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Multipliers between some
function spaces on groups

A.K. Gupta and U.B. Tewari

Let G be a nondiscrete locally compact abelian group with dual

group T . For 1 £ p £ °° , denote by A (G) the space of

integrable functions on G whose Fourier transforms belong to

L ( D . We investigate multipliers from A (G) to A (G) . If

G is compact and 2 < p , p~ < °° , we show that multipliers of

A (G) and multipliers of A (G) are different, provided
P l ^2

P-, ^ Po • F o r compact G , we also exhibit a relationship between

I ( D and the multipliers from A (G) to A (G) . If G is a

compact nonabelian group we observe that the spaces A (G) behave

in the same way as in the abelian case as far as the multiplier

problems are concerned.

Introduction

Let G be a locally compact abelian group. Throughout this paper G

will be nondiscrete and, unless otherwise stated, 1 £ p < °° . Let

A (G) = {/ € LX(G) | / € Lp(T)} . For / € Ap(G) , we define

llfIL = II/II-, + 11/11 . If G is compact and nonabelian, A (G) is defined

P P P

in an analogous way (see [4]). Under convolution as multiplication 4̂ (G)

is a commutative semi-simple Banach algebra.

Let X and Y be translation invariant topological linear spaces of
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functions or measures defined on G for which it is possible to define

Fourier or Fourier-Stieltjes transforms. A continuous linear transform-

ation T from X into Y is called a multiplier if T commutes with

translations. Let T be a linear transformation from X to Y . Suppose

there exists a function <j> on T such that (Tf)" = ((>/ , for each

f d X . Such a T commutes with translations, and in many cases T is

continuous. Consequently, such a T would define a multiplier from X to

Y . The collection of all multipliers from X into Y will be denoted by

M(X, Y) . The set of all functions ^ on F which define elements

T € M{X, Y) in the above manner will be denoted by MY(?) . We shall

write M(X, X) = M(X) and M~(?) = M' (?) . If G is infinite, compact,

A A
nonabelian then M{X, Y) and M(Z) are defined similarly, where E is

A

the dual object of G .

If G is a noncompact locally compact abelian group, then

M. (?) = M(G)~ (see [7], 20U-207), and if G is a compact abelian group,

P

then M. ( D = ^(Y) , provided 1 5 p S 2 . Thus we see that M (?)

P P
need not depend on the index p . The situation is not so simple for

compact G when 2 < p < °° . In Section 1 , we show that

M. (?) t M. (?) for compact G and 2 < p p < » , if p. t po .
Api p 2 1 2 1 <*

M[A (G)) and W ( L . , 4 1 have been studied in some detail (compare

[6], [7]). However, a systematic study of M{A , A ) has not been made so

A

far. It is very easy to see that M.q(?) = A^ (?) if p 2 q (see [7]),

P P

L A
and U (?) = M (?) . In Section 2, we study Mq(?) for q < p .

P P P
Multipliers from £ (G) to A (G) have been studied in detail in [6]

for abelian groups. The methods of [6] do not appear to extend to non-

abelian groups. In Section 3, we determine multipliers from L.(G) to

A (G) for a compact nonabelian group G . Our method works for abelian
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groups also. In fact , i t i s simpler for abelian groups.

1. Multipliers of A

By proving the existence of sets of uniqueness for L (<J) with

1 £ p 5 2 , Figa-TaIamanca and Gaudry have proved in [2] that

M[L (<?)} q M[LAG)) for a nondiscrete locally compact abelian group G .

The authors of [2] then employ the Riesz convexity theorem to prove that

MT (r) n CAT) q MT (D n CAT) for 1 £ p < q £ 2 . Price [9] has
LJ \J ~f~ JJ U

P q
generalized these results.

In view of the above results, we were led to investigate analogous

questions for A -multipliers. Our results are included in the following

theorem.

