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Abstract

Recent work has demonstrated the use of sparse sensors in combination with the proper orthogonal decomposition
(POD) to produce data-driven reconstructions of the full velocity fields in a variety of flows. The present work
investigates the fidelity of such techniques applied to a stalled NACA 0012 aerofoil at Rec ¼ 75,000 at an angle of
attack α¼ 12∘ as measured experimentally using planar time-resolved particle image velocimetry. In contrast to
many previous studies, the flow is absent of any dominant shedding frequency and exhibits a broad range of singular
values due to the turbulence in the separated region. Several reconstruction methodologies for linear state estimation
based on classical compressed sensing and extended POD methodologies are presented as well as nonlinear
refinement through the use of a shallow neural network (SNN). It is found that the linear reconstructions inspired
by the extended POD are inferior to the compressed sensing approach provided that the sparse sensors avoid regions
of the flowwith small variance across the global POD basis. Regardless of the linear method used, the nonlinear SNN
gives strikingly similar performance in its refinement of the reconstructions. The capability of sparse sensors to
reconstruct separated turbulent flow measurements is further discussed and directions for future work suggested.

Impact Statement

Sparse reconstruction of full-field information using a limited subset of data is widely relevant to data-centric
engineering applications; from reconstructing human faces with limited pixels to predicting laminar and
turbulent flow fields from limited sensors. The focus of the present study is of the latter example with high
relevance to active flow control in aerospace and related industry. There are multiple data-driven methodologies
for obtaining flow field reconstructions from sparse measurements ranging from the linear unsupervised proper
orthogonal decomposition to the use of nonlinear supervised NNs. The feasibility of such methods to flow fields
that are highly turbulent as well as obtained via experiment remains an open area of research. The present study
reveals the capability of these techniques to create a time-invariant library that can predict instantaneous states of
the flow from sparse measurements alone (provided that these states are within the bounds of the applied training
data). The proposed linear methods, as well as the NN architecture, provide well-characterized frameworks for
future efforts in sparse sensing and state estimation applications: particularly for highly nonlinear underlying
systems such as turbulent flow.
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1. Introduction

Sparse reconstruction is a technique used to obtain accurate details about the full scale features of a system
using a sparse subset of information (e.g., a few pixels or measurements within the system) and has been
the subject of interest for some decades (Candès, 2006; Donoho, 2006). Applications for such state
estimation problems range from reconstructing faces from limited or corrupted data (Wright et al., 2008)
to deblurring and improving image resolution (Dong et al., 2011) to estimating global sea surface
temperatures (Manohar et al., 2018; Callaham et al., 2019). The literature concerning state estimation
and sparse reconstruction is rapidly developing. In the following, we motivate and present a brief review
of the literature as it relates to the present study. For a more comprehensive review, we refer the interested
reader to Manohar et al. (2018) and Nair and Goza (2019).

In general, the requirements for accurate sparse reconstructions from limited data are that (a) the basis
underlying the data exhibits sparsity (as will be discussed) and (b) that full-state information for the
system can be obtained or approximated a priori to generate a global basis applicable to any sample or
instant (Brunton and Kutz, 2019). For example, suppose a set of images of weathered ancient hiero-
glyphics are only partially discernible. If a library of images of known undamaged hieroglyphics is
tabulated a priori, the principle of sparsity can be used to estimate theweathered hieroglyphics before they
were damaged (Roman-Rangel et al., 2012). Further examples of sparse reconstruction exist over a
diverse range of engineering disciplines. Liu et al. (2017) demonstrated the use of sparsity to monitor and
detect faults in an industrial Tennessee Eastman Process using a novel variation of principle component
analysis. Bao et al. (2017) showed the use of sparse strain sensors to estimate the full stress state of a
structure using a Fourier basis. Iyer et al. (2020) used recurrent neural networks (NNs) and sparse
observations for reconstructing and forecasting road traffic.

Sparse reconstruction may also be extended to data-assimilation applications. Brajard et al. (2020)
demonstrated assimilating data from noisy sparse observations for predicting a chaotic 40-variables
Lorenz system using a convolutional NN. Further applications of data-assimilation using sparsity remain
to be explored. For example, if the entire flow field in the neighborhood of a gas turbine blade is simulated
and a global basis tabulated, the flow field in the neighborhood of a real turbine blade fitted with flow
sensors can be estimated. Such a reconstruction technique is widely applicable to any system exhibiting
many degrees of freedom. Therefore, the number of possible applications for sparse reconstructions in
science and engineering is large.

There remains much to be done in order to test the limitations of sparse reconstructions numerically,
experimentally, and via data-assimilation for a variety of engineering systems. For example: how do
variations of nondimensional parameters that characterize a system impact the reconstruction? Howmany
known full-state snapshots are required to generate a global basis? Howmany sparse sensors or probes are
needed to achieve a desired reconstruction accuracy?Where should the probes be placed? These are some
of the underlying questions that motivate the current study seeking to expand the application of sparse
sensing to engineering problems.

The key underlying principle that allows for full reconstructions using only limited measurements is
the sparsity of the representative basis. For the application of interest, a suitable basis must be chosen onto
which to project the sparse signal (the limited measurements) for the full reconstruction. The basis of
choice depends on the data in question but is typically taken to be either a Fourier transform (Candès and
Wakin, 2008) or a data-driven basis such as the proper orthogonal decomposition (POD; Sirovich, 1987;
Berkooz et al., 1993). If the basis contains many entries that are small (near-zero) then the system is said to
exhibit sparsity. For example, a Fourier transform may indicate only a few frequencies have significant
amplitudes. Sparse reconstruction takes advantage of the sparsity of the basis functions to produce full
reconstructions (Brunton and Kutz, 2019) that can yield surprisingly accurate full state estimations. For
example, using POD as a representative basis Manohar et al. (2018) showed that using only seven probes
they could reconstruct the full vorticity field of laminar flow over a cylinder exceeding 90% accuracy.

POD is a data-driven method commonly used as a basis for reconstructions due to its attractive
properties of being energy optimal and having time-independent spatial modes, though other choices are
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possible (Bai et al., 2015; Jayaraman et al., 2019). Manohar et al. (2018) demonstrated that the
reconstruction accuracy is significantly improved if the choice of probe locations is made carefully such
that it takes better advantage of the sparse basis. They demonstrated that the use of greedy algorithms to
intelligently place probeswithin the flow improved the reconstructions greatly compared to randomprobe
placement. However, this also depends on the complexity of the underlying system. When the analysis
was applied to sea surface temperatures whose POD basis requires many more modes, the reconstruction
accuracy relied more heavily on the optimal probe placement; pointing to the difficulty of reconstructing
systems with a large range of spatio-temporal scales.

