THE CONTINUITY OF THE VISIBILITY FUNCTION ON A STARSHAPED SET

GERALD BEER

1. Introduction.

Definition. The visibility function assigns to each point x of a fixed measurable set E in a Euclidean space E_{n} the Lebesgue outer measure of $S(x)$, the set $\{y: r x+(1-r) y \in E$ for every r in $[0,1]\}$.

The purpose of this paper is to determine sufficient conditions for the continuity of the function on the interor of a starshaped set.
2. Preliminaries. We basically use the same terminology as in [1], where the reader may find a more general investigation of the continuity properties of the visibility function. Lebesgue measure in E_{n} is denoted by m or m_{n} (if more than 1 measure is under discussion). The convex kernel of $E,\{x \in E: S(x)=E\}$ is expressed as conv ker E, and the convex hull of E is denoted by conv E. The open r-ball about a point x is given by $B_{r}(x)$. The interior of E relative to the smallest flat containing E is given by intv E. Finally, $x y$ will denote the line segment joining x to $y, L(x, y)$ will denote the line determined by x and y, and $\langle W\rangle$ will denote the flat generated by the set of vectors W.
In the sequel, we must draw upon 3 facts established in [1], which we state as theorems. As in [1], we will designate the visibility function for a fixed set by v.

Theorem 1. If $O \subset E_{n}$ is open, then v is lower semicontinuous on O.
Theorem 2. If $K \subset E_{n}$ is compact, then v is upper semicontinuous on K.
Theorem 3. Let E be a compact set in E_{n}. If $x \in E$, the set of endpoints of all maximal segments in $S(x)$ with one endpoint x forms a measurable set and has measure zero.

It is easy to see that the visibility function may be discontinuous on the interior of a compact starshaped set in E_{n}, if the dimension of the convex kernel does not exceed $n-2$. For example, let K be a Cantor set of positive measure in $[0,2 \pi]$ and let E be the following planar starshaped set: $\{(r, \theta): r \leqq 1\} \cup\{(r, \theta): 1<r \leqq 2, \theta \in K\}$. Let $q \in E \cap\{(r, \theta): r \leqq 1\}$. Since $E \cap\{(r, \theta): 1<r \leqq 2\}$ is nowhere dense, and E is starshaped with respect to $0, S(q) \cap E \cap\{(r, \theta): 1<r \leqq 2\} \subset L(q, 0)$, so that the visibility function for E is discontinuous at the origin. Using "Cantor cylinders', we may construct analogous examples in E_{n} for any n.

Received October 7, 1971 and in revised form, May 9, 1972.
3. Results. In establishing our main theorem, we use induction and a basic property of generalized cylindrical coordinates. Specifically given any flat F of dimension $n-2$ in E_{n}, we can find a collection of hyperplanes $\left\{H_{\theta}\right\}, \theta \in[0, \pi)$, such that $F=H_{\theta_{1}} \cap H_{\theta_{2}}\left(\theta_{1} \neq \theta_{2}\right), \cup H_{\theta}=E_{n}$, and if K is an arbitrary Borel set satisfying $m_{n-1}\left(H_{\theta} \cap K\right)=0$ for almost every θ, then $m(K)=0$.

Theorem 4. Let E be a compact starshaped set in E_{n} such that int $E \neq \emptyset$. Suppose dim conv ker $E \geqq n-1$. Then the visibility function v is continuous on int E.