THEOREM 1.1. Let G be an infinite oompaat abelian group,

1 £ q < <*> , 2 < p < ° ° j and p > q . Then

(i) MA ( D n <7Q(r) C MA ( D n CAT) ,
p q

Hi) U MA ( D <zMA ( D .
p>q p q

Proof, (i) If q £ 2 then A^ (T) = ̂ ( D . It is also known (see

q

[7], p. 208) that there exists a function (j> in CAT) such that

<j> \ M. (T) . This implies (i) . Let us then suppose that q > 2 . Let

r = -^ . Then r > 2 and q = — - . By [ J 0, Theorem 1] it follows that

there exists a function f in A (G) such that £ | ? ( Y ) | P ~ 2 = °° -

P Y«r

I t follows from [4 , Theorem 35.1*, Part VI] that there exists a i|i € Z (T)

such that \pf $ IAT) . Hence by [4, Corollary 36.13] there exists a

function e(y) = ±1 on T such that E(Y)'I '(Y)?(Y) i s not the Fourier

transform of any integrable function on G . Let <(>(Y) =
M. (T) . We shall show that 4> € Af. (F) , proving (i) . In fact we show

P ?
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that l(T) <=_MA (r) . Let <J> € l^Y) , where r = -^- j and f i A

Then by Holder's inequality we get

Therefore <J>/ € J g ( r ) , and there e x i s t s g € LAG) such t h a t # = < ) > / .

S ince / € Z ( r ) and 0 i s bounded, £ € Z ( r ) , and t h e r e f o r e

Qf € (4 (C)l^ . Thus 4> € M. (r) , and the proof of f-i; fo l lows.
q \

(ii) For $ (. M. (V) , l e t ||<}i|| d e n o t e t h e norm o f t h e

P P

c o r r e s p o n d i n g o p e r a t o r T € M{A ( G ) ) . S i n c e M. {V) i s a c o m m u t a t i v e
P P

s e m i - s i m p l e B a n a c h a l g e b r a w i t h t h i s n o r m f o r a l l p , a n d M. (T) c M. (T)

P Q

w h e n e v e r p > q , we g e t t h a t fo r some c o n s t a n t K , ||<J>|| . S X||())|L f o r

<! P

a l l <J> i MA (T) . S ince MA (T) QM (T) (from (i) ) , i t follows from the

P P <7

open mapping theorem ([5], p. 99) that AC. (T) is of first category in

P
M. (r) . Let [p } be a decreasing sequence such that p + £? . Then

q n n

OO

U M (T) = U « . (T) . This shows t h a t U Af (T) i s of f i r s t
p n=l p n p>^

category in M, (r) , and hence (ii.) follows.

<7

REMARK 1.2. The assertions in the above theorem hold with obvious

modifications, even if G is an infinite compact nonabelian group. The

proof is exactly similar to the above and the results needed in the

argument can be found in [4, Theorem 35.1*, Part VI] and [3, Theorem 2 .b] .

2 . M u l t i p l i e r s f r o m A {G) t o A (G)
P H

A
I n t h i s s e c t i o n we s t u d y M ^(T) f o r l £ < 7 < p < ° ° . As m e n t i o n e d

P
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A A

in the introduction, if p 5 q , then Af.̂ Cr) = M P(T) and the problem has

P P

been investigated in detai l [6] and [7 ] ,

PROPOSITION 2 . 1 . Let G be a nancompact locally compact dbeVian

group, and let B (G) = {y e M{G) : y € L (V)} , where 1 £ r < °° .

Proof. Let (j) = y , y € B . (G) . Then

<t? = Vf = (y * / ) " € ( £
1 ( G ) ) " f o r / € ^ ( C ) • If / € il (ff) , then by

A
<5

4
P

Holder's inequality 1(1/ 5 I (F) , and hence <J> € M."[T) . Also

™. ,,i c Af (F) = [M(G))~ . To prove that the second inclusion is proper,

P P

we observe that 6 ^ M.^(T) , where 6 is the identity of M(G) . This

P
follows from [JO, Theorem 2].

