be presented then equally
apply, after suitable scaling with D, to spheroids with constant volume or constant surface
area, as explained in § 3.4. Conclusions are provided in § 4.

2. Model and methods

A sketch of the system under study is shown in figure 1. A particle is translating with
a constant velocity U in the x-direction at the interface between a viscous fluid (y < 0)
and air (y > 0). The particle shape is defined by the lengths a, b and c of the three
principal semi-axes. Here we study prolate spheroids with half-axes a ≥ b = c, which
includes the sphere as a special case (a = b = c ≡ R). Spheroids translate either parallel
or perpendicular to their axis of uniaxial symmetry, so that the system is torque-free, and
can reach a steady state. The submergence of the particle is defined by the coordinate of
its centre at y = −h, while the interface is located at y = 0 and separates a viscous fluid
with viscosity η at y < 0 and the inviscid fluid at y > 0 (figure 1).

2.1. Hydrodynamic equations
The fluid is considered incompressible. Its dynamics can thus be modelled with the Stokes
equations

∇ · π = 0, (2.1)

∇ · u = 0, (2.2)

where u is the fluid velocity field, p is the pressure field and π = −pI + τ the stress tensor
for a Newtonian fluid modelled by τ = 2ηD. Here D = [∇u + (∇u)T]/2 is the rate of
deformation tensor. All fields appearing in our equations are spatio-temporal fields that
depend on x, y, z and time t. A similar decomposition πs = γ Is + τ s can also be written for
the interface stress tensor, where γ is the surface tension of the interface, Is = I − nn the
surface or tangential projection tensor with surface normal n and τ s the extra surface stress
tensor (Brenner 1991; Jaensson & Vermant 2018; Venerus & Öttinger 2018). It is assumed
to be given by the Boussinesq–Scriven constitutive law (Boussinesq 1913; Scriven 1960)

τ s = (κs − ηs)(Is : Ds)Is + 2ηsDs, (2.3)

where ηs and κs are the shear and dilatational viscosities of the interface, respectively. The
surface rate of deformation tensor Ds appearing in (2.3) is defined as 2Ds = (∇sus) · Is +
Is · (∇sus)

T, where us is the velocity u evaluated at the interface, and ∇s = Is · ∇ is the
surface gradient operator (Brenner 1991).

The velocity u is assumed to vanish on the simulation box surface. Boundary conditions
for u at the fluid interface are defined by continuity of velocity in the tangential direction
u · t = us · t (Venerus & Öttinger 2018), where t is a unit tangent vector residing in
the x–z-plane, and a vanishing normal velocity u · n = 0. Moreover, conservation of
momentum yields a momentum jump balance in the tangential direction,

n · π · t = −(∇s · τ s) · t + Kπ(∇s ln Γ ) · t, (2.4)

where the Gibbs–Marangoni modulus Kπ = Γ ∂Π s/∂Γ allows one to relate the gradient
in surface pressure to the gradient in surfactant concentration Γ as ∇sΠ

s = Kπ∇s ln Γ .
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y

y = h
b

c

a

x
z

Figure 1. Prolate spheroid at the interface between air (white) and a viscous fluid (blue). The interface is
eventually laden with surfactant (not shown here, but if so, we add a thick black line representing surfactant).
The particle geometry is specified by the three principal semi-axes a, b and c with a ≥ b = c for a prolate
spheroid (and a ≤ b = c for an oblate spheroid, so that a is the length of the main, not necessarily longest,
axis). Their ratio is D = a/b ∈ [0, ∞] with D > 1 for prolate spheroids, D = 1 for a sphere and D ∈ (0, 1) for
oblate spheroids. The particle translates with constant velocity U in a positive x-direction, while its symmetry
axis resides within the interfacial x–z-plane. For parallel and perpendicular motions, the axis of uniaxial
symmetry is either aligned in the x- or z-direction, respectively. The submergence of the particle is defined by
the y-coordinate of its centre, denoted by h, giving rise to dimensionless negative immersion depth H = h/b,
i.e. H = −1 if the particle is fully immersed in water, in grazing contact with the interface. We are going
to introduce dimensionless quantities using the principal length a as the length unit (§ 2.4). All results then
equally apply, after suitable scaling with D, to spheroids with constant volume or constant surface area (§ 3.4).

Surface pressure Π s is defined as a difference between surface tension of a clean interface
γ0 and surface tension in the presence of surfactant, Π s(Γ ) = γ0 − γ (Γ ). The velocity
and pressure fields thus receive their time dependency through Γ . The evolution of the
surfactant concentration Γ is governed by the unsteady surface convection–diffusion
(SCD) equation (Brenner & Leal 1978; Stone 1990; Brenner 1991)

∂Γ

∂t
+ ∇s · (Γ us) = Ds∇2

s Γ, (2.5)

where Ds is the surface diffusivity of the surfactant at the planar interface. The Stokes
equations supplemented by (2.5) are the governing equations for u and Γ as a function
of position and time. These equations are solved with an initial condition of Γ = Γ0 and
subject to vanishing surfactant flux from the interface boundary.

2.2. Drag force
For a spheroidal particle translating with a constant velocity U at the interface, the relation
between the drag force on the particle F and the velocity, in general, is a complex function
of particle geometry, bulk and interface rheological properties, the interfacial equation of
state and the transport properties of the surfactant. It moreover depends on the orientation
of the anisotropic particle with respect to U . The drag force on the spheroidal particle
embedded at the interface is the sum of three contributions: (i) the bulk force

F b =
∫

Sp

np · π dS, (2.6)
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where np is the unit normal vector to the surface of the particle; (ii) the interface viscous
force

F s =
∫

∂Sp

np · τ s dl (2.7)

due to the extra surface stress tensor, where ∂Sp is the elliptic perimeter of the particle at
the interface; and (iii) the elastic or Marangoni contribution to the drag force

F M =
∫

∂Sp

γ (Γ )np · Is dl (2.8)

due to the non-uniform distribution of the surfactant in the contact line.
So far, we presented the general formulation. Because in our set-up the particle translates

in the x-direction with its main axis aligned in either the x- or z-direction, the force has only
an x-component, Fx = −fU, the remaining two components vanish for symmetry reasons.

2.3. Interfacial equation of state
For an isothermal system, the surface tension is solely a (typically nonlinear) function
of the surfactant concentration Γ , i.e. γ = γ (Γ ). In this work we assume a linearized
equation of state: γL = γ∗ − Γ kBT∗, where γ∗ = γ (Γ0) + Γ0kBT∗ is a constant, and kBT∗
represents the negative of the slope of γ with respect to Γ , taken at Γ0, the equilibrium
surfactant surface number density in the absence of the particle. The linearized Gibbs
modulus is thus Kπ = Γ kBT∗. For the special case of sufficiently small Γ0 → 0, one has
T∗ → T and the equation of state reduces to the ‘ideal gas’ form γ = γ0 − Γ kBT due to
remaining kinetic contributions, and where γ0 = γ (0) is the surface tension of the clean
interface.

Nonlinearities are likely to set in with increasing concentration, and nonlinear equations
of state have been discussed in the literature (Lopez & Hirsa 2000; Manikantan & Squires
2020). For cases where the concentration does not vary significantly across the interface,
an equation of state linearized about a certain Γ might still serve as a good approximation,
so that γ0 and kBT just receive new interpretations. For this reason, the linearized form
does not restrict this study to systems at very low surfactant concentrations. We are not
aware of an established and essentially parameter-free nonlinear interfacial equation of
state that could have been used instead of the linearized one, for the purpose of the present
study. Similarly, for the current analysis, surface viscosities are assumed to be system
parameters, and their dependence on Γ is neglected (Scriven 1960; Ortega, Ritacco &
Rubio 2010). A clean, surfactant-free interface has Γ = 0. In most practical cases one
needs some surface active species at the interface to get significant extra (viscous) stresses,
but surface viscosities for clean interfaces have also been reported (Earnshaw 1981).