Proof. We first establish our theorem in the case $n=2$. Let x be an arbitrary point of int E different from some point in conv ker E and let $\left\{x_{n}\right\} \rightarrow x$. The lower semicontinuity of v at x follows if we can show $S=\left\{y: y \in S(x), y \notin \bigcup_{k=1}^{\infty} \bigcap_{n=k}^{\infty} S\left(x_{n}\right)\right\}$ has measure zero. If we denote the set of points which x sees via E but not via int E by M, then clearly $S \subset M$. First, it can be seen that any ray with endpoint x intersects M in one point or an interval. Excluding the ray on the one possible line which might contain all the points of conv ker E, if such a ray R contains an interval in M, we associate a rational point in E_{2} with it. Fix $p \in \operatorname{conv} \operatorname{ker} E, p \neq x . L(p, x)$ divides the plane into two open half planes, H_{1} and H_{2}. Suppose without loss of generality $R \subset H_{1}$ and $y_{1} y_{2} \subset M \cap R$. Clearly there exists a point z such that $z \in \operatorname{intv} y_{1} y_{2}$ and $p z$ passes through a point r_{R} in H_{1} with rational coordinates. We claim the assignment $R \rightarrow r_{R}$ is $1-1$. Suppose there were another ray R^{\prime} such that $R^{\prime} \subset H_{1}$ and R^{\prime} were also assigned r_{R}. Then there exists z^{\prime} on $R^{\prime} \cap M$ such that r_{R} is in intv $p z^{\prime}$ and we may harmlessly suppose $z \in \operatorname{intv} z^{\prime} p$. Since $\operatorname{conv}\left(p \cup z^{\prime} \cup x\right) \subset E$, it follows that $z \notin M$, a contradiction.

The remaining points of M not contained in these intervals must be endpoints of maximal segments in $S(x)$ with one endpoint x. But these points have measure zero by Theorem 3. Hence, $m(S(x)) \leqq m\left(\bigcup_{k=1}^{\infty} \bigcap_{n=k}^{\infty} S\left(x_{n}\right)\right) \leqq \lim \inf m\left(S\left(x_{k}\right)\right)$ and the lower semicontinuity of v at x follows in the case $n=2$.

For general n, we must distinguish two cases for an arbitrary point $x \in$ int E :
(1) there exists n independent points $\left\{y_{1}, \ldots, y_{n}\right\} \subset$ conv ker E such that $x \notin\left\langle y_{1}, \ldots, y_{n}\right\rangle$, and
(2) there exists n independent points $\left\{y_{1}, y_{2}, \ldots, y_{n}\right\} \subset$ conv ker E such that $x \in\left\langle y_{1}, \ldots, y_{n}\right\rangle$.

If dim conv ker $E=n$, both conditions are satisfied for every x, and if dim conv ker $E=n-1$, then exactly one is satisfied by each x in E. (See Valentine [3] for a thorough discussion of flats, convex kernels and convex hulls).

In case (1) we first establish by induction that if p is any point in $\operatorname{intv} \operatorname{conv}\left(\left\{y_{1}, \ldots, y_{n}\right\}\right)$ where $\left\{y_{1}, \ldots, y_{n}\right\}$ are as above, then if $\left\{x_{n}\right\} \rightarrow x$ on $L(x, p)$ we have $m\left(S(x) / \bigcup_{k=1}^{\infty} \bigcap_{n=k}^{\infty} S\left(x_{n}\right)\right)=0$. This, of course, has been shown when $n=2$. Assume it is true if $n=k$, and now suppose $n=k+1$. Let $\left\{y_{1}, \ldots, y_{k+1}\right\}$ be independent points in conv ker E satisfying $x \notin\left\langle y_{1}, \ldots, y_{k+1}\right\rangle$. Let $p \in \operatorname{intv} \operatorname{conv}\left(\left\{y_{1}, \ldots, y_{k+1}\right\}\right)$. Clearly there exists a set of hyperplanes
$\left\{H_{\theta}\right\}, \theta \in[0, \pi)$, as in the previous discussion such that $L(x, p) \subset H_{\theta}$ for every θ, dim conv $\operatorname{ker}\left(H_{\theta} \cap E\right) \geqq k-1, \cup H_{\theta}=E_{k+1}$ and for every θ, there exists independent points $\left\{y_{1}{ }^{\theta}, \ldots, y_{k}{ }^{\theta}\right\}$ contained in conv $\operatorname{ker}\left(H_{\theta} \cap E\right)$ such that $p \in \operatorname{intv} \operatorname{conv}\left(\left\{y_{1}{ }^{\theta}, \ldots, y_{k}{ }^{\theta}\right\}\right)$ and $x \notin\left\langle y_{1}{ }^{\theta}, \ldots, y_{k}{ }^{\theta}\right\rangle$.

