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Abstract

Certain C -algebras on generators and relations are associated to directed graphs. For a finite graph
P, C*-algebra 6? is canonically isomorphic to Cuntz-Krieger algebra corresponding to the adjacency
matrix of I\ It is shown that if a countably infinite graph Y is strongly connected, C? is simple and
purely infinite.

2000 Mathematics subject classification: primary 46L05,46L35.

1. Introduction and notation

Let f be a countable directed graph. Denote vertices of F by U, V, W e "V(F) and
edges by u, v, w e <?(F). If v e <?(F) is connecting U and V, call U the source of v
and V the range of v, and write

s(v) = U, r(v) = V.

Let H be an infinite-dimensional Hilbert space. To every edge v e <^(F) we associate
a non-zero partial isometry sv, acting on H, with the following properties:

(i) svs*swsl = 8v,wsvst, for all v, w e ^ ( F ) ;
(ii) slsvs^sw = SrivU(w)s*sv, for all v, w 6 ̂ ( F ) ;

(Hi) s*vsvsus*u = Sr(v)Mu)sus*u, for all u, v e S(F);
(iv) s*vsv = Er(,)=S(u» s<»sw> i f t h e s e t (w € A n ; 5 ( i o ) = r(v)} is finite.

DEFINITION 1. With the notation as above, we set

tfr.u.) = C*(sv; v €
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and call &r.{s.) a Cuntz-Krieger algebra associated to F and the family {sv}. The
corresponding universal C*-algebra will be denoted &r.

REMARK 1. In general, <?!-,(*„) defined above depends on the choice of generating
partial isometries. Note also that arguments from [5] show that Gv exists, for any F.

DEFINITION 2. Let T be a directed graph. We call F infinite if the set g(T) is
infinite, and row finite if, for each vertex, the number of outgoing edges is finite. The
adjacency matrix of F is defined as

( l , r{u)=s{v)
Ar(u, v) = <

[0, r(u)^s(v),

for all pairs of edges (u, v) in £(T).

DEFINITION 3. Let A be a non-negative, n x n-matrix. Call A irreducible if for
each pair of indices (i,j) from { 1 , . . . , «}, there is k e N such that Ak(i,j) ^ 0. A
directed graph F is called strongly connected (or transitive) if for all pairs of vertices
(U, V), there exists a path v{ • • • vk such that s(ui) = U and r(vk) = V.

If T is finite, strongly connected and every loop in F has an exit—in other words,
if A r is an irreducible, non-permutation matrix, (?r is canonically isomorphic to the
Cuntz-Krieger algebra GAr (see [4]). In particular, Gr is simple and purely infinite,
and GY\SV\ does not depend on the choice of generators.

In this note, we give a simple proof of an analogous theorem for infinite graphs (the
theorem is proved at the end of the paper—see Theorem 2.6):

THEOREM 1.1. Let F be a countably infinite, strongly connected graph. Then Gv

is simple and purely infinite.

We should point out that the above theorem has been proved by Laca and Exel (see
[6, 16.2 and 14.1]). Using the presentation of ffr as the crossed product algebra for a
partial dynamical system, they extended to the infinite case some of the main results
known to hold in the finite case—including the above criterion for GT to be simple
and purely infinite.

An important special case of Theorem 2.6 is when F is assumed to be row finite
(in which case it suffices to use only relations (i) and (ii)—the usual Cuntz-Krieger
relations). This situation has been studied by Kumjian, Pask and Raeburn (see [14,
Corollary 3.10.]). Using a groupoid approach, they carry out a detailed analysis of
how the distribution of loops affects the structure of 6V, for any row-finite graph F.
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In contrast to that, the method used here is just an adaptation of the original proof
of Cuntz. Namely, in analogy with G^, we use the fact that

where we show that each &An is a universal algebra on generators and relations,
canonically isomorphic to an extension of some Cuntz-Krieger algebra by a direct
sum of a finite number of copies of compact operators. We then modify the proof of
[1, Theorem 3.4] to this slightly more general setup. Finally, it is clear that algebras
£7r satisfy the UCT, so are within the range of Kirchberg's classification (see [12, 13]).

Let us also mention that results similar to Theorem 2.6 appear in [10, 11], albeit in
a different setting, and that (7r can be realized as a Pimsner algebra &x, for a suitable
choice of bimodule X (see [16]).