2.4. Dimensionless numbers and equations
For the problem at hand, we use the constant velocity U, the semi-axis a of the particle,
the viscosity η of the fluid and the initial surfactant concentration Γ0 to introduce reduced
units, and to come up with a number of dimensionless parameters such as two Bousinessq
numbers Bq1 and Bq2, ratio of surface shear viscosity to bulk viscosity, and ratio between
surface dilatation viscosity to bulk viscosity, and the surface Péclet number Pes, a ratio of
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diffusion time, a2/Ds, to the characteristic time for particle motion, a/U, i.e.

Bq1 = ηs

aη
, Bq2 = κs

aη
, Pes = aU

Ds
. (2.9a–c)

The particle aspect ratio D is defined by the ratio between half-axes a and b, and its
dimensionless immersion H is specified by the ratio between h and b, i.e.

D = a
b
, H = h

b
, (2.10a,b)

so that H ≤ −1 at complete immersion and H = 0 for a particle symmetrically located
at the interface. Making the interfacial equation of state dimensionless, we obtain
γ (Γ )/ηU = Ca−1 − Ma Γ/Γ0, giving rise to the dimensionless capillary number Ca =
ηU/γ∗ (ratio between bulk stress and interface tension force) and Marangoni number

Ma = Γ0kBT∗
ηU

, (2.11)

the ratio between the force tending to deform the interface and surface elasticity which
tends to restore the original shape of the film.

Dimensionless variables, marked by a tilde (only in the current sentence), are therefore
defined uniquely in terms of their dimensional counterparts, such as γ̃ = γ /ηU, t̃ = tU/a,
x̃ = x/a, ũ = u/U, Γ̃ = Γ/Γ0, π̃ = πa/(ηU), F̃ = F/(ηUa) and f̃ = f /(ηa). For the rest
of this work, variables are meant to be dimensionless, and we omit asterisks for brevity.
The dimensionless equation of state thus reads as γ = Ca−1 − Ma Γ . Similarly, Π s =
Kπ = Ma Γ in the dimensionless form, which shows that the Marangoni contribution to
the force is proportional to Ma. The Stokes equations are replaced by −∇p + ∇2u = 0 and
∇ · u = 0, the dimensionless extra surface stress tensor (2.3) now involves the Bousinessq
numbers,

τ s = (Bq2 − Bq1)(Is : Ds)Is + 2Bq1Ds, (2.12)

and the SCD equation (2.5) becomes

∂Γ

∂t
+ ∇s · (Γ us) = 1

Pes
∇2

s Γ, (2.13)

featuring the Péclet number Pes. The tangential momentum jump balance, (2.4), remains
unchanged.

We use the finite element method (FEM), implemented in an in-house code, to solve
the full system of equations, where the dimensionless parameters Bq1, Bq2, Pes, D, H
and Ma defined by (2.9a–c)–(2.11) completely describe the problem. The Marangoni
number enters only in the presence of surfactant. In the limit of Pes → 0, the surfactant
concentration remains uniform and regaining the uniform distribution is instantaneous,
therefore, the surface pressure remains constant. In this surface viscosity-dominated
regime both the Ma and Pes numbers do not enter as parameters.

2.5. Numerical implementation
The numerical implementation is similar to the one found in Pourali et al. (2021), with the
notable difference that we explicitly track the motion of the particle in the current work.
In order to diminish the boundary effects a large, cubic simulation box is used with box
size L = 400 (figure 2). An extensive study on the influence of the size of the bounding
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y

x
z

Lx Lz /2

Ly /2

Figure 2. Finite element mesh used in the simulation for a prolate particle with D = 3 at H = −0.6. The blue
surface shows the air–liquid interface SI . The box is cubic with box sizes Lx = Ly = Lz = L = 400, which is
400 times the longer half-axis of this spheroid.

box for a spherical particle at an incompressible interface was conducted in our previous
work (Pourali et al. 2021). There, we showed that a box size of L = 400 yields an error
of less than 1 % for the drag coefficient (compared with a much larger box). Moreover,
due to symmetry of the problem in the x–y-plane, only half of the domain is meshed, and
appropriate symmetry conditions are employed. As in this previous work, we denote the
simulation domain containing fluid and air by Ω , the box boundary by ∂Ω , the air–liquid
interface by SI , the particle surface by Sp and the intersection of the particle and the
air–liquid interface by ∂Sp. The stationary regime is reached in each case at t = 30, as
we will demonstrate in § 3.6.

2.5.1. Arbitrary Lagrange Euler formulation
To track the moving particle, the arbitrary Lagrange Euler (ALE) formulation is adopted
(Hu, Patankar & Zhu 2001). As explained later, the mesh is moved exactly with the particle
velocity on Sp, whereas it is stationary on the boundaries ∂Ω of the enclosing box. To
compensate for the motion of the mesh, the mesh velocity um is subtracted from the
convective terms. For our problem, this only affects the SCD, which becomes

∂Γ

∂t

∣∣∣∣
xm

+ (us − um) · ∇sΓ + (∇s · us)Γ = Ds∇2
s Γ, (2.14)

where we note that the partial derivative on the left-hand side is for a fixed nodal coordinate
xm.

2.5.2. Weak forms
The weak form of the balance of momentum (2.1) and balance of mass (2.2) amounts to
find u and p such that (Carrozza, Hulsen & Anderson 2020; Balemans, Hulsen & Anderson
2016; Jaensson, Hulsen & Anderson 2017)∫

Ω

Dv : 2ηD dV −
∫

Ω

(∇ · v)p dV +
∫

SI

(∇v)T : πs dA = 0, (2.15)

∫
Ω

q(∇ · u) dV = 0, (2.16)
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for all admissible test functions v and q. Here Dv = [∇v + (∇v)T]/2 and v vanishes on
the Dirichlet boundaries where the velocity u is prescribed, i.e. the box boundary ∂Ω and
particle surface Sp (Donea & Huerta 2003).

The weak form of the SCD equation amounts to find Γ such that∫
SI

r
[
∂Γ

∂t
+ (us − um) · ∇sΓ + (∇s · us)Γ

]
dA = −

∫
SI

Ds(∇sr) · (∇sΓ ) dA (2.17)

for all admissible test functions r. Here we used the zero-flux boundary condition on SI ∩
∂Ω .

2.6. Spatio-temporal discretization
The (2.15)–(2.17) are solved using the Galerkin FEM on meshes that are boundary fitted
to the particle and the interface, and which are moved in time to track the motion of the
particle. Tetrahedral P2P1 elements (Taylor & Hood 1973) are used for u and p whereas
triangular P2 elements are used for Γ . Mesh generation is done using Gmsh (Geuzaine &
Remacle 2009), which allows for great control over the local element size.

2.6.1. Time integration
Time integration commences by generating a mesh with nodal coordinates xm =
[xm, ym, zm]T, based on the initial particle’s centre position X 0 = [X0, 0, 0]T. Then, at
the beginning of a step at time n	t + 	t (for which we use the short-hand notation
n + 1, e.g. X(n	t + 	t) = Xn+1), the exact new particle position is determined from
Xn+1 = Xn + 	t U, where we note that only the X location has to be updated. The particle
displacement is thus given by 	X = Xn+1 − Xn = 	t U. To ensure a smooth deformation
of the mesh, the new particle position is used to update the nodal coordinates xm of the
mesh by solving the following Laplace equation:

∇ · (Ke∇(	xm)) = 0 (xm ∈ Ω), (2.18)

	xm = 0 (xm ∈ ∂Ω), (2.19)

	xm = 	X (xm ∈ Sp), (2.20)

n · ∇(	xm) = 0 (xm ∈ SI). (2.21)

Here Ke is a diffusion coefficient which varies per element and which is chosen as the
inverse of the element size. This approach ensures that most of the mesh deformation
takes place in larger elements, minimizing mesh distortion (Hu et al. 2001). The mesh
displacement field is then used to update the x-components of the node coordinates via
(xm)n+1 = (xm)n + 	xm, while the y- and z-components remain unchanged.

