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Multipliers between some
function spaces on groups

A.K. Gupta and U.B. Tewari

Let G be a nondiscrete locally compact abelian group with dual

group ' . For 1= p =, denote by Ap(G) the space of

integrable functions on G vwhose Fourier transforms belong to

Lp(F) . We investigate multipliers from Ap(G) to Aq(G) . If
G 1is compact and 2 < py» ps < o . we show that multipliers of

Ap (G) and multipliers of Ap (G) are different, provided
1 2

p1 # p2 . For compact G , we also exhibit a relationship between
ZP(F) and the multipliers from AP(G) to Aq(G) . If G is a
compact nonabelian group we observe that the spaces AD(G) behave

in the same way as in the abelian case as far as the multiplier

problems are concerned.

Introduction

Let G be a locally compact abelian group. Throughout this paper G
will be nondiscrete and, unless otherwise stated, 1 =p < ® ., Let
Ap(G) ={fe L,(c) | 7 ¢ Lp(r)} . For f € Ap(G) , we define

”f”A = Hf”l + ”?”p . If G is compact and nonabelian, Ap(G) is defined
p
in an analogous way {(see [4]). Under convolution as multiplication Ap(G)

is a comnutative semi-simple Banach algebra.
Let X and Y be translation invariant topological linear spaces of
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functions or measures defined on G for which it is possible to define
Fourier or Fourier-Stieltjes transforms. A continuous linear transform-
ation T from X into Y 1is called a multiplier if T commutes with
translations. Let T be a linear transformation from X to Y . Suppose
there exists a function ¢ on T such that (Tf)" = d)}' , for each

f€X . Bucha T commutes with translations, and in many cases T is
continuous. Consequently, such a T would define a multiplier from X to
Y . The collection of all multipliers from X into Y will be denoted by
M(X, Y) . The set of all functions ¢ on T which define elements

T € M(X, Y) in the above manner will be denoted by M;(I’) . We shall
write M(X, X) = M(X) and Mﬁ(r‘) =MX(I‘) . If G 1is infinite, compact,

nonabelian then M(X, Y) and M;(Z) are defined similarly, where I is
the dual object of G .

If G 1is a noncompact locally compact abelian group, then

MA (r) =mM&)" (see [7], 20k-207), and if G is a compact abelian group,

p
then M, (r) =1(T) , provided 1=p=2 . Thus we see that M, (T)
p p
need not depend on the index p . The situation is not so simple for
compact G when 2 < p <o . In Section 1, we show that

MApl(r) # MAp (I') for compact G and 2 < Py» pp <® 5 if py £ p, -
2

M(AP(G)) and M(Ll, Ap) have been studi.ed in some detail (compare
[6], [7]). However, a systematic study of M(Ap, Aq] has not been made so

A
far. It is very easy to see that MAq(I’) =M, (r) if p=gq (see(73),
p

L A
and MAl(I‘) = MA (T) . In Section 2, we study MAq(I') for g <p
p p 14

Multipliers from Ll(G) to AP(G) have been studied in detail in [6]

for abelian groups. The methods of [6] do not appear to extend to non-

abelian groups. In Section 3, we determine multipliers from Ll(G) to

AP(G) for a compact nonabelian group G . Our method works for abelian
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groups also. In fact, it is simpler for abelian groups.

1. Multipliers of Ap

By proving the existence of sets of uniqueness for Lp(G) with

l=p= 2, Figa-Talamanca and Gaudry have proved in [2] that
M(LP(G)) g_M(Lg(G)] for a nondiscrete locally compact abelian group & .

The authors of [2] then employ the Riesz convexity theorem to prove that

M, (r) n CO(I‘) $_ML (T) n CO(I‘) for 1=p<q=2. Price [9] has

p q
generalized these results.
In view of the above results, we were led to investigate analogous

questions for Ap—multipliers. Our results are included in the following
theorem.