Several alternative methods originating in the fluid mechanics literature have been proposed for
sensing turbulent flow structures and obtaining reconstructions, such as linear stochastic estimation (LSE;
Adrian and Moin, 1988). In LSE, the state of the flow field is tabulated and conditioned upon the state of
an event, leading to a linearmap through an l2 minimization procedure. Several studies have demonstrated
the fidelity of reconstructions based on the concept of LSE (Picard and Delville, 2000; Lasagna et al.,
2013). Borée (2003) showed that LSE is equivalent to the so-called extended POD, where the temporal
POD modes of one quantity are projected onto by the state of the flow field. This produces a set of
extendedmodes revealing the spatial structures of the flow that are correlated with the quantity of interest.
The extended POD framework is a straightforward and flexible approach offering alternative means of
obtaining reconstructions using the temporal modes of the sparse information, as demonstrated by
Hosseini et al. (2015). Extended POD was pushed further by Discetti et al. (2018) to obtain up-sampled
time-resolved velocity fields from sparse sensors; demonstrating the flexibility of the framework.

Although the aforementioned techniques produce sparse reconstructions that are obtained entirely
linearly, supervised machine learning provides a nonlinear framework with additional flexibility. In fact,
POD itself is a form of unsupervised machine learning (Brunton et al., 2020) and one may interpret the
POD as an unsupervised NN with a single layer and linear activation function (Milano and Koumoutsa-
kos, 2002). The use of NNs to obtain sparse reconstructions has seen recent attention in the literature. Nair
and Goza (2019) demonstrated the ability of NNs to outperform the linear counterparts using a network of
three layers for low Reynolds number flow over a flat plate at high angles of attack. Similarly, Erichson
et al. (2019) introduced a “shallow” neural network (SNN) consisting of two layers for reconstructing
laminar flow over a cylinder with high fidelity. They further applied this method to a comparatively more
challenging numerical simulation of isotropic turbulence and found difficulty in predicting future states.
They discussed the use of regularization of the loss function to avoid overfitting; a problem that can easily
arise with limited training data. Intelligent choices for loss functions offers promising potential for
improved NN performance and generalization. For example, imposing physical constraints on the loss
function has been demonstrated as a successful approach for a variety of systems governed by partial
differential equations (Raissi et al., 2019; Sun and Wang, 2020). More recently, convolutional NNs have
been demonstrated for flow reconstruction from wall shear measurements in a turbulent channel flow
(Guastoni et al., 2020), however, the inherent spatial dependence renders convolution-based approaches
unattractive for the particular case of spatially sparse reconstruction. This does however represent
progress in the direction of reconstructing turbulent flows, as their inherent range of spatial and temporal
scales makes them significantly more challenging than the laminar case.

The present study focuses on the problem of sparse sensing motivated by the need to detect flow
structures in aerospace applications. For example: to detect anomalous structures, the onset of stall over an
aerofoil, or to inform control systems designed to reduce drag. Here, the focus is on the situation of an
aerofoil in stalled conditions. We seek to explore how a global basis may be used to predict the unseen
flow about a stalled aerofoil using limited single-point sensors placed in the flow.

As of yet, data-driven sparse sensing has not been widely applied to advective turbulent flows such as
the case of a stalled aerofoil due to the inherently large range of scales and difficulty in capturing a low-
order representation of the dynamics. As a result, the flow requires many modes compared to, for
example, the case of a laminar cylinder (Figure 1) to capture the dynamics. This fact motivates exploration
of reconstructions obtained outside the classic compressed sensing approach, which relies more heavily
on optimal placement for systems with many modes. The present study seeks to explore how effectively
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the various linear and nonlinear approaches for sparse reconstruction perform for (a) a situation which is
highly turbulent and (b) data generated via experiment and therefore contaminated by experimental noise.

The present study will be structured as follows. The experiments performed to obtain the two-
dimensional time-resolved flow fields of the separated aerofoil are outlined in Section 2. The method-
ology used to select probe placements and obtain the sparse reconstructions with and without NN
refinement is presented in Section 3. The results are presented in Section 4. Conclusions and outlook
for future work are finally presented in Section 5.

2. Experimental Method

Particle image velocimetry (PIV) has seen widespread use in experimental fluid mechanics over the past
decades due to its ability to obtain highly spatially-resolved instantaneous planar two-component velocity
fields (Adrian et al., 2011). Combined with time-resolved capabilities of high-speed cameras, it is the
measurement method of choice for the present data-driven analysis due to the ability to generate large
spatial domains (and resulting spatial modes) as well as time information at each point in the flow;
enabling the sparse reconstruction investigation via a pseudo-probe analysis. The details of the data
collection and postprocessing are outlined in the following sections.

2.1. Water flume experiment

To obtain planar time-resolved velocity fields on the suction side of a separated NACA 0012 aerofoil, a
PIV campaign was performed in the water flume flow facility located at the University of Southampton as
illustrated in Figure 2. A NACA 0012 aerofoil model of chord length c¼ 15 cm and span s¼ 70 cm was
fixed vertically in the center of the span of the flume immediately following the contraction into the test
section. The aerofoil was fixed at angle of attack α¼ 12∘ using a stepper motor attached to an overhead

0 0.1 0.2 0.3 0.4 0.5

Figure 1. Instantaneous velocity fields (a and b) from the particle image velocimetry (PIV) data (every
fifth vector shown for clarity) presented in this study at two separate instants; highlighting the variation in
the size of the separated wake. The singular values are shown in (c) normalized by the first singular value
(inset: up to 9,000 modes). This is also shown for the laminar cylinder wake (dashed) of diameter D at
ReD ¼ 100 from the Direct Numerical Simulation (DNS) of Brunton and Kutz (2019) for comparison.
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carriage system with precise control over the stepper motor angle. A four Megapixel Phantom v641
camera Vision Research Inc. Bus. Unit of AMETEKPhantom Digital High-Speed Cameras https://www.
photonics.com/Products/Phantom_v641_Digital_High-Speed_Camera/pr46264 mounting a 105 mm Ex
Sigma lens (f ¼ 5:6) was directed upward from underneath the flume at a standoff distance 88 cm,
resulting in a stream-wise wall-parallel field of view approximately 16 cm in the stream-wise direction x
and 10 cm in the stream-normal wall-parallel direction y. The field of view was illuminated via a set of
sheet-forming optics directing laser light from a Litron 527 nm Nd:YLF high-speed laser into the test
section from the side of the facility at a wall-normal height of hL ¼ 248mm from the bottom of the flume.
The flume was filled until the water reached a height hw ¼ 500mm for which the maximum frequency of
the flume pumps yielded a free stream velocityU∞¼ 0:5m/s corresponding to a Reynolds number based
on the chord length Rec ¼ U∞c

ν ¼ 75,000, where ν is the kinematic viscosity.
To collect the images, Davis 8.3.1 PIV software was used with a LaVision high-speed controller to

ensure synchronous timing of laser and camera. The flow was seeded with Vestosint 2157 polyamide
particles of nominal diameter 55 μm verified to behave as faithful flow tracers. The seeding density was
iteratively adjusted until a satisfactory number of particle reflections across the field of view were
observed. The images were captured at full resolution (2560 � 1600 pixels) at a frequency of 750 Hz.
In total, 9,000 separate snapshots were collected for data training purposes and one fully time-resolved run
corresponding to 5,468 sequential snapshots across 7.3 seconds of continuousmeasurement was collected
to test sparse reconstruction methodologies. At an angle of attack α¼ 12∘, substantial separation from the
surface of the aerofoil was observed (Figure 1).

