THE CONTINUITY OF THE VISIBILITY FUNCTION ON A STARSHAPED SET

GERALD BEER

1. Introduction.

Definition. The visibility function assigns to each point x of a fixed measurable set E in a Euclidean space E_n the Lebesgue outer measure of S(x), the set $\{y : rx + (1 - r)y \in E \text{ for every } r \text{ in } [0, 1]\}.$

The purpose of this paper is to determine sufficient conditions for the continuity of the function on the interor of a starshaped set.

2. Preliminaries. We basically use the same terminology as in [1], where the reader may find a more general investigation of the continuity properties of the visibility function. Lebesgue measure in E_n is denoted by m or m_n (if more than 1 measure is under discussion). The convex kernel of E, $\{x \in E : S(x) = E\}$ is expressed as conv ker E, and the convex hull of E is denoted by conv E. The open r-ball about a point x is given by $B_r(x)$. The interior of E relative to the smallest flat containing E is given by intv E. Finally, xy will denote the line segment joining x to y, L(x, y) will denote the line determined by x and y, and $\langle W \rangle$ will denote the flat generated by the set of vectors W.

In the sequel, we must draw upon 3 facts established in [1], which we state as theorems. As in [1], we will designate the visibility function for a fixed set by v.

THEOREM 1. If $O \subset E_n$ is open, then v is lower semicontinuous on O.

THEOREM 2. If $K \subset E_n$ is compact, then v is upper semicontinuous on K.

THEOREM 3. Let E be a compact set in E_n . If $x \in E$, the set of endpoints of all maximal segments in S(x) with one endpoint x forms a measurable set and has measure zero.

It is easy to see that the visibility function may be discontinuous on the interior of a compact starshaped set in E_n , if the dimension of the convex kernel does not exceed n - 2. For example, let K be a Cantor set of positive measure in $[0, 2\pi]$ and let E be the following planar starshaped set: $\{(r, \theta) : r \leq 1\} \cup \{(r, \theta) : 1 < r \leq 2, \theta \in K\}$. Let $q \in E \cap \{(r, \theta) : r \leq 1\}$. Since $E \cap \{(r, \theta) : 1 < r \leq 2\}$ is nowhere dense, and E is starshaped with respect to $0, S(q) \cap E \cap \{(r, \theta) : 1 < r \leq 2\} \subset L(q, 0)$, so that the visibility function for E is discontinuous at the origin. Using "Cantor cylinders", we may construct analogous examples in E_n for any n.

Received October 7, 1971 and in revised form, May 9, 1972.

GERALD BEER

3. Results. In establishing our main theorem, we use induction and a basic property of generalized cylindrical coordinates. Specifically given any flat F of dimension n - 2 in E_n , we can find a collection of hyperplanes $\{H_{\theta}\}, \theta \in [0, \pi)$, such that $F = H_{\theta_1} \cap H_{\theta_2}(\theta_1 \neq \theta_2), \bigcup H_{\theta} = E_n$, and if K is an arbitrary Borel set satisfying $m_{n-1}(H_{\theta} \cap K) = 0$ for almost every θ , then m(K) = 0.

THEOREM 4. Let E be a compact starshaped set in E_n such that int $E \neq \emptyset$. Suppose dim conv ker $E \ge n - 1$. Then the visibility function v is continuous on int E.

Proof. We first establish our theorem in the case n = 2. Let x be an arbitrary point of int E different from some point in conv ker E and let $\{x_n\} \to x$. The lower semicontinuity of v at x follows if we can show $S = \{y : y \in S(x), y \notin \bigcup_{k=1}^{\infty} \bigcap_{n=k}^{\infty} S(x_n)\}$ has measure zero. If we denote the set of points which x sees via E but not via int E by M, then clearly $S \subset M$. First, it can be seen that any ray with endpoint x intersects M in one point or an interval. Excluding the ray on the one possible line which might contain all the points of conv ker E, if such a ray R contains an interval in M, we associate a rational point in E_2 with it. Fix $p \in \text{conv ker } E, p \neq x. L(p, x)$ divides the plane into two open half planes, H_1 and H_2 . Suppose without loss of generality $R \subset H_1$ and $y_1y_2 \subset M \cap R$. Clearly there exists a point z such that $z \in intv y_1y_2$ and pz passes through a point r_R in H_1 with rational coordinates. We claim the assignment $R \to r_R$ is 1-1. Suppose there were another ray R' such that $R' \subset H_1$ and R' were also assigned r_R . Then there exists z' on $R' \cap M$ such that r_R is in inty pz' and we may harmlessly suppose $z \in inty z'p$. Since $conv(p \cup z' \cup x) \subset E$, it follows that $z \notin M$, a contradiction.