2. Preliminaries and results

Let F be a countably infinite, directed graph. Unless stated otherwise, it is always
assumed that F is strongly connected. Relabel the edges of F as v\, v2,..., write
Ar (/, j) for Ar(u,, Vj) and denote the partial isometry sVi by s,. Also, let An stand for
the upper-left hand corner of the matrix A r , and

^ A , = {/* = •*;, • • • s i k ; ij € { 1 , . . . , n ] a n d A n ( i j , i J + i ) = H -

REMARK 2. It is easy to see that, with F as above, there exists an increasing filtration
(F,)ieN of F, where each F, is a finite, strongly connected graph. Furthermore, we
will assume that the edges of F (hence, the generators of £?r) are labelled in a way
compatible with this filtration.

LEMMA 2.1. Let F be a countably infinite directed graph. Then F is strongly
connected if and only if there exists a strictly increasing sequence of integers (/Z*)*SN

such that each Ant is an irreducible, non-permutation matrix.

PROOF. If F is infinite and strongly connected, there exists a vertex with at least
two outgoing edges. Together with the above ordering, that gives the sequence (AnJ.
The other direction is obvious. •

REMARK 3. Assume that F is as above and denote <&„,!*,• i = C*{su... ,sn},
p{ = SjS*, qt — s*Sj and r, = s*st — Yl"j=iAn(i,j)SjS}- Since the projections qt

a n d qt a r e e i t h e r e q u a l o r o r t h o g o n a l , t h e s a m e h o l d s f o r r , a n d r ; , i , j — 1 , . . . , n ,
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so deno te by m i , . . . , m k d is t inct pro jec t ions a m o n g rlt... , rn, for some k < n . Se t
/</> = C*{s^nijsl;ii, v e J(An\, for every j , and

We then have I(J) = J ^ , for all y, where Jf stands for the compact operators on a
separable Hilbert space (see [1, Proposition 3.1]). Furthermore, if An is assumed to
be irreducible and non-permutation,

The following result is analogous to [3, Lemma 3.1]:

PROPOSITION 2.2. Let T bea countably infinite, strongly connected directed graph,
and let sh i e M, be a set of generators of Gr,[s,\- Then, for any m € N, the algebra
gAmi{Sj] = C{s\,... , sm} does not depend on the choice of generators.

PROOF. Suppose that st e B(H). As above, we set r, = s*st — £ T = I A(i,j)SjS*.
Let m0 > m be such that for each non-zero r(, i = \,... ,m, there is j(/) €
[m + I,... , m0] such that

and let n > m0 be such that An is irreducible and non-permutation. Note that
Lemma 2.1 (and Remark 2) imply that such m0 and n exist. We want to construct partial
isometries tm+l,... ,tne B(H) such that C*(s\,... ,sm, tm+l,... , tn) is canonically
isomorphic to GAn.

Let / be a subset of [m + 1,... ,n] defined by: j € / if and only if there is
1 < i < m such that A(i,j) = 1 and A(i, k) = 0, for k = j + 1 , . . . , n. For ; e / ,
let pj = r, - Et=m+i A('"' k)skS*k- Note that/J, = sjsj+sfsi - YH=i Mi, k)sks*k, and
that pj does not depend on the choice of / in the above formula. For j not in / , set
Pj = SjS*. Define projections qj, forj = m + 1 , . . . , n, by

s*k + ^ A(j,k)pk.
k=\ k=m+l

Since F is strongly connected, every sts* is an infinite-dimensional projection, so the
same holds for pj and Q . For j = m + 1 , . . . , n, let tj be any partial isometry such
that tj t* = pj and t*tj = qj. Then

A(i,j)tjt*, i = 1,... , m,
j=\ j=m+\
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and

(,j)j J^ (,j)tjtj, i = m + 1, ... ,n,

hence , si = C*(s\,... , sm, tm+\,... , tn) = GAn canonica l ly .

If s\ G B(H), i = 1, 2, 3, . . . , is another set of generators for 6T, the above
procedure gives t'm+l,... , t'n such that si' = C*{s[,... , s'm, t'm+l,... , Q = 0Am, and

the map

s,• i-> s'j, i = \,... ,m, tj h-> tj, j = w + 1 , . . . , n

extends to an isomorphism from si into s/', mapping <^m,{s,| onto <dm,(j;i- D

COROLLARY 2.3. L f̂ r 6e a5 m Proposition 2.2. 77z<?« <?r c?oes not depend on the
choice of generators.