2.2. Data postprocessing

The images were background-subtracted and low frequency noise was attenuated using a convolution
with a Gaussian high-pass filter of standard deviation of five pixels. Amask corresponding to the location

Figure 2. Illustration of the experimental setup focusing on the test section of the water flume flow facility
at the University of Southampton. The NACA 0012 aerofoil is illuminated from both sides, however, for
this study, a field of view focusing on the suction side of the aerofoil is used to capture the separation of the

wake. The water level hw and laser sheet level hL are indicated.
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of the aerofoil in the images was stored and applied during PIV processing. The images were processed
using a verified in-house PIV code based inMATLABwith iterative interrogation window stepping from
64 � 64 pixels to 32 � 32 pixels to 24 � 24 pixels with 50% overlap. Subpixel displacements were
obtained via aGaussian 3-point fit, and detected outliers were flagged and replaced via local interpolation.
Interrogation windows found to overlap with the image mask by greater than 25% were discarded.

For each component of the velocity field, the velocity was decomposed into a mean and fluctuating
component u¼Uþu0 and v¼Vþ v0, where the capitals here denote themean velocity field and the prime
denotes the fluctuating components of the horizontal (stream-wise) u and vertical (stream normal) fields v.
To reduce the random noise of the PIV fields, the filtering method based on POD described in Raiola et al.
(2015) was used (see Section 3.1) with the suggested value of the parameter F¼ 0:999 (the ratio of
forward to backward residuals of the rank-restricted POD reconstruction). The location of the rank-order
filtering truncation (see Section 3.1) was found to correspond to only 5% of the energy of the velocity
fluctuations. To improve the accuracy of the velocity fields, particularly in the separated region, gappy
PODwas employed using iterative replacement of detected outliers (Gunes et al., 2006) until satisfactory
convergence was achieved. It was verified that the number of POD modes used to reduce random noise
and improve the accuracy of the velocity fields was greater than the number of modes used to test the
sparse reconstructions.

3. Sparse Reconstruction Methodology

3.1. Proper orthogonal decomposition

For the present study, the POD (Sirovich, 1987; Berkooz et al., 1993) is used as a basis for the
reconstruction due to its unique property as an energy-optimal basis. POD is commonly utilized as a
basis for sparse reconstruction (Candès, 2006), though other choices (such as a Fourier basis) are possible
(Jayaraman et al., 2019). In the present notation, the fluctuating velocity fields are rearranged into amatrix
U of size nt�2nx, where nt is the number of snapshots and nx is the total number of spatial points (PIV
vectors). At each instant, the fluctuating horizontal velocity field u0 is appended row-wise with the vertical
v0 resulting in twice the number of spatial points in the rows of U (see e.g., Taira et al., 2017). Henceforth,
capital U will denote the appended fluctuating velocity fields (not to be confused with the mean velocity
fields). The POD is then calculated as:

U ¼ΨΣΦ, (1)

whereΨ is an orthogonal matrix of temporal modes of size nt�nt satisfyingΨTΨ¼ Iwith corresponding
columnsψk containing the kth temporal mode.Σ is a diagonal matrix of singular values (the square root of
the eigenvalues of the velocity autocorrelation) of size nt�nt containing the relative contribution of each
mode where σk is the kth diagonal entry. Finally, Φ is an orthogonal matrix of spatial modes of size
nt�2nx satisfyingΦTΦ¼ I with corresponding rows ϕk containing the kth spatial mode. POD is an exact
decomposition of the velocity fields, however, a low-order representation of the fields is easily obtained
by imposing a rank-order truncation for k desiredmodes. POD is a data-driven decomposition in the sense
that the number of available modes depends on the number snapshots used to perform the POD. Often in
the literature, the temporal modes and the singular values are combined into a single matrix A¼ΨΣ
referred to as the POD coefficients with columns ak corresponding to the kth mode coefficients across all
samples and a tð Þk the kth mode coefficient for a particular sample at time t. A truncated reconstruction
corresponding to k modes is then obtained using the coefficients at a particular instant as

U tð Þ¼
Xk
1

a tð Þkϕk, (2)

where, here, the explicit time dependence in U tð Þ is retained to emphasize it is a vector of fluctuating
velocities of length 2nx at time instant t. A key feature of POD that allows for sparse reconstruction is in the
time independence of the spatial modesϕk.With enough samples, themost energeticmodes (associated to
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the underlying physical mechanisms) converge (i.e., the modes do not change with additional samples).
For these time-independent energetic modes, the reconstruction becomes a matter of approximating A
using a limited number of sensors. In practice, approximating the coefficients can be achieved in several
ways including the use of LSE (Lasagna et al., 2013) or through the use of a Kalman filter (Kalman, 1960;
Troshin and Seifert, 2019). For the present study, we investigate three distinct methods of obtaining a
reconstruction from the sparse probes. The underlying motivation for applying these separate approaches
is detailed in Section 3.3. Psuedo-probes (hereafter referred to as just probes) taken at specific locations in
the velocity fields are utilized to explore the sparse reconstruction.

3.2. Probe placement

The optimal placement of probes for sparse reconstruction is a challenging and ongoing subject of
research (Manohar et al., 2018). As the problem involves both the number of sensors as well as the number
of modes used for reconstruction, the optimization is combinatorial in nature; making it intractable for
even a modest number of possible sensor locations. The objective is to maximize the signal-to-noise ratio
(SNR) of the reconstruction byminimizing the condition number of the sparse basis (Manohar et al., 2018;
Jayaraman et al., 2019). A body of literature has been reported exploring heuristic greedy algorithms
known as empirical interpolation methods (EIM; Barrault et al., 2004; Willcox, 2006; Yildirim et al.,
2009) or discrete EIMs (DEIM; Chaturantabut and Sorensen, 2010; Drmac and Gugercin, 2016) to
identify optimal locations for the probes. In addition, optimal design literature provide methods of
identifying probe locations based on the moment matrix of the basis (e.g., A, C, D, E-optimal design,
see Atkinson and Donev, 1992; Cox and Reid, 2000). Considerations for nonlinear placement have also
been explored as summarized in the recent work of Otto and Rowley (2021) and references therein.