The remaining points of M not contained in these intervals must be endpoints of maximal segments in S(x) with one endpoint x. But these points have measure zero by Theorem 3. Hence, $m(S(x)) \leq m(\bigcup_{k=1}^{\infty} \bigcap_{n=k}^{\infty} S(x_n)) \leq \liminf m(S(x_k))$ and the lower semicontinuity of v at x follows in the case n = 2.

For general *n*, we must distinguish two cases for an arbitrary point $x \in \text{int } E$:

(1) there exists *n* independent points $\{y_1, \ldots, y_n\} \subset \text{conv ker } E$ such that $x \notin \langle y_1, \ldots, y_n \rangle$, and

(2) there exists *n* independent points $\{y_1, y_2, \ldots, y_n\} \subset \text{conv ker } E$ such that $x \in \langle y_1, \ldots, y_n \rangle$.

If dim conv ker E = n, both conditions are satisfied for every x, and if dim conv ker E = n - 1, then exactly one is satisfied by each x in E. (See Valentine [3] for a thorough discussion of flats, convex kernels and convex hulls).

In case (1) we first establish by induction that if p is any point in intv conv($\{y_1, \ldots, y_n\}$) where $\{y_1, \ldots, y_n\}$ are as above, then if $\{x_n\} \to x$ on L(x, p) we have $m(S(x)/\bigcup_{k=1}^{\infty} \bigcap_{n=k}^{\infty} S(x_n)) = 0$. This, of course, has been shown when n = 2. Assume it is true if n = k, and now suppose n = k + 1. Let $\{y_1, \ldots, y_{k+1}\}$ be independent points in conv ker E satisfying $x \notin \langle y_1, \ldots, y_{k+1} \rangle$. Let $p \in \text{intv conv}(\{y_1, \ldots, y_{k+1}\})$. Clearly there exists a set of hyperplanes

990

 $\{H_{\theta}\}, \theta \in [0, \pi)$, as in the previous discussion such that $L(x, p) \subset H_{\theta}$ for every θ , dim conv ker $(H_{\theta} \cap E) \geq k - 1, \bigcup H_{\theta} = E_{k+1}$ and for every θ , there exists independent points $\{y_1^{\theta}, \ldots, y_k^{\theta}\}$ contained in conv ker $(H_{\theta} \cap E)$ such that $p \in \text{intv} \operatorname{conv}(\{y_1^{\theta}, \ldots, y_k^{\theta}\})$ and $x \notin \langle y_1^{\theta}, \ldots, y_k^{\theta} \rangle$.

Now let $\{x_n\}$ be an arbitrary sequence of points on L(x, p) converging to x. By the induction hypothesis we have $m_k(S(x) \cap H_{\theta} / \bigcup_{k=1}^{\infty} \bigcap_{n=k}^{\infty} S(x_n) \cap H_{\theta}) = 0$. Hence, by our previous remarks we have $m_{k+1}(S(x) / \bigcup_{k=1}^{\infty} \bigcap_{n=k}^{\infty} S(x_n)) = 0$. Hence our proposition is true in E_n for every n.

This all of course implies that given any point $p \in intv conv(\{y_1, \ldots, y_n\})$, v is continuous on L(x, p). Therefore there exists a point x_0 in E such that $x \in intv px_0$ and $v(x_0) > v(x) - \epsilon$. Since p was chosen in intv conv $(\{y_1, \ldots, y_n\})$, it follows that conv $\{x_0, y_1, \ldots, y_n\}$ will contain a neighborhood N of x and since $y_i \in conv \ker E$, $i = 1, 2, \ldots, n$, we conclude that $v(y) > v(x) - \epsilon$ for every $y \in N$ so that v is lower semicontinuous at x.

In case (2) we establish by induction that the set M of points which x sees via E but not via int E has measure zero, which is enough to establish the continuity of the visibility function at such points as we have noted before. We have seen this to be true when x is any interior point of E if n = 2. Now suppose the assertion has been established for n = k. If n = k + 1 we again rotate a hyperplane to sweep out k + 1 space such that at each stage $H_{\theta}, \theta \in [0, \pi), E \cap H_{\theta}$ satisfies the induction hypothesis. Let H denote a hyperplane containing x and a subset of conv ker(*E*) of dimension *k*. There exists a flat $F \subset H$, dim F = k - 1, such that $x \in F$ and dim conv ker $(F \cap E) = k - 1$. Let $\{H_{\theta}\}, \theta \in [0, \pi)$, denote the set of hyperplanes generated by rotating $H = H_0$ about F. Then for all $\theta \in [0, \pi)$, we have dim conv ker $(H_{\theta} \cap E) \geq k - 1$, and x is located on a hyperplane in H_{θ} (namely F) for every θ containing a subset of conv ker($H_{\theta} \cap E$) of dimension k - 1. By the induction hypothesis the set M_{θ} = those points of $E \cap H_{\theta}$ which x sees via $E \cap H_{\theta}$ but not via inty $E \cap H_{\theta}$ has k dimensional measure zero. By our earlier remarks, $\bigcup_{\theta \in [0,\pi)} M_{\theta}$ has k+1 dimensional measure zero.