Now we discuss M."(T) . Throughout the rest of this section G will

P
be an infinite compact abelian group.

A
PROPOSITION 2 .2 . Let 1 £ q < p < 2 . Tfcen M.q(T) = I , ( D .

A pq/p-q

Proof. We observe t h a t [A (G)}" = I ( D for 1 5 r £ 2 . Therefore
^ r ' r

A
<(> € M.q(T) i f a n d o n l y i f # € J ( D , i|> € Z- (T) , t h a t i s i f and o n l y

P q

i f 4> € I . ( r ) ; s e e [ 4 , Theorem 35.1+, P a r t V I ] .

PROPOSITION 2 . 3 . L e t l £ < ? £ 2 < p .
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Moreover, if r > -22- t then Zr(F) 4 ^ ( F ) , and if r > p , then

Proof. Let <j> € I . (F) and f (. A (G) . Then by Holder's
PHIP-H P

A
inequality $ / € I (T) = A (G)A . Thus I . ( F ) c ^ ( r ) and a lso ,

A A
since ^ ( r ) <=_MA

q{T) = Za?/2_<7(r) , we get

V ) • To prove that V ( r ) ^
now suffices to show that for r > -^- , I (r) <± W.^(D . Now r >

p-q r A
p

implies that p > -^_ . Then, by 110, Theorem 1 ] , it follows that there

exists f i A (G) such that £ |/(y)| *""** = " • Hence by [4, Theorem
p yiT

35.1+, Part VI] there exists a function i|) in I (F) such that

A
tyf $ I (T) . This shows that I (D 4 M.q{T) . To complete the proof of

<7 P

the proposition we shall now show that I . (F) d M« (F) if r > p .
pq/p-<7 4

By [70, Theorem 1] there exis ts a function / in A (G) such that

= °° • Again [4 , Theorem 35.1*, Part VI] implies that for some ip
Y

A
in Z , (F) , t);/ ̂  Z (F) ; that is ^ ^ M q(T) . This completes the

pqip-q q A^

proof of the proposition.

L e t u s n o w c o n s i d e r t h e c a s e w h e n 2 < < y < p < « > . I n t h i s s i t u a t i o n

A
we shall show that Z , (F) is not contained in M.

pq/p-q A
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LEMMA 2 .4 . Let 2 < q < p < °° and 1 5 r < » .

onZy i / Z ( D c M 2 ( r ) .

A 4

Proof. Since M (V) c_M.q(?) , the 'if part of the lenma follows.
P P
A A

Suppose then I (D 4 ̂  (D . We shall show that- I (D4 w/(r) . If
Ap Ap

A?
I (r) 4 " , (r) , then there exists 4> € I (T) and / € 4 (G) such that
r p r P

iff { 4 . = Zp(r) . As in the proof of Theorem 1.1 there exists a function

e(y) = ±1 on r such that E(Y)<KY)?(Y) i IMG))" . Then the function

A

e(Y)<KY) "belongs to I (D , but i t does not belong to M.q(T) . This

r Ap

completes the proof of the lemma.

COROLLARY 2 . 5 . I f l i p s l t , t h e n Z _ ( r ) c M ( r ) , b u t i f
P P

1* < p < co t h e n IAT)$M. ( D a n d I (T) 4 M (T) .
p " U

Proof. I f l < p S It then p £ - ^ - and by Proposi t ion 2 . 3 ,

I ( D c I ( r ) C M / ( D C « . ( D , provided p > 2 . I f p < 2 , then

W. (T) = I (T) r> I (T) . I f U < p < » t h e n h > ^~ and h e n c e by
A °° — p r p -2

X2Proposit ion 2 . 3 , Z, (T) cj: AT. (T) and by the lemma above, i t follows t h a t