Now let $\left\{x_{n}\right\}$ be an arbitrary sequence of points on $L(x, p)$ converging to x. By the induction hypothesis we have $m_{k}\left(S(x) \cap H_{\theta} / \cup_{k=1}^{\infty} \cap_{n=k}^{\infty} S\left(x_{n}\right) \cap H_{\theta}\right)=0$. Hence, by our previous remarks we have $m_{k+1}\left(S(x) / \cup_{k=1}^{\infty} \bigcap_{n=k}^{\infty} S\left(x_{n}\right)\right)=0$. Hence our proposition is true in E_{n} for every n.

This all of course implies that given any point $p \in \operatorname{intv} \operatorname{conv}\left(\left\{y_{1}, \ldots, y_{n}\right\}\right)$, v is continuous on $L(x, p)$. Therefore there exists a point x_{0} in E such that $x \in \operatorname{intv} p x_{0}$ and $v\left(x_{0}\right)>v(x)-\epsilon$. Since p was chosen in intv $\operatorname{conv}\left(\left\{y_{1}, \ldots, y_{n}\right\}\right)$, it follows that $\operatorname{conv}\left\{x_{0}, y_{1}, \ldots, y_{n}\right\}$ will contain a neighborhood N of x and since $y_{i} \in$ conv ker $E, i=1,2, \ldots, n$, we conclude that $v(y)>v(x)-\epsilon$ for every $y \in N$ so that v is lower semicontinuous at x.

In case (2) we establish by induction that the set M of points which x sees via E but not via int E has measure zero, which is enough to establish the continuity of the visibility function at such points as we have noted before. We have seen this to be true when x is any interior point of E if $n=2$. Now suppose the assertion has been established for $n=k$. If $n=k+1$ we again rotate a hyperplane to sweep out $k+1$ space such that at each stage $H_{\theta}, \theta \in[0, \pi), E \cap H_{\theta}$ satisfies the induction hypothesis. Let H denote a hyperplane containing x and a subset of conv $\operatorname{ker}(E)$ of dimension k. There exists a flat $F \subset H, \operatorname{dim} F=k-1$, such that $x \in F$ and $\operatorname{dim} \operatorname{conv} \operatorname{ker}(F \cap E)=k-1$. Let $\left\{H_{\theta}\right\}, \theta \in[0, \pi)$, denote the set of hyperplanes generated by rotating $H=H_{0}$ about F. Then for all $\theta \in[0, \pi)$, we have dim conv $\operatorname{ker}\left(H_{\theta} \cap E\right) \geqq k-1$, and x is located on a hyperplane in H_{θ} (namely F) for every θ containing a subset of conv $\operatorname{ker}\left(H_{\theta} \cap E\right)$ of dimension $k-1$. By the induction hypothesis the set $M_{\theta}=$ those points of $E \cap H_{\theta}$ which x sees via $E \cap H_{\theta}$ but not via intv $E \cap H_{\theta}$ has k dimensional measure zero. By our earlier remarks, $\cup_{\theta \in[0, \pi)} M_{\theta}$ has $k+1$ dimensional measure zero.

We claim that $M / M \cap H_{0} \subset \bigcup_{\theta \in[0, \pi)} M_{\theta}$. Suppose z is an interior point of $E \cap H_{\theta} / F$ relative to H_{θ} where $\theta \neq 0$. Let N be an H_{θ} neighborhood of z contained in $E \cap H_{\theta} / F$. Then $\operatorname{dim}(N \cup$ conv ker $E)=\mathrm{k}+1$, and $z \in \operatorname{int} \operatorname{conv}(N \cup \operatorname{conv}$ ker $E) \subset \operatorname{int} E$. Hence boundary points of E on H_{θ}, $\theta \neq 0$, are boundary points of $E \cap H_{\theta}$ relative to H_{θ}. Thus, $M / M \cap H_{\theta} \subset \cup M_{\theta}$ so that $m(M)=0$, and the continuity of v at such points x follows.