The work of Manohar et al. (2018) shows that the optimal choice of placement (for the linear
reconstruction) corresponds to the locations that contribute the maximum variance (l2-norm) across the
spatial basis. The QR decomposition with pivoting (Van Loan and Golub, 1983) is a commonly utilized
heuristic for identifying such locations, resulting in an upper-triangular matrix R with entries ordered
accordingly. The resulting pivot locations approximate the best sensor locations. When the number of
modes used for the reconstruction is equal to the number of probes, theQRwith column pivoting is applied
to the spatial basis and is known as the Q-Discrete Empirical InterpolationMethod (Q-DEIM)Drmac and
Gugercin (2016). When the number of probes exceeds the number of modes used for reconstruction the
problem is over defined and theQR-basedmethod requires additional treatment (Manohar et al., 2018). As
the present study will investigate reconstructions using nonlinear methods (in addition to linear), the
optimal placement is not trivial. The scope of the present studywill be limited to considering probes placed
randomly (the suboptimal case) and using the Q-DEIM with pivoting (to approximate the optimal
placement). For the case of randomly placed probes, one set of random locations is used (as opposed
to testing multiple sets of random locations). This is due to the difficulty in generating and storing a large
number of random global probe libraries, the need for which is presented in Section 3.3.2.

3.3. Reconstruction

The accuracy of the reconstruction is a matter of approximating the real POD coefficients of the full
velocity fields using a set of “dynamic” coefficients ADYN that are estimated via the sparse probes signals
Up. For the present analysis, the probe signals are obtained via Up ¼UC, where C is a Boolean matrix
known as the sparse matrix of size 2nx�p, where p is the number of probes. Each column of the sparse
matrix contains a single entry equal to one and zero elsewhere; providing a map that subsamples from all
spatial locations x to the sparse locations of the probes xp (Jayaraman et al., 2019). With the POD
coefficients estimated, the reconstruction is obtained via the global POD basis

U rec ¼ADYNΦg, (3)

or, more explicitly, for a up to a specified number of modes at a particular instant:
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U rec tð Þ¼
Xk
1

a tð ÞDYN ,kϕg,k , (4)

whereΦg are the global spatial modes from the POD performed on a set of training dataUg. There lies an
implicit assumption in the application of equation (4) such that the external state of the system is
unchanged during the reconstruction compared to the conditions under which the global basis was
tabulated. The instantaneous state must remain within the bounds of the variation captured by the training
data. In other words, using the aerofoil as an example, variations in the fixed free stream velocity or angle
of attack are not accounted for. As such, the scope of the methodology is limited to testing the efficacy of
the sparse reconstructions without external changes to the state of the system.

For the present study, the training data consists of 9,000 samples. The training data are used to generate
the time-independent global basis Φg in order to predict the complete spatio-temporal evolution of the
flow based on sparse time-resolved measurements via equation (4). The large training dataset is needed
due to the high spatio-temporal variability of the turbulent separated flow, leading to a slowly decreasing
set of singular values Σg compared to, for example, a laminar flow (Figure 1) and therefore many modes
are required within the global basis. The global POD was calculated accordingly using nt ¼ 9,000 and
2nx ¼ 50,952, resulting in a computation time of 418 s (7 min) on a single desktop computer (double
precision with 3.6 GHz CPU and 16 GBRAM). It was determined that a larger set of training data was not
required as the global POD library was found to be satisfactorily converged up to themaximum number of
modes used for reconstructions at k¼ 500. As such the accuracy of the reconstructions depends only on
how closely the dynamic coefficientsADYN approximate the real ones up to the number of modes used for
the reconstructions. The time-resolved reconstruction was then tested on all 5,468 samples of the time-
resolved dataset, resulting in a training-to-validation ratio of approximately 1.65.

There are several methods used in order to approximate the coefficients that will be outlined in the
following subsections. For all of the methods, provided that the global POD and optimal placement
calculations are performed using a training dataset a priori, the calculations are possible to be performed
in real-time. This is conceptually illustrated in Figure 3. These methods are therefore highly relevant to
flow-sensing and control applications. The methods for approximating the coefficients originating from
the probes Ap can either be used for reconstruction immediately, or improved using a SNN (Figure 4).

3.3.1. Method 1: Sparse recovery reconstruction
The first method used is the most common implementation of sparse recovery originating from the
compressed sensing literature (Donoho, 2006; Candès and Wakin, 2008; Callaham et al., 2019). This
method allows to calculate a set of coefficients that approximate the real coefficients by taking advantage
of the fact that many entries of the global basis are negligibly small (c.f. Jayaraman et al., 2019). With this
method, the POD coefficients are estimated by projecting the probes signal into a sparse basis corre-
sponding to the global POD modes evaluated at the locations of the probes

A 1½ �
p ¼UpΘ

�1, (5)

where the bracketed superscript denotes the method used. Here, Θ is the sparse basis formed by the
product of the global basis with the sparse matrixΘ¼ΦgC. The number of rows inAp corresponds to the
number of samples (rows) ofUp, and the number of columns is the number of probe modes. As we center
our analysis around theQ-DEIMplacementmethod described in Section 3.2, the sparse basisΘ is a square
matrix with the number of probes p equal to the number of reconstruction modes k.

As mentioned in Section 3.2, the optimal locations of the probes are the locations within Φg that
minimize the matrix condition number of Θ. In other words, locations within the global basis with very
little variance across the modes will lead to error propagation and low SNR upon the inversion in equation
(5). Therefore, the best locations will correspond to the locations with the largest variance across the
modes of the global basis.
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3.3.2. Method 2: Extended-POD reconstruction
Motivated by studies that seek to approximate the POD coefficients using either a different variable or a
separate measurement, extended POD (Borée, 2003) offers a flexible framework with which to approx-
imate the coefficients. (Borée, 2003) showed that by projecting the temporal modes of one quantity into
the measurements of another, one obtains a set of extended spatial modes that can be used as a basis to
reconstruct the part of the measurements that is correlated to the quantity of interest. When all modes are

Figure 3. Conceptual illustration of the instantaneous reconstruction methodology using p¼ 5 probes
and Q-DEIM placement. The global basis is obtained a priori and the real-time probe signals are used to
approximate the instantaneous fields. The probe signals are shown with a solid line for u0 and dashed for
v0 and color-coded according to their indicated locations. The total velocity shown in the plots are

calculated by summing themean and fluctuating fields. See Sections 3.3 and 3.4 fordetails of themethods.

Figure 4. Block diagram of the reconstruction starting from the probe signal Up.
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included, this is equivalent to thewell knownLSE (Adrian andMoin, 1988; Lasagna et al., 2013;Hosseini
et al., 2015).

For the present study, a framework inspired by extended POD is implemented treating the probes as a
quantity to be correlated to the full flow field. If the assumption is made that the coefficients of the probes
are highly correlated with the coefficients of the flow field, one can use the same training data used to
calculated the global POD basisΦg to produce a global probe POD basisΦgp. The coefficients are then
obtained as

A 2½ �
p ¼UpΦ

T
gp, (6)

where the transpose is used on the global probe basis as it is orthogonal by construction. The global probe
basis is generated for all tested probe numbers and positions across all 9,000 training samples used to
construct the global libraries. For the sake ofmemory allocation, only one set of random probe locations is
tested to avoid calculating and storing hundreds of additional global probe libraries. It was confirmed after
testing two other sets of random placements that the results presented hereafter were qualitatively
unaffected.