We claim that $M/M \cap H_0 \subset \bigcup_{\theta \in [0,\pi)} M_{\theta}$. Suppose z is an interior point of $E \cap H_{\theta}/F$ relative to H_{θ} where $\theta \neq 0$. Let N be an H_{θ} neighborhood of z contained in $E \cap H_{\theta}/F$. Then $\dim(N \cup \operatorname{conv} \ker E) = k + 1$, and $z \in \operatorname{int} \operatorname{conv}(N \cup \operatorname{conv} \ker E) \subset \operatorname{int} E$. Hence boundary points of E on H_{θ} , $\theta \neq 0$, are boundary points of $E \cap H_{\theta}$ relative to H_{θ} . Thus, $M/M \cap H_{\theta} \subset \bigcup M_{\theta}$ so that m(M) = 0, and the continuity of v at such points x follows.

Some observations are now in order. Clearly, the converse of Theorem 4 fails. If E is a compact starshaped set in E_n the dimension of whose convex kernel exceeds n - 2, then the boundary of E has measure zero. Thus, the reader might guess that Theorem 4 is a special case of the following more general theorem: if $E \subset E_n$ is a compact set whose boundary is of measure zero, then the visibility function is continuous on int E. However, the above proposition is false. In the standard Cantor set of measure π in $[0, 2\pi]$ derived by tossing out a sequence of open sets $\{O_n\}$ from $[0, 2\pi]$ in the usual way, let our residual closed set after the *n*th deletion be called K_n . Letting

$$r_n = 3 \sup_{x \in K_n} \inf_{y \in [0, 2\pi]/K_n} |y - x|,$$

a counterexample is seen to be

$$\{(r, \theta) : r \leq 2\} / \bigcup_{n=1}^{\infty} \{(r, \theta) : \theta \in O_n, 1 < r < 1 + \sqrt{r_n}\}.$$

For details, see [2].

For the case when E is a bounded open starshaped set, we are only able to give the following planar result.

THEOREM 5. Let O be any bounded open starshaped set in the plane. Then the visibility function is continuous on O.

Proof. Let x be an arbitrary element of O and let $\{x_n\} \to x$. If $x \in \operatorname{conv} \ker O, v(x_n) \to v(x)$, so we may assume $x \notin \operatorname{conv} \ker O$. We show that $S = \{y : y \in \bigcap_{k=1}^{\infty} \bigcup_{n=k}^{\infty} S(x_n)/S(x)\}$ has measure zero. Fix a point p in conv ker O and consider any ray R emanating from x. We claim that $R \cap S$ is either empty or contains a line segment. If the line L determined by R contains p, then $R \cap S = \emptyset$. If not, and $R \cap S \neq \emptyset$, then all but finitely many of the $\{x_n\}$ which see a fixed point y of $R \cap S$ must lie on the p side of L, or else we have $\operatorname{conv}(x \cup y \cup p) \subset O$. Since int $\operatorname{conv}(y \cup p \cup x) \subset O$, there exists an open rectangle in O with one edge xv containing y in its relative interior where $yv \subset O$. It is clear that all but finitely many members of the range of $\{x_n\}$ which could see y can also see yv, and since $yv \cap S(x) = \emptyset$, $R \cap S$ contains yv, an interval.

We now proceed in the same manner as in the compact case: to each ray R containing an interval in S we associate a rational point r_R .

This point corresponds uniquely to R, for suppose that r_R lies on both pwand pw' where $w \in R \cap S$, $w' \in R' \cap S$ and $w \in intv w'p$, say. Since int $conv(w' \cup x \cup p) \subset 0$, we have $w \in S(x)$, a contradiction. The upper semicontinuity of v now follows in the obvious way.

In addition to establishing more general results for open sets, the following conjecture is of interest: let E be a compact starshaped set in E_n whose convex kernel is of dimension n - 2. If $x \in \text{int } E$ is a point of discontinuity of the visibility function, then x is a point on the smallest flat containing the convex kernel of E.

References

2. ——— Continuity properties of the visibility function (to appear).

University of California, Los Angeles, California

992

^{1.} Gerald Beer, The index of convexity and the visibility function (to appear in Pacific J. Math.).

^{3.} F. A. Valentine, Convex sets (McGraw-Hill, New York, 1964).