With the mesh coordinates known at the new time step, the mesh velocity is found using
a first-order backward differencing scheme for the first step,

(um)1 = (xm)1 − (xm)0

	t
, (2.22)

whereas a second-order backward differencing scheme is used for subsequent steps n ≥ 1,

(um)n+1 =
3
2 (xm)n+1 − 2(xm)n + 1

2(xm)n−1

	t
. (2.23)

On the updated mesh, the weak form of the governing equations, (2.15)–(2.17), are solved
following an explicit scheme, as will be explained next. For comparison, we have also
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Spheroids at clean and surfactant-laden interfaces

implemented an implicit scheme, as described in Appendix B. The comparison shows that
results are basically unaffected by the choice of scheme.

2.6.2. Explicit scheme
In the explicit scheme the weak form of the balance equations, (2.15) and (2.16), is
solved first to obtain the velocity and pressure at step n + 1. For the surface concentration
Γ , which is needed to evaluate the surface tension γ = γ (Γn+1) at step n + 1, a
first-order extrapolation is used for the first step γ (Γn+1) = γ (Γ0) with Γ0 = 1, whereas
a second-order extrapolation is used for subsequent steps γ (Γn+1) = γ (2Γn − Γn−1).

After solving this system for un+1 and pn+1, the surface velocity (us)n+1 is readily
extracted, and used in the weak form of the SCD equation (2.17). Using a first-order
semi-implicit Euler scheme for the first time step, we obtain

Γ1 − Γ0

	t
+ [(us)1 − (um)1] · ∇sΓ1 + [∇s · (us)n+1]Γ1 = ∇s · (Ds∇sΓ1) . (2.24)

For subsequent time steps, a second-order, semi-implicit Gear scheme is used to evaluate
Γn+1,

3
2Γn+1 − 2Γn + 1

2Γn−1

	t
+ [(us)n+1 − (um)n+1] · ∇sΓn+1 + [∇s · (us)n+1]Γn+1

= ∇s · (Ds∇sΓn+1) . (2.25)

After solving the resulting system for Γn+1, all variables are now known at step n + 1, and
time integration can continue to the next time step.

3. Results and discussion

Within the following sections we are going to investigate (i) a spherical particle
enclosing a certain contact angle with a clean, i.e. surfactant-free, fully compressible
and inviscid interface; (ii) a spherical particle at a viscous interface dominated
by surface viscosities; (iii) a prolate spheroidal particle symmetrically located at a
surfactant-free, fully compressible and inviscid interface; (iv) a prolate spheroid at a
surface viscosity-dominated regime; and (v) a prolate spheroid at a sufactant-laden,
partially compressible and viscous interface. While in (i)–(iii) the focus is on the drag
coefficient and comparison with existing theoretical results, in (iv) and (v) we are going
to further investigate the flow and surfactant concentration fields at the interface, for both
spherical and spheroidal particles. All results to be presented are obtained for particles
moving at constant speed, deep in the stationary regime. The case of incompressible
interfaces, realized at large Bq2, or large Ma Pes, is captured by (ii) for the case of a sphere,
and by (iv) for the case of a prolate spheroid.

3.1. Spherical particle at a clean, surfactant-free, fully compressible and inviscid
interface

For a spherical particle with radius R and, thus, D = 1 at a clean interface, we solve the
above equations in the absence of surfactant, Γ = 0, at vanishing Bousinessq numbers
Bq1 = Bq2 = 0 for a given dimensionless immersion level H = h/R. This level H is
determined by three involved interfacial tensions, and the drag coefficient is solely
determined by the bulk force F b.
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y = h
R
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γ

θ

Figure 3. Schematic representation of a single spherical particle at the interface between air and a viscous
fluid, at a macroscopic contact angle θ .

The surface activity of particles does not resemble surfactant molecules, due to their
amphiphilic nature. A liquid at rest intersects a solid particle at a unique angle, which
is called the contact angle, and is a key parameter when dealing with solid particles
at the fluid interfaces. This concept has similarity with wetting phenomena. In wetting
phenomena a droplet spreads on the surface of a solid surface, in contact with air. In
the wetting process a new surface (between liquid and solid or liquid and air) is formed.
Creating a new surface changes the energy of the system. Surface (or interface) energy
is the work per unit area needed (or generated) to create a new surface. In the wetting
process the balance of the interfacial energies between the solid, the liquid and the air,
determines whether the liquid spreads or not. Paraphrasing from Zanini & Isa (2016), the
extent by which a droplet spreads is determined by the point at which the energy gained in
reducing the interface between the solid and air equals the energy penalty paid in creating
new liquid–solid and liquid–air interfaces. This translates into the mechanical equilibrium
of the three interfacial tensions at the three-phase contact line. Similarly, we can define
the contact angle of a solid particle at a fluid interface. The presence of the particle at
the interface is energetically favourable if this configuration has a lower energy than the
situation where the particle is completely immersed in one of the fluids. Figure 3 shows a
spherical particle with radius R at the interface between air and a viscous fluid.

The total energy of this system in the absence of flow, for the case of |H| ≤ 1, can be
written as (Davies et al. 2014)

E = πR2γ

[
H2 + 2H

(
γpa − γpf

γ

)
+ 2γpf + 2γpa − γ

γ

]
, (3.1)

so that E = 4πR2γpf if the particle is fully dissolved in the liquid (H < −1), and
where γpa, γpf and γ denote the interfacial tensions between particle–air, particle–fluid
and fluid–air respectively. The equilibrium position of the particle is obtained from the
condition ∂E/∂H = 0. This yields

H = −γpa − γpf

γ
, (3.2)

where H is from now on the dimensionless equilibrium position. From trigonometry, as
long as |H̄| ≤ 1, the particle prefers to reside at the interface and its equilibrium contact
angle θ is given by Young’s equation

cos θ = −H. (3.3)

Using this definition of the contact angle, the energy of the equilibrium configuration is
given by

Ē = −γπR2(1 − cos θ)2. (3.4)
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Spheroids at clean and surfactant-laden interfaces

These energy considerations, which are based on the values of surface tensions of the
different phases, therefore determine whether a floating spherical particle at the interface is
energetically favourable or not. While the vertical particle motion is strongly suppressed or
confined about the reduced equilibrium position H̄, the particle can freely move tangential
to the interface. Knowing the dimensionless drag coefficient f = 6π on a translating
sphere in an unbounded fluid, one might expect that the parallel viscous drag experienced
by a particle partially immersed in (or partially wetted by) two fluids is an average between
the drags of the two fluids, weighted by the particle immersion depth in each phase.

It is straightforward to generalize the above expressions for the contact angles and
immersion depth as a function of the surface tension to spheroids (Appendix A). For the
equilibrium contact angle, measured in the x–y-plane (figure 1), we obtain

cos θ = − DH√
1 − (1 − D2)H

, (3.5)

while the more important aspect is that (3.2) approximately holds also for spheroids
(figure 20). We therefore proceed using the dimensionless immersion level H to present
results, while keeping in mind that H can basically be replaced by a dimensionless
combination of surface tensions. As for the sphere, H ∈ [−1, 1] and H = −1 represents
the case of a spheroid that is completely immersed in the viscous liquid, in grazing contact
with the interface.