3.3.3. Method 3: Quasi-Orthogonal extended-POD reconstruction
Building off of the methodology of the previous subsection, the quasi-orthogonal extended-POD
reconstruction utilizes all of the available information from the global POD and global probe POD
libraries to produce the reconstruction. Instead of simply assuming that the coefficients produced from the
global probe modes will approximate the real coefficients, instead a quasi-orthogonal basis Ψp is
calculated using the pseudoinverse of the singular values of the global probe modes Σ�1

gp . The term
“quasi” is used to emphasize that there is no guarantee that the resulting basis will be perfectly orthogonal
as it is constructed using the training data and subsequently projected into by independent time-resolved
testing data. The coefficients can then be approximated using the global singular values to rescale the
quasi-orthogonal basis as

A 3½ �
p ¼UpΦ

T
gpΣ

�1
gp

zfflfflfflfflfflfflffl}|fflfflfflfflfflfflffl{Ψp

Σg: (7)

A similar principle was used by Discetti et al. (2018) to up-sample time-resolved fields using simulta-
neous probe signals at a higher sampling frequency.

We remark that the extended-POD methodologies presented here represent a novel departure from
previous studies, for example Hosseini et al. (2015). In their case, the temporal information contained
within the pressure probes were used to reconstruct the velocity fields using a basis determined by the
extended spatial velocity modes. The present work, by contrast, uses the global POD basis for the
reconstruction and estimates the coefficients using a separate POD basis tailored for the probes. The POD
basis tailored for the specific sets of probesΦgp is the main novelty of the present approach. As the probes
themselves are velocity measurements, the underlying assumption here is in the inherent correlation
between the probe velocities, their coefficients, and the full-field velocities.

3.3.4. Sign correction matrix
For the extended POD-based methods of the two previous subsections, a new global probe basis is used to
obtain an approximation of the coefficients. The velocity autocorrelation of the probes (the underlying
physical quantity used to calculate the POD) is missing information due to the sparsity of the probe signals.
This may necessarily lead to spatial probe modes Φgp that, when mapped to the locations of the full field
modesΦg, have opposite sign. Especially formodes corresponding to the largest singular values, this can lead
to reconstructions that are anti-correlated with the true underlying velocity fields. This effect is illustrated in
Figure 5, showing the first three modes for the fluctuating horizontal velocity component from the global
library and the global probe library side by side for the case of 500 probes placed using Q-DEIM.
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To account for this effect, a sign correction matrix calculation is proposed to be calculated a priori to
ensure that the two spatial bases Φgp and Φg are not anticorrelated (or in other words, as correlated as
possible):

s kð Þ¼ sgn ϕgp,k°ϕg,kC
� �

, (8)

where the overline denotes spatial averaging across the locations of the probes and the ∘ symbol denotes
the Hadamard (element-wise) product. The full diagonal (and orthogonal) sign correction matrix is then

S¼ diag sð Þ, (9)

where the diag function outputs a square matrix of zeros with the entries of the vector argument s along the
diagonal. The coefficients are then updated through multiplication with S as shown in Figure 4.

3.4. SNN refinement

As outlined in Figure 4, the option to apply nonlinear refinement via a NN is explored. Here, we briefly
review literature concerning NN size to frame the specific implementation utilised in this study. Early on,
Cybenko (1989) provided proof for the universal approximation theorem via NNs of arbitrary width with
a single hidden layer and a sigmoidal activation function. A remaining issue however was in the capability

Figure 5.Global spatial modes (a, c, and e) and corresponding global spatial probemodes (b, d, and f) of
u0 mapped to the locations of the full field for 500 probes placed using the Q-DEIM. The colorbars range
across�3σ of the corresponding global modes ϕug,k from blue to red.Modes with spatial locations that are

in phase give a sign correction s¼ 1 (a and b) and out of phase s¼�1 (c–f).
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to train networks with a large number of nodes in a single layer, thereby ceding computational advantage
to unsupervised methods such as POD. Further generalization of the universal approximation theorem
was later shown for different activation functions andmultiple layers (Hornik, 1991). In combination with
new training methods, the differences between networks of a single layer with many nodes or multiple
layers with less nodes has since faded (Hinton et al., 2006). Deep NNs with multiple layers remain
commonplace, however, fewer layers can provide similar results taking advantage of modern hardware
and training methods to significantly reduce the required training. Although single layer NNs are easier to
interpret, it has been shown that networks with two layers provide better generalization capabilities
(Thomas et al., 2017). Networks with few layers are typically less sensitive to the specific choices of
hyperparameters than their deep counterparts. As such, a SNN is adopted for the present study.

We apply an SNN architecture as outlined in the work of Erichson et al. (2019). In general, we seek a
function ℱ that consists of multiple fully connected or convolutional layers with associated scalar
nonlinear activation functions g and weights W applied to input A

ℱ A;Wð Þ≔W Lg W L�1g W L�2⋯g W 1Að Þð Þð Þ, (10)

where a shallow network has a small number of layers L. For the present study, L¼ 3 is used, where two
layers are hidden and followed by an output layer. Due to the spatial sparsity of the inputs in the present
study, we favor the fully connected layers over the convolutional layers in line with similar investigations
(Erichson et al., 2019; Nair and Goza, 2019).

For the SNN architecture, shown in Table 1, we construct a first “imagination” layer with 1:5p nodes
followed by a 1:2p “refinement” layer with a 5% dropout layer in between to improve the generalization
(Erichson et al., 2019). As the network scales with the input size p, the amount of trainable parameters
varies significantly for different networks considering varying amounts of probes. The training data
however have a consistent amount of samples. This requires the larger networks to utilize additional
generalization. This is achieved by the 5% dropout layer (and leaves the small networks largely
unaffected). The final linear layer contains the same number of inputs (number of probes/modes) as
outputs. For the activation functions, the rectified linear unit function (ReLU) is used for the hidden
layers and a linear function for the output layer. The optimization is performed using the Adaptive
Moment Estimation (ADAM) adaptive moment optimization (Kingma and Ba, 2014). The learning
rate is set to 0.001, with the exponential decay rate for the first moment estimates equal to 0.9 and the
exponential decay rate for the second moment estimates equal to 0.999. For numerical stability, the
recommended bε¼ 10�7 value is used.

The same training data used to obtain the POD basis,Φg is used to train each NNℱ using 89% of the
samples n¼ 8,000, reserving m¼ 1,000 random samples for iterative learning validation. As demon-
strated by Guastoni et al. (2020), the NN for the present study is trained to recover the POD coefficients.
The global coefficients for training the outputs are obtained as Ag ¼UgΦT

g up to k¼ pmodes (where p is
the number of probes), and the sparse probe coefficients A i½ �

gp using the ith linear method applied to the
training data UgC as the inputs. For each set of probe locations and for each linear method, a separate
network and corresponding set of weights is trained to minimize the loss

Table 1. The neural network architecture.