REMARK 4. It is clear that Proposition 2.2 and Corollary 2.3 will remain true as
long as one can construct a canonical embedding of £An into some Cuntz-Krieger
algebra that does not depend on the choice of generators. This has already been
argued by Cuntz and Krieger in [4, Remark 2.15]. Note also that £An can be described
as a C*-algebra associated to some inverse semigroup (see, for example, [9]).

The following result, due to Cuntz (see [3, Proposition 1.6]), describes simple
purely infinite C*-algebras. We use this in the proof of Theorem 2.6:

PROPOSITION 2.4. Let the C'-algebra si satisfy:

(i) s/^O.C

(ii) For every e > 0 and every positive a,b € s/, there is c € si such that

\\b-cac*\\ < s.

Then si is simple and purely infinite.

LEMMA 2.5. Let An be irreducible. Then there exists a non-unitary isometry v 6
SAn, such that

\im(v*)kxvk = 0, for all x e /„.
k-*oo

PROOF. In the case of C^, this has been proved in [1, Proposition 3.1, Remark 2].
Since we do not necessarily have an isometry among the generators of &An, we have
to construct one. Let pt and w, be as in Remark 3. Note that

for ally there is i such that s,-m,- = SjS*Simj ̂  0,
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and denote that s, by tj. Also,

for all j there is i such that stpj = SJS*SJPJ ^ 0.

Denote that s, by tj, and set

We immediately get v*v = 1 and vv* < 1, so v is a proper isometry. Let s^ =
shSj2 • --s^, and note that v*sll ^ 0 implies

= (P;, + • • • + P;» + mtl + • • • + mt,)pj2(sl2 • • • **„) = s,2 • • • sip.

It remains to be shown that u*m, u = 0, j = 1 , . . . , k. Since p,m; = 0, we get

n k

v*m, = J^ PiKitiOm, + J2 mj i*(ij tym, = 0, / = 1,... , k. U
i = l ; = 1

DEFINITION 4. Let a be the action of T = {z e C; \z\ = 1} on Gv, given on
generators by a,(sv) = tsv, v € <?r> and set

(2) P(x)= [a,(x)dt, xet?r

(see [1]).

Now we are ready to prove the result announced in the Introduction. The proof
closely follows the proof of [1, Theorem 3.4]:

THEOREM 2.6. Let T be a countably infinite, directed, strongly connected graph.
Then &r is simple and purely infinite.

PROOF. Let positive elements a,b € <?r and 0 < e < 1/4 be given. Let a = zz*,
for some z € Gv, and let v € &Am, for some m e N, be a finite linear combination of
words in st, s* such that \\b — y\\ < e. We can assume that | |P(y)| | = 1 and ||z|| = 1.

From Lemma 2.1 there is n > m such that An is irreducible and non-permutation.
With ti,... , tn as in Proposition 2.2, we consider C*-algebras srf\ = C*{s\,... , sm,
fm +i , . . . , tn], £An, and t&2 = SAJln. Denote by it the quotient map S'An —v SAJln. It
follows from (1) and Proposition 2.2 that the map

st i-»- n(sj), i = 1 , . . . , m, tj; i->- 7i(Sj), j = m + I,... ,n
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extends to an isomorphism from sfx into s^2. Let P\{x) and P2(x) stand for P(x) (see
(2) above), computed in afx and srf2, respectively. Since y is a word in s,, 5*, with i
only in {1 m], P\(y) = P(y). Together with the above isomorphism, that gives

l|/>20r0'))ll = l|P.()')ll = l|/J 0011 = 1.

From [1, Remark 1.13], there is w 6 srf2 such that ||w|| < l+£ , and W7i(y)w* — 1.
Lifting from the quotient gives

wyw* = 1 + /„

in gAii, with \\w\\ < 1 + 2e. Then, from Lemma 2.5, there is v e SAn and k € N, such
that

\\(v*)kwyw*vk - 1|| < e .

Hence, we get

\\z(v*)kwbw*vkz* -a\\ <4e,

which completes the proof. •

REMARK 5. If a directed graph T is row finite and strongly connected, [15, Theo-
rem 4.2.4] gives the K-theory of Gv:

- A'r)T° and Kx(0r) = Ker(l - A'r)T°

(see [2, 15]). In case of general f, see [7]. Finally, note that the K-theory of 6V can
be computed in the same way as that of G^ (see [3]). That has been done in [8].
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