For some particular cases, when one phase is highly viscous such as for the air–water
system considered in this work, the contribution of the less viscous phase can be neglected.
In these cases, the drag coefficient of a half-immersed particle at the interface, i.e. when
|H̄| � 1 and θ ≈ 90◦, is f ≈ 3π (Ranger 1978). With some additional assumptions,
the drag coefficient of a particle at an interface has been quantitatively evaluated by
hydrodynamic calculations. Zabarankin (2007) obtained the solution for hydrophilic
particles (θ < 90◦) by applying the same symmetry argument to a pair of fused spheres.
The flow is computed for this new body, obtained by reflection of the immersed section
of the sphere, and the numerical solutions were derived for a few contact angle values.
Analytical expressions were later given by Dörr et al. (2016) and Villa et al. (2020) for
hydrophilic particles, θ < 90◦ (H ∈ [−1, 0]),

fπ/2 = 1
2

[
1 + 9

16
cos θ − 0.139 cos2 θ + O(cos3 θ)

]
, (3.6)

and for 90◦ < θ < 180◦ or equivalently, H ∈ [0, 1],

f ≈ 2
(

1 − θ

π

)
fπ/2 + 2

(
θ

π
− 1

2

)
fπ, (3.7)

where fπ is defined as

fπ = 8
9π

sin θ

{
1 + cot(θ/2)

3π
+ O[cot2(θ/2)]

}
. (3.8)

In figure 4 we compare our simulation results for a spherical particle with reported
theoretical drag coefficient values from the literature, as a function of the contact angle.
The drag coefficients are reported relative to the drag coefficient on a particle at a contact
angle of 90◦. The absolute value of f at a contact angle of 90◦ is 3π corresponding to 50 %
of the value of Stokes’ solution for a particle moving in an unbounded fluid. The more
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Figure 4. Drag coefficient of a spherical particle versus contact angle or immersion length H ∈ [−1, 0] at the
clean interface between a viscous fluid and inviscid air. The drag coefficients are reported relative to the drag
coefficient of a sphere at contact angle 90◦, f = 3π. The diamonds and triangles represent data reported by
Danov et al. (1995) and Zabarankin (2007), respectively. The red and blue curves are recovered from (3.6) and
(3.7), respectively, while black circles represent our simulations.

the particle sinks into the bulk phase upon decreasing its contact angle, or decreasing H,
the higher the drag coefficient. At a contact angle of about θ = 25◦, corresponding to an
immersion level H ≈ −0.9, there is an increase of drag force up to 50 % compared with the
particle at θ = 90◦. As is obvious from figure 4, our simulation results perfectly confirm
the theoretical expressions (3.6)–(3.8) for a partially immersed sphere in the absence of
surface stresses. We do not find evidence for a relevance of the mentioned higher-order
terms.

Here we study flat interfaces and neglect possible deformations of the interface due to
the presence of the particle. Based on previous studies of the drag coefficients obtained
in the present work, we expect to be only marginally affected upon including deformation
effects. Petkov et al. (1995) first studied experimentally deformation effects for the case
of a spherical particle at the pure water–air interface. They showed that for small spheres,
which do not create any substantial deformation of the fluid interface, the drag coefficient
does not change significantly due to the deformation. For example, they showed that at
θ = 82◦ for a sphere with R = 222 mm, the drag coefficient f /3π ≈ 1.08. This value is
very close to our simulation result at the same contact angle ( f /3π ≈ 1.07). However,
for a very large and heavy particle with a large deformation of the interface, the drag
coefficient could be higher than Stokes’ drag coefficient ( f = 6π). To the best of our
knowledge there are no further experimental studies similar to (Petkov et al. 1995) for the
effects of deformation on the drag coefficient of a spherical or non-spherical particle. A
few experimental works had been dedicated to pairwise interactions of interfacial particles
at liquid–liquid interfaces (Vassileva et al. 2005; Madivala, Fransaer & Vermant 2009).
A recent numerical study, for a two-dimensional particle with θ = 90◦ at the distorted
interface between two fluids (in a confined domain), showed that interfacial deformations
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H
Figure 5. Drag coefficient of a spherical particle versus contact angle θ , or equivalently, immersion length
H ∈ [−1, 0] for interfaces with different viscosities, i.e. different Bq1,2. For Bq1,2 = 0, the result is shown in
figure 4.

do not seem to yield significant drag variations compared with the case of a flat interface
and the simulation data indicated that interfacial distortions may increase or decrease
the drag coefficient by no more than 10 % within the explored physical parameter space
(Loudet et al. 2020).

3.2. Spherical particle at a viscous interface dominated by extra stresses
Next, we add material properties to the surface viscosity-dominated regime to see how
they affect the drag coefficient of the sphere. While so far only the bulk force F b gave
rise to f , now F s contributes as well. The Boussinesq numbers characterize the amount of
extra surface stresses reflecting the material properties of the interface in the presence of a
surface flow gradient. Except in some special cases, such as some biological membranes,
in most systems the dilatational and shear viscosities are of the same order. Danov et al.
(1995) reported the drag coefficient at different Bq1 = Bq2 (Bq1,2 for convenience) as a
function of contact angle and showed that f is almost independent of the contact angle at
high interface viscosities Bq1,2. Our simulation results show slightly smaller values for f ;
see figure 5. At small interface viscosities Bq1,2 = 1, the particle dynamics is governed by
the bulk phase which experiences the immersed particle volume. Therefore, f decreases
with increasing contact angle (decreasing immersion depth, increasing H).

Figure 6 shows the relative contribution Fs/F of the interface on the total drag force
F = F s + F b acting on the particle. At Bq1,2 = 1, the interface contribution is up to
35 % for the symmetrically immersed sphere, θ = 90. At Bq1,2 = 5, bulk and interface
have a comparable contribution to the total drag, the drag coefficient is therefore almost
independent of the contact angle; see figure 5. At high Bq1,2 = 10, the forces are mainly
determined by the viscosities of the interface. For this reason, the drag on the particle
increases by up to 50 % upon increasing the contact angle, until the immersion depth
vanishes. For higher contact angles, f becomes almost independent of θ , because the
particle is now exposed mainly to the inviscid air.

Fischer et al. (2006) solved the problem of translation of a spherical particle of radius
R embedded in an incompressible viscous monolayer, incorporating Marangoni effects by
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Figure 6. Interface contribution Fs to the total drag force F on a sphere as a function of contact angle θ

or immersion length H ∈ [−1, 0] for interfaces with different viscosities. At H = −1, the particle is fully
immersed in the viscous phase, and Fs → 0, while the particle is symmetrically located at the interface at
H = 0.

using a virtual image force source to impose surface incompressibility, with the surface
shear viscosity ηs, i.e. Bq1 > 0, between two viscous phases with viscosities ηa and η.
They have obtained the following result for the translational drag coefficient f as a series
expansion of Boussinesq number Bq = ηs/[R(ηa + η)] for 0 < Bq � 1. For our set-up,
Bq = Bq1 and, thus,

f = f0 + f1(Bq1) + O[(Bq1)
2]. (3.9)

Fitted expressions (Fischer et al. 2006) for f from numerical results gave the formulae for
f0 and f1,

f0 ≈ 6π

{
tanh

[
32(1 − H)

9π2

]}1/2

(3.10)

for any H, and

f1 ≈

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−4(2 − H)−3/2 ln
[

2
π

arctan
(

2
3

)]
, H < −1,

−4 ln
[

2
π

arctan
(

1 − H
3

)]
, H > −1,

(3.11)

where the original work used a different notation, d = −(1 + H)R, the signed distance
from the apex of the sphere to the plane of the interface. In other words, their negative d
coincides with the largest y-coordinate of the sphere (figure 1).