Layer Layer type Number of nodes Activation

input input p linear
hidden 1 dense 1:5p ReLU
(hidden) dropout 0:05 �1:5p linear
hidden 2 dense 1:2p ReLU
output dense p linear

The dropout layer is only active during training.
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W ¼ argmineW
L eW� �

, (11)

where the loss is defined for each epoch q as

L qð Þ eW� �
¼
Xn
j¼1

Ag t j
� �� eℱ A i½ �

gp t j
� �

; eW Þ
� ���

1
,

��� (12)

where A t j
� �

indicates the vector of coefficients corresponding to the jth training sample and the e�
indicates a dummy function or variable used for training. The l1 norm is chosen in this study for evaluating
the loss as it was found to outperform the commonly used l2 norm. The use of the l1 norm (in combination
with unscaled coefficients, as will be discussed) aids the network in prioritizing an error reduction on the
coefficients corresponding to the modes with larger singular values. In an effort to maintain the singular
value scaling of the corresponding temporal modes, the coefficient inputs and outputs are not scaled to a
zero-to-one range as is often done to speed up learning. This appears to have a minor influence on the
training; only effecting initial optimization epochs where the optimizer must adjust before reducing the
loss (Figure 6). The use of batch normalization for generalization was omitted and instead large batches of
3,000 samples were used. These have the added benefit of speeding up training. Other methods such as
layer activation regularization or layer weight regularizationwere explored butwere found to produce less
consistent results over the various NNs without repetitive hyperparameter optimization.

It is possible to include additional constraints on the loss function in equation (11) in order to keep the
network more generalized (Erichson et al., 2019; Sun andWang, 2020). Instead for this study, early stopping
was opted for to avoid overfitting. The trained network was evaluated on the validation subset every epoch
and for every iteration where the loss decreased the weights were stored. If the network did not experience a
new minimum in the validation loss within 500 epochs, the training was halted and the last stored weights
adopted. The value of 500 was chosen ad-hoc for this particular study as it was found to strike a balance
between “kick-starting” the network with enough initial epochs but was large enough to revert any apparent
overfitting. This is shown in Figure 6a for p¼ 5 and 500 probes via input coefficients fromMethod 1. With
this architecture and early stopping criterion, the number of epochs was on the order of a few thousand,
increasing with increasing probes to a maximum of approximately 10,000 epochs (Figure 6b).

Figure 6. Normalized training and validation lossL qð Þ=L 1ð Þ within the SNN for Method 1 using 5 and
500 probes and Q-DEIM placement versus number of epochs q (a) and number of epochs before stopping

qstop versus number of probes for Method 1 for each placement (b).
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We remark that the reconstructions use the same number of modes as probes, therefore for the present
study, the more probes used for the inputs the greater the performance ceiling for the SNN (up to the limit
of the real coefficients truncated at p modes).

3.5. Quantification

Twometrics are utilized to quantify the reconstruction accuracy in the present study. To quantify the phase
properties of the reconstruction, the normalized correlation is defined as

ρu0 ¼
〈u0 x, tð Þu0rec x, tð Þ〉

〈u0 x, tð Þ2〉1=2〈u0rec x, tð Þ2〉1=2 , (13)

where the angled brackets 〈�〉 indicated averaging over all space and time and here u0rec is the reconstruc-
tion of the horizontal fluctuating velocity. The correlation takes a value of 1 for a reconstruction that is
completely in phase, �1 when it is out of phase, and 0 when it is uncorrelated. To evaluate the overall
difference between the original and reconstructed fields, the root-mean-square error is defined as

eu0 ¼
〈 u0 x, tð Þ�u0rec x, tð Þ� �2

〉1=2

〈u0 x, tð Þ2〉1=2 : (14)

The root-mean-square error describes the fraction by which the reconstruction differs from the original
fields, with a perfect reconstruction at e¼ 0. Equations (13) and (14) are analogously defined for the
vertical fluctuations v0.

4. Results

The results are presented first using the linear methods alone, followed bywith nonlinear SNN refinement
as outlined in Section 3 and Figure 4. The reconstructions evaluate the ability of the linear and nonlinear
methods to predict instantaneous flow fields using the testing data consisting of 5,468 samples. For all
results, the number of modes k used in the reconstructions is equal to the number of probes p. This was
chosen based on the underlying principles of the calculation for the optimal placement using the Q-DEIM
(see Section 3.2); revealing optimal probe locations for reconstruction Method 1 specifically
(Section 3.3.1). These were found to correspond to locations within the separated region of the flow
(Figure 5). We remark, however, that the other linear methods (Methods 2 and 3) need not necessarily use
all k¼ pmodes in their reconstructions. For the present study, we opt to present k¼ p for all methods for
consistency of comparison.

4.1. Linear reconstruction

The normalized root mean square error and correlations for the three linear methods are presented for each
component of the fluctuating velocity in Figures 7 and 8 forQ-DEIM and randomplacement, respectively.
The best possible performance is indicated in both figures by the reconstruction calculated using the rank-
truncated POD via equation (2). It is immediately apparent that the maximum possible performance with
the maximum number of probes p¼ 500 corresponds to a normalized root mean square error of 16 and
24% and correlations of 0:99 and 0:96 for u0 and v0, respectively. This highlights the challenge of applying
a reduced order model such as POD to a turbulent flow as in the present case; resulting in many required
modes to capture the fluctuations.

The results in Figure 7 highlight the differences in the three proposed methods when the probes are
placed usingQ-DEIM. For this placement, the sparse recovery viaMethod 1 significantly outperforms the
other methods. At 500 probes, Method 1 was able to recover the spatio-temporal fluctuations to within
25 and 40% for u0 and v0, respectively, with correlations exceeding 90%. The relative superiority of
Method 1 is enforced by construction, as the Q-DEIM ensures that Method 1 produces coefficients that
most efficiently sample the POD basis. Methods 2 and 3 showmixed results. These approaches were only
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able to recover the fluctuations with approximately 75% error for u0 and even exceeding 100% for v0 with
correlations in the approximate range of 30–60%. Both methods produce reconstructions with very
similar correlations. This is unsurprising, as both methods use the same global probe basis. Method 3, on
the other hand, effectively contains a rescaling of the coefficients by a factor of Σ�1

gp Σg, resulting in
notable differences in the root mean square error. For u0, this leads to comparatively lower error using
Method 3. However for v0, Method 3 quickly compares worse to Method 2 beyond 14 probes.

We remark that although the experimental data presented are inherently limited in its accuracy and
contains noise, no systematic variation of noise on the fidelity of the reconstructions is presented. This is
due to the underlying assumption that the measurement noise is largely confined to low-energy high-rank
structure that was explicitly treated for in the data postprocessing (Section 2.2). The cut-off mode number
for treating the random noise was found to be higher than the maximum number of modes tested for the
sparse reconstructions. Nevertheless, the limited subpixel accuracy of the PIV (Adrian et al., 2011) should
be considered in the interpretation of the results. As can be seen in Figure 8, the vertical velocity

Figure 7. Normalized root mean square error (a and b) and correlations (c and d) versus number of
probes for u0 (a and c) and v0 (b and d) using the Q-DEIM for probe placement applied to the testing data
via Method 1 (squares), Method 2 (circles), Method 3 (triangles), and POD (diamonds). The number of
reconstruction modes k is equal to the number of probes used p. The POD-based reconstructions are
obtained via equation (2) using the coefficients from projecting the full velocity fields into the global basis.