Some observations are now in order. Clearly, the converse of Theorem 4 fails. If E is a compact starshaped set in E_{n} the dimension of whose convex kernel exceeds $n-2$, then the boundary of E has measure zero. Thus, the reader might guess that Theorem 4 is a special case of the following more general theorem: if $E \subset E_{n}$ is a compact set whose boundary is of measure zero, then the visibility function is continuous on int E. However, the above proposition is false. In the standard Cantor set of measure π in $[0,2 \pi]$ derived by tossing out a sequence of
open sets $\left\{O_{n}\right\}$ from $[0,2 \pi]$ in the usual way, let our residual closed set after the nth deletion be called K_{n}. Letting

$$
r_{n}=3 \sup _{x \in K_{n}} \inf _{y \in[0,2 \pi] / K_{n}}|y-x|,
$$

a counterexample is seen to be

$$
\{(r, \theta): r \leqq 2\} / \bigcup_{n=1}^{\infty}\left\{(r, \theta): \theta \in O_{n}, 1<r<1+\sqrt{ } r_{n}\right\} .
$$

For details, see [2].
For the case when E is a bounded open starshaped set, we are only able to give the following planar result.

Theorem 5. Let O be any bounded open starshaped set in the plane. Then the visibility function is continuous on O.

Proof. Let x be an arbitrary element of O and let $\left\{x_{n}\right\} \rightarrow x$. If $x \in$ conv ker $O, v\left(x_{n}\right) \rightarrow v(x)$, so we may assume $x \notin$ conv ker O. We show that $S=\left\{y: y \in \bigcap_{k=1}^{\infty} \cup_{n=k}^{\infty} S\left(x_{n}\right) / S(x)\right\}$ has measure zero. Fix a point p in conv ker O and consider any ray R emanating from x. We claim that $R \cap S$ is either empty or contains a line segment. If the line L determined by R contains p, then $R \cap S=\emptyset$. If not, and $R \cap S \neq \emptyset$, then all but finitely many of the $\left\{x_{n}\right\}$ which see a fixed point y of $R \cap S$ must lie on the p side of L, or else we have $\operatorname{conv}(x \cup y \cup p) \subset O$. Since int $\operatorname{conv}(y \cup p \cup x) \subset O$, there exists an open rectangle in O with one edge $x v$ containing y in its relative interior where $y v \subset O$. It is clear that all but finitely many members of the range of $\left\{x_{n}\right\}$ which could see y can also see $y v$, and since $y v \cap S(x)=\emptyset, R \cap S$ contains $y v$, an interval.

We now proceed in the same manner as in the compact case: to each ray R containing an interval in S we associate a rational point r_{R}.

This point corresponds uniquely to R, for suppose that r_{R} lies on both $p w$ and $p w^{\prime}$ where $w \in R \cap S$, $w^{\prime} \in R^{\prime} \cap S$ and $w \in$ intv $w^{\prime} p$, say. Since int $\operatorname{conv}\left(w^{\prime} \cup x \cup p\right) \subset 0$, we have $w \in S(x)$, a contradiction. The upper semicontinuity of v now follows in the obvious way.

In addition to establishing more general results for open sets, the following conjecture is of interest: let E be a compact starshaped set in E_{n} whose convex kernel is of dimension $n-2$. If $x \in$ int E is a point of discontinuity of the visibility function, then x is a point on the smallest flat containing the convex kernel of E.

References

1. Gerald Beer, The index of convexity and the visibility function (to appear in Pacific J. Math.).
2. - Continuity properties of the visibility function (to appear).
3. F. A. Valentine, Convex sets (McGraw-Hill, New York, 1964).

University of California,
Los Angeles, California