THEOREM 1.1. Let G be an infinite compact abelian group,
1sg<w™, 2<p<w,and p>q . Then
(¢) M, (T) n CO(I‘) g M, (T) n Co(l‘) s
p q
(i) U M, (T) g M, (T) .
A A
p>q 'p 7 q
Proof. (%) If g =2 then M, (T) =7 (T) . It is also known (see

q
[7], p. 208) that there exists a function ¢ in Co(l") such that

) ¢MA (I') . This implies (Z). Let us then suppose that g > 2 . Let
p

r = % . Then r >2 and g = _PEY'_Z_ . By [10, Theorem 1} it follows that
q- e

-2
there exists a function f in Ap(G) such that Y |?(Y)|2r/r =®
YET

It follows from [4, Theorem 35.4, Part VI] that there exists a Y € Zr(I')
such that w? ¢ ZZ(I‘) . Hence by [4, Corollary 36.13] there exists a

function €(y) =1 on T such that E(Y)w(Y)}'(Y) is not the Fourier
transform of any integrable function on G . Let &{y) = e(y)y(y) . Then

o ¢ M, (I') . We shall show that ¢ € M, (T), proving (7). In fact we show
p q
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- 29
that Zr(F)C—MAq(r) . Let ¢ ¢ Zr(I‘) , where r =93 and f € Aq(G) .
Then by Holder's inequality we get

2 _~19-2/q ,\ 2/q
L eI ZEm2 s (T 1o #T  pee] <a
Yer Yer YET

Therefore ¢}‘ € 12(1") » and there exists g € Ll(G) such that a = ¢}- .
Since Ff ¢ Zq(F) and ¢ is bounded, g € Zq(P) , and therefore

(T) , and the proof of (i) follows.
q

of € (Aq(G)]" . Thus ¢ € M,
(i1) TFor ¢ € M, () , let |]¢|]A denote the norm of the
P p
corresponding operator T € M(A (G)] . Since MA (T) is a commutative
P p

semi-simple Banach algebra with this norm for all p , and MA (rye MA ()

4 q
whenever p > g , we get that for some constant X , I|¢HA < K”¢”A for

q p
all ¢ € M, {r) . Since ¥, (r) =R {r) (from (Z)), it follows from the
p p
open mapping theorem ([5], p. 99) that A (I') is of first category in
p

M, (T) . Let {pn} be a decreasing sequence such that p > q . Then

A
q

u M, Ty = U M, () . This shows that U M, (I') 1is of first
p>q p n=l "p, p>q p
category in M, (I') , and hence (i) follows.
q
REMARK 1.2. The assertions in the above theorem hold with obvious
modifications, even if (G 1is an infinite compact nonabelian group. The
proof is exactly similar to the above and the results needed in the

argument can be found in [4, Theorem 35.4, Part VI] and [3, Theorem 2.b].

2. Multipliers from Ap(G) to Aq(G)

A
In this section we study MAq(F) for 1= g<p<o . As mentioned
P
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A A

in the introduction, if p < g , then MAq(I‘) = MAp(I‘) and the problem has
p p

been investigated in detail [6] and [7].

PROPOSITION 2.1. Let G be a noncompact locally compact abelian
group, and let Br(G) ={p e M) : ho¢ Lr(I‘)} , Where 1 <r <o, Then

;]

A
~ q A
pq/p-q(G)) c MAP(I‘) g me)” .

Proof. Let ¢ =1, W €B (G) . Then

pq/p-q
oF =1Ff = (w» P € (L(@)" for feL(6) . It f¢ 4,(6) , then by

A
Holder's inequality ¢f € Lq(I‘) , and hence ¢ € MAq(I‘) . Also
14

A
MAq(I‘) <M, (T) = (M(G))~ . To prove that the second inclusion is proper,
p

A
we observe that 6 {MAq(I‘) » vhere 8, is the identity of M(G) . This
p

follows from [710, Theorem 2].

A
Now we discuss MAq(F) . Throughout the rest of this section G will
p

be an infinite compact abelian group.