Figure 8. Normalized root mean square error (a and b) and correlations (c and d) versus number of
probes for u0 (a and c) and v0 (b and d) using random probe placement applied to the testing data from via
Method 1 (squares), Method 2 (circles), Method 3 (triangles), and proper orthogonal decomposition

(POD; diamonds). The number of reconstruction modes k is equal to the number of probes used p. The
POD-based reconstructions are obtained via equation (2) using the coefficients from projecting the full

velocity fields into the global basis.
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fluctuation v0 was found to be consistently more difficult to reconstruct across methods. This is likely due
to the reduced SNR of v0 in the measurements, for which the vertical fluctuations span a smaller range of
pixel values (average deviation σstd,v ¼ 1:2 pixels) than the horizontal (σstd,u ¼ 1:8 pixels) and are
therefore more greatly effected by subpixel accuracy in the PIV.

An interesting shift in the results occurs for when the probes are placed randomly as shown in Figure 8.
The sparse recovery approach of Method 1 now performs significantly worse than Methods 2 and 3. This
is due to the fact that the random probes have some locations outside of the shear layer. These locations
contribute very little variance to the global POD basis, and when they are inverted (equation (5)) the
singular values become large and amplify the noise as a result. This points to the necessity that
reconstructions obtained via Method 1 must avoid probe locations with very little variance across the
global basis. For the case of a separated aerofoil, this means avoiding probes outside of the separated
region. On the other hand, the random placement does not greatly impact the extended–POD-based
Methods 2 and 3. Both methods perform similarly between the random and Q-DEIM placements;
suggesting they may be more robust to arbitrary placement. Methods 2 and 3 do not suffer from the
same effect as Method 1 because they use an independent global probe basis that is tailored to the sets of
probe locations using individual PODs obtained a priori.

The extended-PODmethods appear more robust for the present PIV data of a separated aerofoil at high
Reynolds number, but a natural question to ask is whether such robustness extends to the laminar case. To
assess this, we use the DNS data of a laminar cylinder in crossflow at ReD ¼ 100 provided by Brunton and
Kutz (2019) and perform sparse reconstructions of the vorticity as described by Manohar et al. (2018). A
brief outline of the analysis is as follows. The laminar data consists of 151 snapshots for which the mean is
subtracted to isolate the fluctuations. The first 100 snaphots are used to generate the global basis and the
global probe basis using POD for both Q-DEIM and random placements (see Figure 1c). The remaining
51 snapshots are used for assessing the reconstructions quantified using the same metrics as the present
study (Section 3.5).

The comparison to the laminar cylinder is presented in Figure 9. The results from the laminar cylinder
are shown with unfilled symbols and from the present study for u0 with filled symbols using Q-DEIM and
random placement. Method 1 outperformsMethods 2 and 3 for reconstructing the laminar cylinder for all
probe numbers and locations. Interestingly, for very few probes (p¼ 7), Methods 2 and 3 correlate
reasonably well for the Q-DEIM placement around the cylinder. However, as the number of probes
increases the correlation rapidly drops off. It is observed that as the number of probes increases, the

Figure 9. Comparison of normalized reconstruction correlation (a and b) and root mean square error
(c and d) for the reconstruction of u0 in the present case (filled symbols, x¼ u0) to the laminar cylinder at
ReD ¼ 100 from the DNS of Brunton and Kutz (2019) (unfilled symbols, x¼ω) versus number of probes
using Q-DEIM (a and c) and random placement (b and d) viaMethod 1 (squares), Method 2 (circles), and

Method 3 (triangles).
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optimal locations for the probes shift from within the wake region to concentrating near the leading edge
of the cylinder. This appears to negatively impact the ability for extended POD to capture the correlation
between probes and flow. The random placement however appears to give improved correlations for
Methods 2 and 3 compared to the Q-DEIM; indicating that the extended POD benefits from the dispersed
probe locations.

The comparison between the reconstructions in the present study and with the laminar cylinder
indicates that the compressed sensing methodology is superior for systems captured by relatively few
modes. This is because the compressed sensing methodology does not rely on underlying correlations
between probes, but rather how their location contributes to the global basis and its corresponding sparse
inversion. By contrast, the improvement in the extended–POD-based methods between Q-DEIM and
randomly placed probes suggests that the extended POD relies more heavily on the underlying spatial
correlations captured by the POD of the global probe basis. Indeed, it was confirmed (not shown) that
spatially concentrated probes in the wake of the cylinder yielded significantly poorer reconstructions than
spatially dispersed configurations. This effect may explain why the extended POD methods are more
robust for the separated aerofoil; the spatially dispersed probes capture a portion of the underlying spatial
correlations while the compressed sensing approach ofMethod 1may be sensitive to specific regions with
low variance across the global basis.

4.2. Nonlinear reconstruction

The root mean square error and correlations using the nonlinear SNN for refinement are presented in
Figures 10 and 11 for the Q-DEIM and random placements, respectively. In both figures, the gray dashed
lines indicate the reconstructions without applying the SNN. Regardless of which linear method is used to
supply the input for the SNN, the output coefficients perform nearly identically for each placement. The
Q-DEIM placement appears to slightly outperform the random placement; pointing to the importance of
the underlying correlations between the input and output coefficients on their performance of the SNN.
Only for very large numbers of probes using the random placement can some small differences arise
between input methods (Figure 11). In any case, the SNN outperforms all of the linear methods both in
terms of correlation and root mean square error. The SNNs are trained using a loss function that is
designed to minimize the difference between the known POD coefficients and the output of the SNN. It is

Figure 10. Normalized root mean square error (a and b) and correlations (c and d) versus number of
probes for u0 (a and c) and v0 (b and d) using shallow neural network (SNN) refinement and the Q-DEIM
for probe placement applied to the testing data from via Method 1 (squares), Method 2 (circles), Method
3 (triangles), and proper orthogonal decomposition (POD; diamonds). The linear results are shown in
gray dashed lines with corresponding symbols. The number of reconstruction modes k is equal is the
number of probes used p. The POD-based reconstructions are obtained via equation (2) using the

coefficients from projecting the full velocity fields into the global basis.
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therefore unsurprising that it outperforms the linear counterparts, although it does not fully recover the
true underlying POD coefficients for either placement.