Figure 7 shows our simulation results for the drag coefficient of a spherical particle
as a function of the contact angle at the incompressible interface. It was shown that an
incompressible interface can be numerically realized with Bq2 = 1000 at the limit of
Bq1 → 0 (Pourali et al. 2021). Recall that we have already explained (see the introduction)
that incompressibility can be achieved by high Bq2 or high Ma Pes or a combination of both
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H
Figure 7. Measured drag coefficient f (black circles) of a spherical particle as a function of immersion level
H ∈ [1, 1] at an incompressible interface with Bq2 = 1000 at the limit of Bq1 → 0. Blue and red lines show
the analytical expressions (3.9) and (3.12), respectively. The latter reproduces our data very well and is also
compatible with the reported value for f at H = 0 by Fischer et al. (2006), while f vanishes at H = 1 in every
case.

effects and the drag coefficient will be independent of the origin of the incompressibility
(Pourali et al. 2021). The mechanism of high Ma Pes is particularly important for colloidal
or biological systems, where the relevant length (velocity) scales are often on the order
of microns (per second). Here, Ma remains large even for trace surfactant concentrations
well into the surface-gaseous regime (Bławzdziewicz, Cristini & Loewenberg 1999). It
also appears that, under typical circumstances, surface diffusivity of the surfactant is
insufficient to relax interfacial incompressibility (Chisholm & Stebe 2021).

For a translational drag on a half-immersed sphere in a non-viscous monolayer, f =
11.66 which is in very good agreement with f ≈ 11.7 or f /3π ≈ 1.24 reported by Fischer
et al. (2006). It is higher than the drag coefficient on the particle at a free surface ( f /3π =
1). The value of f0 = 11.7 obtained by Fischer et al. (2006), as already noted by Pourali
et al. (2021), is, however, not captured by their approximant (3.10). We thus fitted our result
shown in figure 7, as it is also compatible with previous results for H = 0, to obtain

f0 ≈ 6π

{
tanh

[
32(1 − H)

9π2

]}5/11

. (3.12)

The exponent 5/11 is not physically motivated but represents the fitted value 0.455 ±
0.002. This equation can be regarded as an improved version of (3.10). It captures our data
by a maximum relative error of less then 1 % over the whole range H ∈ [−1, 1], while
the maximum relative error using the original formula exceeds 11 % for the largest H. The
reported value f ≈ 11.7 is also recovered using this improved fitting formula, which differs
in form by the original one only in the exponent, 5/11 instead of 1/2.

924 A30-17

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

63
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.636


M. Pourali, N.O. Jaensson and M. Kröger

3.3. Spheroidal particle symmetrically located at a surfactant-free, fully compressible
and inviscid interface

Another extremal case that serves to test analytical expressions is the non-spherical
spheroid symmetrically (H = 0) located at the clean interface, in the absence of surfactant
and surface viscosities. Happel & Brenner (1981) calculated the translational drag
coefficient acting on a spheroidal particle translating in an unbounded domain at the
x-direction with velocity U, permanently oriented such that its axis of rotational symmetry
is aligned in the x-direction as well (so-called parallel motion). For the bulk drag
coefficient, they obtained fbulk = 6πK/D, so that K/D is the dimensionless friction-wise
equivalent radius, a multiple of the length of the spheroidal particle. For prolate and oblate
spheroids, their result for K, the ratio between equivalent sphere and the spheroidal particle
radius, is given by

1
K

= 3
4

ϑp

D
[
(ϑ2

p + 1) coth−1(ϑp) − ϑp

]
, (3.13)

and
1
K

= 3
4

ϑo

D
[
ϑo + (1 − ϑ2

o ) cot−1(ϑo)
]
, (3.14)

respectively. The dimensionless quantities ϑp and ϑo are defined by

ϑp = D√D2 − 1
, ϑo = D√

1 − D2
. (3.15a,b)

The corresponding expressions for the case of perpendicular motion for prolate and oblate
spheroids are

1
K⊥ = 3

8
ϑp

D
[
ϑp + (3 − ϑ2

p ) ln(D + D/ϑp)
]

(3.16)

and
1

K⊥ = 3
8

ϑo

D
[
(3 + ϑ2

o ) csc−1(

√
1 + ϑ2

o ) − ϑo

]
, (3.17)

respectively. Note that our D is identical with the φ in Happel & Brenner (1981) and that
we denoted by a (our length unit) the length of the axis of rotational symmetry, while
Happel & Brenner (1981) denoted by a the length of the longest half-axis.

For a prolate particle symmetrically immersed at a clean interface between a viscous
fluid and air, its drag is half of the value of a fully immersed particle, i.e.

fc = 3π
K
D . (3.18)

Figure 8 shows the drag coefficient fc (subscript ‘c’ for clean) as a function of spheroid
aspect ratio D, which is reproduced using (3.18) with K from (3.13). The drag coefficients
from simulations for prolate particles with D = 1, 2, 3, 4, 5 are also shown in the figure.
The simulation results show very good agreement with the analytical values.

3.4. Effect of shape for equal-volume or equal-area spheroids
In accord with our choice of units to make all quantities dimensionless, we throughout
present a dimensionless drag coefficient f , whose dimensional counterpart is aηf , versus
aspect ratio D, or alternatively, the relative f /fc with respect to the clean interface. Because
the volume of a spheroid is identical with the one of the equal-volume sphere of radius

924 A30-18

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

63
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.636


Spheroids at clean and surfactant-laden interfaces

0 1 2 3 4 5 6 7 8

0.5

1.0

1.5

2.0

P
ro

la
te

O
b
la

te

fc/3π

fc (parallel)

fc (simulation)

fc
⊥

 (perpendicular)

D
Figure 8. Dimensionless drag coefficients fc and f ⊥

c versus aspect ratio D of a spheroidal particle
symmetrically located at a clean, fully compressible, surfactant-free interface (Bq1,2 = 0), moving in a
direction of its symmetry axis, or perpendicular to it (⊥). The solid and dashed lines are (3.18) with K from
(3.13)–(3.17). Black squares are our data points for prolate spheroids in parallel motion.

D−2/3 in units of a, friction coefficients as a function of aspect ratio at fixed particle
volume are captured (here and below) upon multiplying the reported f with D2/3. In
several cases we are going to show drag coefficients or drag forces versus aspect ratio
not only for spheroids with constant semi-axis a, but also for particles with constant
volume (Appendix C). Considering particles with equal volume, the minimum relative
frictional force (compared with the one of the equal-volume sphere) then occurs for
movement parallel to the main axis of a slightly elongated prolate spheroid with aspect
ratio D ≈ 1.952, and spheroids with D > 3.813 have more resistance than a sphere, in
agreement with our results.

Rather than exploring the effect of aspect ratio D for spheroids with constant a or
constant volume, one could also choose to compare spheroids with equal surface area,
using the transformation behaviour that follows from (A3) in Appendix A. There is no
most appropriate choice, as the invariant quantity may depend on processing or biological
conditions, but we found it appropriate to mention the transformation rules here.

3.5. Prolate particle at a viscous interface dominated by extra stresses
When a particle translates at the interface, the interface symmetrically compresses at
the front of the particle and dilates at its rear. The interface compressibility has been
quantified by calculating the local interface dilatation ∇s · us in our previous work (Pourali
et al. 2021). Interface compressibility also depends on the particle’s contact angle. The
interface compressibility for a prolate spheroidal particle with D = 3 at three different
immersion levels H = −0.6, 0, 0.6 is shown in the middle column of figure 9 for the
choice Bq1,2 = 1. The flow field us and shear component of the surface velocity gradient,
necessary to fully characterize the velocity gradient, are also shown in figure 9. These
results demonstrate that with increasing particle immersion the interface is getting less
compressible, as indicated by a decreasing ∇s · us. To express these findings quantitatively,
we use the maximum dilatation at the rear of the interface, denoted as (∇s · us)max
as a measure for the maximum interface compressibility. The maximum dilatation for
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Figure 9. Interfacial flow field us, interface velocity components, us,x and us,z, interface compression ∇ · us
and shear component for a prolate spheroid in parallel motion (axis of rotational symmetry aligned in the
vertical x-direction) with aspect ratio D = 3 at three different immersion lengths (a) H = −0.6, (b) H = 0
and (c) H = 0.6, at the surface viscosity-dominated regime, partially compressible and viscous interface. In
all simulations Bq1,2 = 1. We used the symmetry of the system (the particle is moving in the x-direction)
and show half of the interface. The corresponding fields for the case of perpendicular motion are shown
in Appendix C.