P 1*2
Z. (T) 4M- (T) . Also i f It < p < » then p > -rf-^ = 1+ and hence

Z ( D 4 M. ( D and Z ( D 4 w/i ( r ) a s before .P ^ Ak P ^ Ak

A
COROLLARY 2 . 6 . I f 2 < q < p < » t h e n Z . ( D 4 W
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Proof. Since q > 2 , -&&-> -^- and therefore, by Proposition 2 .3 ,

A2 A
I i _ _ J r ) 4 M

A ( D , a n d h e n c e , b y Lemma 2.k, I ( r ) 4 W

PROPOSITION 2 . 7 . 1 / 2 < q < p < «>

Proof. Let <j> 6 (^ / (G))" and f € 4 (C) . Since <j> €

<()/€ (£1(ff))" . Since <J> € £ / (T) and / € I (D , i t follows that

<))/€ I (T) . Therefore (5 , _ [G))" c M^{Y) . We s h a l l now show t h a t

t h e i n c l u s i o n i s p rope r . S ince —p > 2 , t he re e x i s t s / € A~, p(ff)

such t h a t / ^ Z-p(r) . By [4 , Corol lary 36 .13 t h e r e e x i s t s a funct ion

e(y) = ±1 on r such that eiyffiy) ^ [M{G))" and hence

e(Y)?(Y) 4 (Zpq/p-q^" • H o w e v e r
 E(Y)/(Y) € Z2p/p-2(r) a n d ' b y

A A
P r o p o s i t i o n 2 . 3 , £ „ , 2 ( T ) c M ( r ) c A/ * * ( r ) . T h i s c o m p l e t e s t h e p r o o f .

^ P~ P P

3 . M u l t i p l i e r s from L, to A
1 p

As mentioned in the introduction, for abelian groups G , multipliers
from L to A have been investigated by Krogstad in [6] . Krogstad has

shown that M{L , A ) ~ [B (G))~ . We shall show that the same result

holds for compact nonabelian groups. As mentioned earlier, our proof
differs from that of Krogstad which does not appear to extend to the non-
abelian case. A similar proof for the abelian case is simpler. We shall
follow the notations of [4] in dealing with the nonabelian case. Thus G
will denote an infinite compact nonabelian group and £ i ts dual object.
A (G) = {/ € LAG) : / € C (£)} and \\f\\A = \\f\\1 + 11/11 •

PROPOSITION 3 . 1 . Let G be an infinite compact •nonabelian group and

1 £ q < " . Let u € M(G)" be such that u * LAG) <= A (G) ; then
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y € C (E) .

Proof. Suppose y f C. (E) . Choose a sequence {\\> } of f in i te

subsets of E such that

Now by [4 , Theorem 28.53 choose a sequence \h, } in L (G) such that

||7J || = 1 , h (a) = a (a)X, , a (a) > 0 , and a (a) > % for a l l
a

. Let h = X - f i t h e n ^ € i j /G) . h(a) = a(a)J"d , and
w=l n a

a ( a ) > 0 fo r a l l a £ Z , and ct(a) i — n fo r a l l a € \\i .
2w w

Now

I d \\v(a)h(a)\f = l d
a vq a

a contradiction.

The proof of the following corollary is now obvious.

COROLLARY 3.2 . Let G be an infinite aompaat nonabelian group and

1 5 p < oo . Then M[L±, A ) <± [B (C))" •

PROPOSITION 3 .3 . Let G be an infinite compact nonabelian group and

1 S q 5 2 . Then

A
MJHZ) = [A ( G ) ) ~ .

A
Proof. It is obvious that (4 (G)]~<= M_5(E) • Conversely,

A L A
M T

q ( Z ) c MT ( E ) = M ( G ) ~ • H e n c e i f y € W r ^ ( E ) , t h e n y * r ( C ) <= 4 ( G ) .
L l ~ L l L l x ~ <7
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Therefore, by Propos i t ion 3 . 1 , u € C (E) . Then i t follows from [ 4 ,

(3>».1*7) (b)] t h a t {I € - 4 ( c ) " • This completes the proof of the

propos i t i on .
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