In order to understand more about how the SNN is performing compared to the linear methods, the
singular values from the estimated coefficientsADYN are extracted. This separates the orthogonal temporal
part of the coefficients in order to reveal the effective singular values used for the full reconstruction. This
is presented for the linear methods and with SNN refinement for the case p¼ 14 in Figure 12 for Q-DEIM
and random placement. The results are seemingly counter-intuitive. For both placements, the linear
Method 3 appears to most closely approximate the true singular values of the validation run; but this does
notmean that it will necessarily lead to a better reconstruction. In fact, this result is unsurprising asMethod
3 is constructed to have a quasi-orthogonal set of temporal probe modes that are rescaled using the global
ones, and therefore will most closely resemble the true singular values upon extraction from the
coefficients. The other two methods on the other hand do nothing explicit to regulate the orthogonal

Figure 11. Normalized root mean square error (a and b) and correlations (c and d) versus number of
probes for u0 (a and c) and v0 (b and d) using SNN refinement and random probe placement applied to the
testing data from viaMethod 1 (squares),Method 2 (circles),Method 3 (triangles), and properorthogonal
decomposition (POD; diamonds). The linear results are shown in gray dashed lines with corresponding
symbols. The number of reconstruction modes k is equal to the number of probes used p. The POD-based
reconstructions are obtained via equation (2) using the coefficients from projecting the full velocity fields

into the global basis.

Figure 12. Singular values σA,k extracted from the estimated coefficients ADYN normalized by the leading
order singular value of the true coefficients for p¼ 14 probes using linear methods (unfilled symbols) and
shallow neural network (SNN) refinement (filled symbols) via Q-DEIM (a) and random placement (b).
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basis of the coefficients, and this is manifested by singular values in Figure 12 that depart from the true
ones.

Regardless of the linear method used, the singular values from the output of the SNN collapse together
and consistently underestimate the true ones. It is important to note that no orthogonal regularization was
imposed on the SNN in its construction. Instead it simply attempts to minimize the loss function between
the training inputs and the training data by adjusting the weights. As the root mean square error and
correlations unilaterally improve via the SNN as shown in Figures 10 and 11, the results of Figure 12
imply that recovering the underlying temporal correlation (the phase information of the temporal modes)
is inherently more important than recovering the precise singular values (at least for minimizing the
imposed loss function). This becomes increasingly less important as the mode number increases, as
evidenced by the sharp decrease in singular values with increasing k. This shown for the case of p¼ 14,
however, similar results were found for all probe numbers tested.

5. Conclusions

We have presented three distinct linear reconstruction methodologies and a SNN for nonlinear refinement
to obtain state estimations of separated turbulent flow over a NACA 0012 aerofoil at α¼ 12∘ and Rec ¼
75,000 using time-resolved PIV from limited probes. Eachmethodologywas trained using 9,000 samples
of PIV training data and instantaneous sample prediction was tested using all 5,468 samples of an
independent time-resolved dataset. This is the first systematic investigation of sparse reconstructions for a
moderately high Reynolds number advective turbulent flow obtained via experiment.

Figure 13. Original (a), proper orthogonal decomposition (POD)-based (b), linear via Method 1 (c and
e), and nonlinear (d and f) reconstructions of the total velocity at one arbitrary instant using five probes
and Q-DEIM (c and d) and random (e and f) placement with every fifth velocity vector shown for clarity.

Vectors are scaled automatically with respect to their individual fields and not across panels.
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The reconstructions were first tested through the use of linear methods alone. It was found that the
performance of the linear methods depended largely on the choice of placement.When the placement was
chosen carefully using the Q-DEIM, the compressed-sensing approach ofMethod 1 greatly outperformed
the extended–POD-based approaches of Methods 2 and 3 (Figure 7). When the probes were placed
randomly (Figure 8), it was found that the extended POD methods performed move favorably than the
compressed sensing approach ofMethod 1. This was due to locations within the global POD basis outside
of the shear layer with small variance causing errors in the inversion of the sparse basis forMethod 1. This
is illustrated clearly in Figure 13c, e, showing how the reconstruction is affected when probe locations
reside in the free stream.

In order to investigate how themethods compare for the laminar case, the extended PODmethodswere
applied to the DNS of laminar flow over a cylinder atReD ¼ 100 of Brunton andKutz (2019) (Figure 9). It
was found that the extended–POD-basedmethods rely on the underlying correlations of their global probe
POD basis. When the probes were grouped closely together, the reconstructions performed more poorly.
When the probes were more dispersed, the autocorrelation underlying the global probe POD basis was
able to capture more features. Despite this, the compressed sensing approach of Method 1 outperformed
the extended POD approaches for both Q-DEIM and random placement in the laminar case. As the
laminar data did not contain measurement noise and were captured by relatively few modes, small
variances within the global basis were comparatively less problematic.

Nonlinear refinement of the estimated coefficients was tested through the application of an SNN using
the various linear methodologies as inputs. The performance of the SNNwas found to be nearly identical
regardless of the linear method used and slightly more favorable for Q-DEIM placement (Figures 10 and
11). In all cases, the SNN improved the root mean square error and correlations of the reconstructions.
Interestingly, it was found that the output coefficients of the SNN did not contain singular values that most
closely matched the true singular values (Figure 12). Instead, the SNN naturally placed more emphasis on
the phase information of the underlying temporal correlations; leading to improved reconstruction
performance.

The implications for sparse reconstructions in a rapidly evolving turbulent flow (the most common
type of flow in engineering applications) based on the findings of the present study can be summarized as
follows. Firstly, several hundred modes (and therefore probes) are required to capture the velocity
fluctuations using POD as the global basis. This implies an extensive full-field dataset must be tabulated
a priori, in this case, 18 times more samples than the maximum modes used for reconstruction (9,000
samples and 500 modes). Many fewer probes may be used for reconstructions depending on the desired
accuracy for the application of interest (Figure 7). Second, the placement of the probes depends on the
reconstruction method of choice. The compressed sensing approach based on sparsity (Method 1) is ideal
but relies on chosen locations within the flow with high variability. The extended-POD approaches
(Methods 2 and 3) are less optimal however are comparatively robust and instead depend on being
spatially dispersed. Finally, the nonlinear refinement via the SNN appears to equalize the linear
approaches, with only a small improvement when placed favorably. This result begs the question: why
should one bother with linear methods at all? The answer again depends on the application of interest. If
the objective is to reconstruct the full-field as accurately as possible our results indicate one should employ
asmany sensors as possible and use any linear method for the inputs to the SNN. This requires training the
network with the entirety of the full-field data obtained a priori. If the application instead does not require
very high accuracy, the expensive task of training a NN may be avoided in which case the differences
between the linear methods become relevant once again.

This study has demonstrated the capability of linear and nonlinear methods to recover instantaneous
reconstructions of the full experimental velocity fields using sparse measurements. This is visualized in
Figure 13. Avenues for future work include sparse reconstructions with flow control within the sensing
region (which would require a distinct global basis depending on if the flow control is active or not). A
further exploration of sensitivity for variations in the system, for example, changes in the freestream
velocityU∞ or angle of attack α is warranted, as the cost of training separate global bases for variations in
external conditions is undesirably high (for the present study, this implies separate training datasets on the
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order of thousands of samples each for each α). Future investigations may also explore variations of the
SNN architecture, which might benefit from, for example, splitting the input coefficients into singular
values and orthogonal modes and training the modes with orthogonal regularization. One challenge with
promising potential is to explore obtaining a greater number of outputs (modes) from the SNN than inputs;
potentially achieving reconstructions that are more accurate than the rank-truncated POD itself.
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