D = 1, 2, 3 as a function of H (figure 10) shows that the more the particle sinks in the
viscous fluid the less the interface is compressible.

Figure 11 highlights effects of particle shape and Bq1 on the parallel and perpendicular
drag coefficients of a particle partially immersed at interfaces with low Bq2 = 1 and
high Bq2 = 1000. The drag coefficients are reported relative to the drag coefficient
of a spherical particle (at the same condition). In figures 11(a) and 11(c) particles
translate parallel to their principle axis, while the corresponding results for perpendicular
translation are presented in figures 11(b) and 11(d). Depending on values of Bq1, three
different behaviours of f with particle shape can be observed. At low Bq1, the drag
coefficient decreases with increasing aspect ratio qualitatively in agreement with the
theoretical result for Bq1 = Bq2 = 0 (figure 8). With increasing Bq1, the dependency of
the drag coefficient on D diminishes and at high Bq1 > 10, it tends to increase linearly with
D. This behaviour can be related to the nature of the flow of a spheroidal particle which
is a mixed flow with both shear and dilatational contributions. The effects of interface
shear viscosity are more pronounced in particles with high aspect ratio. This can be seen
in figures 12(a) and 12(b) where we compare the shear component of the interface flow
gradient, which enters the stress tensor via the Boussinesq–Scriven constitutive law (2.3),
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Figure 10. Maximum interface expansion of the surface viscosity-dominated regime, partially compressible
and viscous interface for the cases of a spherical (D = 1) and a prolate spheroid (D = 3) as a function of the
particle’s immersion level H ∈ [−0.75, 0.75]. In all simulation Bq1,2 = 1 and the particle is moving in parallel
direction of its axis of rotational symmetry.
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Figure 11. (a,c) Parallel and (b,d) perpendicular drag coefficients of prolate particles symmetrically (H = 0)
located at the surface viscosity-dominated regime as a function of particle shape D for different interface
shear viscosities Bq1. Particle located at (a,b) low Bq2 = 1 and (c,d) high Bq2 = 1000. Drag coefficients are
reported relative to the drag coefficient of a spherical particle f sp at otherwise unchanged conditions. For
spheres (D = 1), the reduced f reaches unity in each case.

924 A30-21

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

63
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.636


M. Pourali, N.O. Jaensson and M. Kröger

−2 0
z

−2 0
z

−3

−2

−1

0

1

2

3

x

(∂us,x/∂z+∂us,z/∂x)/2

−0.03

0

0.03

0.06

0.09

−3

−2

−1

0

1

2

3

(∂us,x/∂z+∂us,z/∂x)/2

−0.20

−0.15

−0.10

−0.05

0

0.05

0.10

0.15

0.20

0.25

1 2 3 4 5

D

0

1

2

3

ln
(|

F|
)

Bq1 = 0.1
Bq1 = 1
Bq1 = 10

(a) (b) (c)

Figure 12. Shear component of the interface flow gradient for (a) D = 2 and (b) D = 5. The spheroid
is symmetrically (H = 0) located at the interface, moving in the direction of its symmetry axis (parallel
translation). The regime of the flow is surface viscosity-dominated and the interface is characterized by
Bq1 = 0.01 and Bq2 = 1. The colourbar indicates a quantitative difference of the field in these two plots.
(c) Bulk (solid line) and interface (dashed line) contributions to the drag force as a function of D at three
different Bq1 = 0.1, 1, 10 and Bq2 = 1, H = 0 as for (a,b), on a semilogarithmic scale. The data shown in (c)
is plotted differently, as to eliminate the effect of particle volume, in Appendix C.
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Figure 13. Parallel drag coefficient for three different prolate particles versus their immersion level H ∈
[−1, 0.8] at (a) a surfactant-free, fully compressible, inviscid (Bq1,2 = 0) and (b) surface viscosity-dominated
regime, incompressible, non-viscous interface (Bq1 → 0, Bq2 = 1000). (a) Compressible. (b) Incompressible.

for D = 2 and D = 5. The results confirm that the shear component is higher for D = 5.
At low Bq1, upon increasing the particle aspect ratio, due to a corresponding decrease
in particle volume, the drag coefficient decreases. At very high Bq1, the shear effects
determine the drag coefficient on the particle, and the drag coefficient therefore increases
with D. At intermediate Bq1, these two effects (particle size and shear effect) cancel out
each other, hence, the drag coefficient is independent of the particle’s aspect ratio. The
bulk and interface contributions to the drag force as a function of D for three different
Bq1 = 0.1, 1, 10 are shown in figure 12(c). These results show that bulk and interface
contributions exhibit opposing trends upon varying D and also upon varying Bq1 so that
for each Bq1 (each D) there seems to exist a critical D (critical Bq1) that marks the
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Figure 14. Parallel drag coefficient f relative to drag coefficient at a clean interface fc as a function of (a,c)
immersion level H ∈ [−1, 0] and (b,d) surface viscosities Bq1,2 for prolate spheroids with (a,b) D = 2 and
(c,d) D = 5 at a surfactant-free, complex (partially compressible and viscous) interface with Bq1 = Bq2.

transition between bulk- and interface-dominated drag. To appreciate the effect of particle
shape at given particle volume, we show the scaled form of figure 12(c) in Appendix C.
The parallel drag coefficient of prolate particles with D = 2, 3 and 5 versus immersion
length at a clean interface is reported in figure 13(a). Corresponding results for spheroids
at the incompressible interface with Bq2 = 1000 are shown side-by-side in figure 13(b).
The behaviour of f for both types of interfaces is similar to a spherical particle.

Figures 14(a) and 14(c) show drag coefficients for prolate particles D = 2 and D = 5
at different immersion in complex interfaces specified by Bq1 and Bq2. At very low Bq1,2
for H > −0.8, the drag coefficient linearly decreases with increasing H. At high Bq1,2 the
drag coefficient is independent of H. This trend is very similar in two prolate particles.
This very weak dependency of f on H can also be observed in figures 14(b) and 14(d),
which show drag coefficient versus Bq1,2 at H = −0.9, −0.7, −0.5, −0.3, 0. Except near
full immersion (H = −0.9), all curves coincide at high Bq1,2.
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Figure 15. Marangoni interfacial flow field 	us = us − u0
s (left column) and surfactant interfacial

concentration field Γ (right column) for a prolate particle in parallel motion (in vertical x-direction) with
aspect ratio D = 2 at three different immersion levels: (a) H = −0.5, (b) H = 0 and (c) H = 0.5. In all these
simulations, Bq1,2 = 0.1, Ma = 10 and Pes = 0.5. We used the symmetry of the system and show only half of
the interface.
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Figure 16. Representative time evolution of (a) surfactant concentration Γ and (b) Marangoni force
component FM = F M · ex at various H up to t = 30 for a spherical particle moving in the positive x-direction.
In all simulations Ma = 10, Pes = 0.5 and Bq1,2 = 0.1. At t = 30, the stationary regime has been reached,
while the particle has travelled only 3/20 = 15 % of the time needed to hit the box boundary.