A
PROPOSITION 2.2. Let 1=q<p=s2. Then MT) (r) .

p

A
pa/p-q

Zr(l") for 1 <»r <2 . Therefore

Proof. We observe that (Ar(G)]A
A

¢ € MAq(F) if and only if oy € zq(r) , U € zp(r) , that is if and only
p )

if €1

10 € balpq

PROPOSITION 2.3. Let 1<g<2<p . Then

(Ir') ; see [4, Theorem 35.4, Part VI].

A

q
Loa/p-q' ) SMAP(I‘) g qu/z.q(r) .
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A
Moreover, if r > %, then ZP(I‘) ¢ MAq(I‘) sand if r > p , then
p

A

q
Yoq /") % #7(T)

Proof. Let ¢ € 1 (T) and f ¢ AP(G) . Then by Holder's

rq/p-q

A
(r) e ¥,9(T) anad also,

inequality ¢f € Zq(I‘) = Aq(G) . Thus qu/p-q Ap
A A
since MA:(F) C_MAZ(I‘) = qu/z_q(f‘) , we get

A

(T) . To prove that M,9(T) g 1 (ry , it
4, 7 “2q/2-q

A
q
(r) c_MAp(r) = qu/e.q

A
rq/r—q

A
now suffices to show that for » > 2L | 7 (T) ¢ M Ur) . TFow r > BL
p=q r 4 p-q

implies that p > f—% . Then, by [10, Theorem 1], it follows that there

exists f € Ap(G) such that ¥ I%(y)qu/r'q = o , Hence by [4, Theorem
yer

35.4, Part VI] there exists a function ¢ in Zr(I‘) such that

A
vf ¢ Zq(l") . This shows that 1 (T) ¢ MAq(I‘) . To complete the proof of
p

A

r) ¢ w,UT) ir r>p .
b

By [10, Theorem 1] there exists a function f in Ar(G) such that

the proposition we shall now éhow that 1
pa/p—q

y |#(¥)|? = . Again [4, Theorem 35.k, Part VI] implies that for some
Y

A
in 1 (r) , vr¢ Zq(I‘) ; that is ¢ ¢ MAq(I‘) . This completes the

pq/p-q r
proof of the proposition.

Let us now consider the case when 2 < g < p <o . 1In this situation

A

(T') is not contained in MAq(I‘) .

P

we shall show that 1
pq/p-q
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LEMMA 2.4, Let 2< q=p<®o® agud 1S pr <o,

Then
Aq A2
1(r) e M%) if and only if 1(T)c M,“(T) .
p p
A2 A
Proof. Since M, (r) g_MAq(I‘) , the 'if' part of the lemma follows.
p p
A2 A
Suppose then 1 (T) ¢ M,°(T) . We shall show that Z_(T) quAq(I‘) . If
p

A
Zr(I') ¢MAQ(I') , then there exists ¢ € Zr(I') and f € Ap(G) such that
p
W b4, = 1,(T) .

As in the proof of Theorem 1.1 there exists a function

€{(Y) =*1 on T such that E(Y)lll(Y)f'(Y) ¢ (Ll(G))" Then the function

A
e(Y)¥(Y) belongs to 1,(I) , but it does not belong to MAq(I‘) This
p

completes the proof of the lemma.

COROLLARY 2.5. If 1sp=L, then Zp(F) cH, (T) , but if

p
b<p <o then 1,(I)¢M, (T) and ZP(I‘)CtM‘4 (T)
D

Proof. If 1<p =1L then p = Z% and by Proposition 2.3,

A

2p/p-2(r) EMA2(I‘) EMA (T') , provided p > 2.
p p

et

If p= 2, then
M, (T) =1,(1) 2 zp(r) . If b<p <o then k> —% and hence by
p

A
Proposition 2.3, Zh(I‘) ¢ MAZ(I‘) and by the lemma above, it follows that
4

Zh(I‘) ¢ M, (T) . Also if L < p <o then p > tT2 = 4 and hence
p
A2
Zp(I‘) ¢ MA:,(P) and Zp(l") ¢ MAh(r) as before.