3.6. Prolate particle at a surfactant-laden, partially compressible and viscous interface:
Marangoni flow

When a particle translates at the interface covered with a surfactant, it changes
the surfactant distribution at the interface by pushing the surfactant, resulting in a
accumulation of surfactant in the front of the particle, and a depletion at its rear. This
variation in the surfactant concentration causes a fluid flow from high to low concentration
regions. This flow is called the Marangoni flow. The surfactant variation consequently
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Figure 17. Surfactant concentration profile Γ vs relative distance x − X from the sphere’s centre, at various
H. The sphere is moving at constant speed in the positive x-direction. In all simulations Ma = 10, Pes = 0.5
and Bq1,2 = 0.1.

results in a variation in interface tension causing a Marangoni force on the particle.
The relaxation of the surfactant concentration variation depends on the Péclet number
Pes (Pourali et al. 2021).

The Marangoni effects can also depend on the particle aspect ratio and immersion
length. The Marangoni flow and surfactant concentration fields at three different
immersion lengths H = −0.5, 0, 0.5 for a prolate particle D = 2 are shown in figure 15.
The figure shows Marangoni velocity, 	us = us − u0

s , surfactant concentration and
contribution of the Marangoni flow in the interface stress tensor. Representative time
evolutions of Γ at the front of a spherical particle and Marangoni drag force components
FM = F M · ex at various H are also shown in figure 16. In all simulations Ma = 10,
Pes = 0.5 and Bq1,2 = 0.1. In the definition of the Marangoni velocity, u0

s is the velocity
at the surface viscosity-dominated regime with Bq1,2 = 0.1. The surfactant concentration
reaches a steady state at t > 10. The results also show that the more the particle sinks in
the viscous phase, the less accumulation of surfactant at the front of the particle occurs.
To illustrate this effect, the surfactant concentration profiles in the x-direction are shown
in figure 17. The difference between the surfactant concentration at the front and rear of
the particle, 	Γ , is shown in the inset plot. When the particle sinks more in the viscous
fluid, the maximum accumulation and depletion occur further away from the particle
surface, whereas for H > 0, it happens at the particle surface. Another aspect is a wider
distribution of Γ for H < 0; see also the Γ field in figure 15. For H > 0, there is a high
accumulation (depletion) at the front (rear) of the particle which decays very fast with
distance from the particle surface. To investigate this effect, we can use the Marangoni
flow field, first column in figure 15. It shows a higher Marangoni velocity for H = 0.5
compared with H = −0.5. This high Marangoni flow distributes surfactant easier at the
interface at H = 0.5.

The Marangoni force on a spherical particle and a prolate particle with D = 2 is shown
in figure 18(a). The results are for a simulation at Ma = 10, Pes = 0.5 and Bq1,2 = 0.1.
The corresponding bulk forces are presented in figure 18(b). The Marangoni force linearly
decreases with the immersion length for H < 0. When the particle is more in the inviscid
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Figure 18. (a) Marangoni force component FM = F M · ex and (b) bulk drag force component Fb = F b · ex as
a function of immersion level H ∈ [−1, 0.8] for a spherical (D = 1) and a prolate (D = 2) particle moving
in the positive x-direction, coinciding with its symmetry axis, at a surfactant-laden and complex interface. In
these simulations Bq1,2 = 0.1, Ma = 10 and Pes = 0.5. (a) Marangoni force. (b) Bulk force.
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Figure 19. Parallel drag coefficient f as a function of immersion length H ∈ [−1, 0.8] for a spherical (D = 1)
and prolate (D = 2) particle at a surfactant-laden and complex interface. In these simulations Bq1,2 = 0.1,
Ma = 10 and Pes = 0.5, as for figure 18. To highlight the effect of shape at a given particle volume, the same
data has also been plotted differently in Appendix C. While the particle volume is responsible for the overall
shift of f , the aspect ratio at constant particle volume has a more pronounced influence at large |H|.

phase at H ≈ 0.5, the Marangoni force reaches its maximum value and decreases with
a further increase in H. The Marangoni force on a prolate particle is smaller than for a
spherical particle. The parallel drag coefficient on a spherical particle is also higher than
for the prolate particle (figure 19).

4. Conclusion

We studied spherical and spheroidal particles of various aspect ratios at clean and
surfactant-laden interfaces between a viscous fluid and air using the FEM. Prolate particles
in contact with the interface are translating parallel and perpendicular to their principle
axis within the interfacial plane. The immersion in the viscous fluid, specified by the
contact angle, or alternatively, the dimensionless immersion length H ∈ [−1, 1], had been
varied. The interface is characterized by two Boussinesq numbers, Bq1 and Bq2. We
investigated the effects of particle aspect ratio, orientation, contact angle and Bq1 on the
drag coefficient and the Marangoni surface flow field.
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For a spherical particle, the drag coefficients at a compressible interface show good
agreement with reported values by Danov et al. (1995), Dörr et al. (2016) and Zabarankin
(2007). At an incompressible interface, we have compared our results with Fischer et al.
(2006) and proposed a modified equation for the drag coefficient as a function of particle
submergence. Results show that even a small immersion of the particle in the viscous fluid
can alter the drag on the particle.

For both compressible and incompressible interfaces, the drag coefficient of a prolate
particle, regardless of whether it is translating parallel or perpendicular to its principle axis,
linearly decreases with increasing aspect ratio D at low Bq1. When Bq1 is comparable with
the particle aspect ratio, the drag coefficient becomes independent of the particle size. At
high Bq1, the drag coefficient linearly increases with D.

We also studied the Marangoni flow, at the interface covered with insoluble surfactant
(Langmuir monolayer), and we believe that these results are the first to account for the
particle submergence, into the viscous subphase, and aspect ratio on the Marangoni flow
for the practically relevant case of an incompressible interface. For a spherical particle
and a prolate particle with D = 2, we observed that when particles sink more in the bulk
phase the Marangoni effects diminish. In a monolayer the drag coefficient of particles also
increases with the immersion depth.

There is a wide range of data in the literature for the interface shear and dilatational
viscosities. Some values have been collected in table 1 of our previous work (Pourali
et al. 2021). The surface viscosity typically varies over the range 10−8 to 10−3 Ns m−1

(Dimova et al. 2000), it can be also as small as 10−10 Ns m−1 (Ortega et al. 2010) or as
high as 2 Ns m−1, for films stabilized by proteins (Dimova et al. 2000). If one considers
the water–air interface, with the viscosity of water η = 0.89 × 10−3 Ns m−2, then the
ratio L = ηs/η, which is the length of the spheroidal probe, a, times Bq1 is typically
in the range of ∼ 10−5–1 m. For a system with a typical interfacial shear viscosity of
ηs � 10−6 Ns m−1, the Bq1 � 106, 103 and 1 for spheroidal particles with a = 1 nm,
a = 1 μm and a = 1 mm, respectively. According to Danov et al. (1995), for most
practically important cases, the dilatational and shear surface viscosities exhibit the same
order of magnitude. Only in extreme cases, such as some biological membranes, they
can differ by several orders of magnitude. While typical values for ηs and κs are of the
order of 10−6 Ns m−1, they may vary over multiple orders of magnitude as a function of
surfactant concentration, or alternatively, the Marangoni number. In practice, ηs, κs and
Ma are therefore not independent parameters, but their relationship remains to be explored
further for specific systems.