COROLLARY 2.6.

A
If 2<qg<p<eo then 1 (ry ¢ »4(r) .
f q<p " Loaiv-q ¢ s
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Proof. Since g > 2, p-R—qq? > Z% and therefore, by Proposition 2.3,

A
2
)¢ M “(I') , and hence, by Lemma 2.4, 1 (r M a(r) .
¢ Ap y Lemm vq /o~ )¢ Ap()

PROPOSITION 2.7. If 2< q< p <o then

T
qu /p-q(

~end
(g o)) ?MAP(F) '

Proof . lLet ¢ € (B (6))~ and f€ Ap(cf:. Since ¢ € {(M(®))" ,

rq/p—q

of € (Ll(G))" . Since ¢ € L (I) and Fe¢ Zp(l") , it follows that

Pq/p-q

!
c 4 9(T') . We shall now show that

of € Zq([‘) . Therefore (B q/pq ) - Ap

the inclusion is proper. Since ;2% > 2 , there exists f€ A4

2p/p—2(G)
such that }'d Ze(I‘) . By {4, Corollary 36.13] there exists a function

e(y) =#1 on T such that e(y)f(y) 4 (#(¢))" and hence

e(v)F(v) 4 (qu/p—q(G))A . However e(y)f(y) € ZZp/p—E(F) and, by
A2 A
Proposition 2.3, Z2p/p—2(r) < MAp(l") < MAZ(I‘) . This completes the proof.

3. Multipliers from L1 to Ap

As mentioned in the introduction, for abelian groups G , multipliers

from Ll to Ap have been investigated by Krogstad in [6]. Krogstad has

shown that M(Ll, A]) =~ (Bp(G))" . We shall show that the same result

p

holds for compact nonabelian groups. As mentioned earlier, our proof

differs from that of Krogstad which does not appear to extend to the non-
abelian case. A similar proof for the abelian case is simpler. We shall
follow the notations of [4] in dealing with the nonabelian case. Thus @
will denote an infinite compact nonabelian group and I 1its dual object.

A,(6) = {f € £,(6) : Fe (D) ana I, = sty + I,

PROPOSITION 3.1. Let G be an infinite compact nonabelian group and
1= g<e®., Let u € M(G) be such that n * Ll(G)C Aq(G) ; then
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~

u Ggq(Z) .

~ (o]
Proof. Suppose f_C__q(Z) . Choose a sequence {wn}n=l of finite

subsets of I such that

T 4ol =7
oy, q
Now by [4, Theorem 28.53] choose a sequence {hk} in Ll(G) such that

”hnlll =1, ﬁn(o) = an(o)Ido . an(o) > 0, and an(c) >% for all

© B A
c€yYy . Let h = Z —ré ; then h € Ll(G) , hlo) = OL(O)Id , and
n n=ln [s)

a{c) = 0 for all o € £ , and a(o)z——% for all g €y, . Now
on

¢

R MEIACH N
o q

=Y d_(a@))¥ e
> 5 (ale) b,

W

1 5@
r d MG

o€y, AnX4 q
= Lﬁ = [Q)q for all n s
A2 2

a contradiction.

The proof of the following corollary is now obvious.

COROLLARY 3.2. Let G be an infinite compact nonabelian group and
1sp<w. Thn ML, Ap) o~ (Bp(G)]A .

PROPOSITION 3.3. Let G be an infinite compact nonabelian group and
l=g=2. Then

A
d(z) = -
MLl(Z) (Aq(G))

Proof. It is obvious that (Aq(G))"C_MLq(Z) . Conversely,
1

4 z A
M9(z) < M () = M(G)~ . Hence if 1 € M 9(E) , then yu* L_(¢) € 4 (G)
Ll - Ll Ll 1 q
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Therefore, by Proposition 3.1, § € é%(i) . Then it follows from [4,

(34.47) (b)] that p € Aq(G)A . This completes the proof of the

proposition.
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