There are of course many more cases that can be explored in the seven-dimensional
parameter space, spanned by Bq1, Bq2, Pes, D, H, Ma, and the orientation of the spheroid
with respect to the particle velocity. The present selection served to provide trends and
specific examples, while an approximate analytic expression for the measurable quantities
remains to be developed.
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Appendix A. Equilibrium position of the spheroid

To generalize the equations presented in § 3.1 to a spheroid with half-axes a and b,
we begin with the parametric representation r(φ, ξ) of the spheroidal surface, aligned
and positioned as shown in figure 1. In dimensionless form (length unit a), and upon
making use of our abbreviations H = h/b ∈ [−1, 1] and D = a/b ∈ [0, ∞] (2.10a,b), the
parametric form of our spheroid surface centred at y = h (dimensionless form y = h/a =
H/D) is given by

r =
√

1 − ξ2 cos φ ex + H +
√

1 − ξ2 sin φ

D ey + ξ

D ez, (A1)

where eμ denotes a Cartesian base unit vector, and φ and ξ vary in the range φ ∈ [0, 2π]
and ξ ∈ [−1, 1] for a full spheroid. With the help of∣∣∣∣ ∂r

∂φ
× ∂r

∂ξ

∣∣∣∣ = 1
D2

√
(1 − ξ2) cos2 φ + D2[ξ2 + (1 − ξ2) sin2 φ] (A2)

the dimensionless surface area of the full (prolate or also oblate) spheroid is

S(D) =
∫ 2π

0

∫ 1

−1

∣∣∣∣ ∂r
∂φ

× ∂r
∂ξ

∣∣∣∣ dξ dφ = 2π

D2

[
1 + D sinh−1

√D−2 − 1√D−2 − 1

]
. (A3)

For the sphere (D = 1), this evaluates to S(1) = 4π. Faraudo & Bresme (2003) wrote
this differently starting from the normal vector form of the spheroid. For the energy
considerations, we are interested in the parts of the spheroidal surface exposed to air and
fluid, Sa and Sf , respectively. They are given by

Sa(D,H) =
∫ 2π

0

∫ 1

−1

∣∣∣∣ ∂r
∂φ

× ∂r
∂ξ

∣∣∣∣Θ
(
H +

√
1 − ξ2 sin φ

)
dξ dφ (A4)

and Sf = S − Sa, where Θ( y) denotes the Heaviside step function, H( y) = 1 for y > 0
and H( y) = 0 otherwise. For a sphere, because the last term in (A2) is linear in ξ , the Sa
is linear in H, more specifically, Sa(1,H) = 2π(1 + H) and, thus, Sf (1,H) = 4π − Sa =
2π(1 − H). For a spheroid, the integral (A4) cannot be evaluated analytically, but it is most
conveniently evaluated to arbitrary precision using N � 1 pairs (ζ1, ζ2) of independent
random numbers equally distributed on the interval [0, 1]. Each pair is used to calculate
φ = 2πζ1, ξ = 2ζ2 − 1 and the corresponding value of the integrand in (A4) using (A2).
The area Sa is then just the arithmetic mean of the N integrands, multiplied by 4π.

In addition, we need the circular area in the interfacial plane that is occupied by the
spheroid. As the cross-section of the spheroid within the y = 0 plane is an ellipse with
half-axes

√
a2 − h2 and

√
b2 − h2, we obtain the dimensionless

Sc(D,H) = π

√
(D2 − H2)(1 − H2)

D2 . (A5)

The total dimensionless energy of this system can then be expressed, following our
arguments from § 3.1, and with the help of the three surface tensions and the three surface
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Figure 20. (a) Reduced equilibrium position H of the spheroid as a function of the dimensionless difference
(γpa − γpf )/γ of surface tensions for various aspect ratios D. (b) To highlight the differences between the
curves in (a), panel (b) shows Hγ /(γpa − γpf ). For the sphere, H = −(γpa − γpf )/γ in agreement with (3.2).
Each integral has been estimated using N = 106 evaluations.
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Figure 21. (a) Implicit and (b) explicit-ALE simulations of the surfactant concentration profile Γ at various
H of a spherical particle. Figure 17 in the manuscript is the corresponding simulation result implemented with
the explicit method. In all simulations Ma = 10, Pes = 0.5 and Bq1,2 = 0.1.

areas Sa, Sf and Sc, as

E(D,H) = Sa(D,H)γpa + Sf (D,H)γpf − Sc(D,H)γ

= Sa(D,H)(γpa − γpf ) − Sc(D,H)γ + S(D)γpf . (A6)

For the sphere, this immediately evaluates to

E(1,H) = 2π(1 + H)(γpa − γpf ) − π(1 − H2)γ + 4πγpf (A7)

and, thus, exactly coincides with (3.1) divided by R2, i.e. with the non-dimensionalized
(3.1). For the spheroid, we have to use the above expressions for areas. The equilibrium
position of the spheroid’s centre of mass minimizes the total energy E given by
(A6). While dSc/dH can be written down analytically, Sa depends on H only through
the Heaviside function Θ(x). Because dΘ(H + . . .)/dH = δ(H + . . .) is Dirac’s delta
distribution, the equilibrium position H minimizing the energy can be found at minor
numerical effort. Moreover, according to (A6) and because S(D) does not depend on H,
the reduced equilibrium position H (figure 20) is a function of two variables, aspect ratio
D and the dimensionless (γpa − γpf )/γ , not only for a sphere but for the spheroid as well.
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Figure 22. Same as figure 21 for a larger Ma = 100.

Appendix B. Implicit scheme

We have used the explicit-ALE scheme introduced in § 2.6.2 to solve the weak form of the
governing equations. An alternative approach is to use an implicit scheme. In the implicit
time integration scheme, the weak forms of the governing equations, (2.15)–(2.17), are
solved together in one system. The same time integration schemes for ∂Γ/∂t as for the
explicit scheme are used. Due to the linearity of the equation of state used here, the only
nonlinear terms appear in the SCD, which are handled by a Picard iteration,

· · · + [(us)n+1 − (um)n+1] · ∇sΓn+1 + [∇s · (us)n+1]Γn+1

≈ · · · + [(us)n+1 − (um)n+1] · ∇sΓ
i

n+1 + [∇s · (us)n+1]Γ i
n+1, (B1)

where Γ i
n+1 is the surface concentration from the previous step in the Picard iteration,

with the initial guess given by Γ 0
n+1 = Γn. The iteration is terminated when the normalized

difference between iteration steps for the velocity magnitude and the surface concentration
has become smaller than 10−6.

In figure 21(a) we have reproduced the case of figure 17 using the implicit scheme, with
and without ALE formulation. While in figure 21(a) (without ALE) the mesh does not
move with the particle, in figure 21(b) (with ALE), similar to the explicit-ALE method
used in the manuscript, the mesh moves with the particle using the ALE formulation. This
exemplary comparison shows that results are basically insensitive to the choice of scheme,
apart from minor deviations for large H when the particle is predominantly exposed to
air. In figure 22 we additionally compare the two implicit schemes at a different, higher
Ma = 100. Again, there are no notable differences between the two implicit methods.

Appendix C. Additional data

For the set-up of a spheroidal particle in parallel motion, for which fields have been
presented in figure 9, we furthermore performed simulations in perpendicular motion.
Results are shown in figure 23. As explained within § 3.4 and figures of the manuscript,
our particle volumes change upon varying the aspect ratio D, because the length of the
a-axis is used to introduce dimensionless quantities. To appreciate the effect of particle
shape on the dimensionless drag coefficient, or equivalently, the dimensionless drag force,
at constant particle volume, we provide two graphs highlighting the transformation issue.
Both are shown in figure 24.
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Figure 23. Same as figure 9 for the case of perpendicular motion, i.e. interfacial flow field us, interface
velocity components, us,x and us,z, interface compression ∇s · us and shear component for a prolate spheroid in
perpendicular motion (axis of rotational symmetry aligned in horizontal z-direction) with aspect ratio D = 3
at three different immersion lengths (a) H = −0.6, (b) H = 0 and (c) H = 0.6, at a surfactant-free, partially
compressible and viscous interface. In all simulations Bq1,2 = 1. We used the symmetry of the system (the
particle is moving in the x-direction) and show half of the interface.
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Figure 24. Data shown in previous figures, plotted differently, so that the effect of particle volume is
eliminated from the graphs. Data from (a) figure 12(c) and (b) figure 19, where the magnitude |F| of the
total drag force and drag coefficient f have been multiplied by D2/3.
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