SUPERHARMONIC FUNCTIONS IN A DOMAIN
OF A RIEMANN SURFACE

ZENJIRO KURAMOCHI

To Professor Kiyoshi Noshiro on the occasion of his 60th birthday

Let R be a Riemann surface. Let G be a domain in R with relative
boundary 9G of positive capacity. Let U(z) be a positive superharmonic
function in G such that the Dirichlet integral D(min(M,U(z))) < co for every
M. Let D be a compact domain in G. Let ,U™z) be the lower envelope
of superharmonic functions {U,(z)} such that U,(z) = min (M, U(z)) on D+ oG
except a set of capacity zero, U,(z) is harmonic in G— D and U,(z) has
M.D.I. (minimal Dirichlet integral) < D(min (M,U(z)))<o over G —D with
the same value as U,(z) on aG + aD. Then ,U¥z) is uniquely determined.
Put ,U(z) = Allir:nooDUM(z). The mapping from U(z) to ,U(2) is clearly linear.
Hence there exists a positive measure (¢, 2)1 such that ,U(z) = SU(E)d).(S, 2)
for z& G—D. If for any compact domain D, ,U(z) = U(z) or ,U(z) < U(z),
we call U(z) a full harmonic (F.H.) or full superharmonic (F.S.H.) function in G
respectively. If U(z) is an F.S.H. in G and U(z) =0 on dG except at most
a set of capacity zero, U(z) is called an F,.S.H. in G. Let U(z) be an F.S.H.
in G. Then pU()t as Dt. Put ,UR) = li’rtn png,U(z) for a non compact

domain D, where {G,} is an exhaustion of G with compact relative bound-
ary 0G,(n =0,1, .. .).

Functiontheoretic mass M/ (U(z)) of an Fy.S.H. in G. Let U(z) be an F,.S.H.
in G. Then g, = E[z: U(z) > M] is open. Let (gx, 2 G) be a function in
G such that o(gy, 2, G) is harmonic in G — gy, = 1 in gy and has M.D.L. over

G — g and further w(gy,2,G)=0 on 3G, =1 on adgy except a set of cap.
zero. Clearly such a function exists by D(min(U(z), M)))<c and

min (M, U(z)) = M on agy, =0 on G except a set of cap. zero. It is easily
seen, w,(z) = w(gy, 2, G) in mean as n — oo, where w,(z) is a harmonic function

in R, N (G — gy) such that w,(z) =0 on 4G, w,(z) =1 on 8gy except a set of
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capacity zero and %wn(z) =0 on (G-—gy)NaR, where {R,} is an ex-
haustion of R with compact relative boundary aR,. We call wl(gy, 2, G)
C.P. (capacitary potential) of g, relative to G and define Cap(gy) by
D(w(gw, 2, G)). Then there exists a regular niveaul? C; such that

D(o(gy, 2, G)) = gﬁ% o(gu> 2, G)d's
Cs

for almost ¢ with 0<s<1.
Since U(z) is an F,..S.H. in G, U(z) = 4, U(2), whence
Elz: 0, U®)>M] =gy, C g, = E[2:Ulz) > M, for M, <M,. (1)

By the definition 4,U(z) = M w(gy, 2,G) in Cgy. On the other hand, dw(g;, 2, G)
= (g, 2, G) in Cg;, where g; = E[z : w(ga, 2, GB) >8] and

D(wlgs, 2, G)) = *}f D(algw, 2, G))  for any 6<1. (2)

Let M, >M,. 'Then by (1) and (2)
D (4, U(2)) = M3D (0(@s,, 2, G)) = MiD(0(9 a2, G)) . 3)

Chu,y

Put o= . Then

M,

MiD (0 (@ % G) = M} x 0 D(olgu,, 2 C) = MiMD (0 (gx, 2 G)) =
M. D(uU). Hence by 3) (1) D (U= (4)D (wU)  for
Ml COuy o M2 COu, o - Ml €Oy t

M, <M, and <~]}Z— D(,,U(z)) increases as M—0. Put M (Uk) =

COy

Tln }}I}}U <ﬁ> c]i (auU(2)) and call MM/ (U(2)) functiontheoretic mass of Ul(z).
Then we have the following
LEmMMA 1. 1) Let U,(z) and U,(z) be two F.S.H.s in G and U,(z) = U,(2).
Then MU\ (2)) = M (Ua(2)) -
2) Let U,(z) be Fo.S.H.s and U,(z)t Ulz) as m—>o . Then
},finwmf(Um(z)) = M/ (U(2)). (4)

(1) 1s clear by Elz:U(z) >M] D E[z : Uy(z) > M]. At first we suppose
M (U@R) < oo. For any given >0, there exists a const. M such that
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s D (auU(a) = - MD (0(gu 2, G) Z W' (U(e) — ¢ Since Elz : Un(z) > M]=
Ium T gu=Elz :UQz)>M] as m—o, D@(gu,mn 2 G))—>Dlolgmz, G as
m—>co. Hence lim /(Un(z) = 21; lim M D(o(gu,n 2 G)) = M (U) —e.
Let e >0. Then ,imio MU (z)) = M (U(2)).

Next by Lemma 1.1) wllimmimf(Um(z))é WM (UR). If M (U) =, we
have similarly 1}1}1:0 M (U (2)) = o0 .

M/ (U(z)) of an F.S.H. U(z) in G. For a compact domain D in G,
suppose that we can define functions {U,(z)} such that U,(z) is superharmonic
in G, U,(z) is harmonic in G — D, U,(z) = min (M,U(z)) on D, U,(z) =0 on
dG except a set of cap. zero and U,(z) has M.D.L. over G~ D. Let 3U™(z)
be the lower envelope of {U,(z)}. Put jU(z) :A}[iianUM(z) (clearly JU(z) < pU(2)).
Since 9D is compact, pU(z) =0 on dG except a set of cap. zero. For non
compact domain, 3U(z) is definedas ,U(z). For U(z), put M/ (U(z) =
'llirg M (¢, Uz)), where {G,} is an exhaustion of G with compact relative
boundary.

N-Green’s functions of G. Let N,(z,p) be a positive harmonic function
in (G—p) N R,:p e G such that N,(z,p) =0 on 3G except a set of capacity
zero, N,(z,p) has a logarithmic singularity at p and «%Nn(z, p)=0 on
R, N G. Then N,(z,9)—> N(z,p) in mean as n —co and N(z, p) has M.D.I.
(in this case the Dirichlet integral of N(z,p) is taken with respect to N(z, p)
+loglz—p| in a neighbourhood of p). If 3G is composed of a finite
number of analytic curves in G, we say that aG is completely regular. Then
as case that 9G is completely regular we see easilyf®]

1). N(z,p) =0 on aG except at most a set of cap. zero.

2). D(min(M, N(z, p))) = 2zM .

3). For any domain D ,N(z,p)= N(z,p) if p € D and ,N(z, p) =< N(z, p).

4). By 2) and 3) we have M/ (N(z,p)) =1.

We show, for any point z in G and a positive const. d there exists a
const. L(z, d) such that N(z, p)<<L(z,d) if dist(z, p) >d.

Case 1. 0G has a continuum 7. Suppose 7 contains a small arc C’ with
endpoints p, and p,. Let C” be also an arc in G connecting p, and p,

so that €’ + C”” may enclose a simply connected domain D of R. Let C"’
be a subarc in C’” such that dist(C”/,8G)>0. Let w(z) be a harmonic
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function in D such that w(z)=1 on C"”, w(z)=0 on éD—C". Then

w(z) =0 on C’ and oo>§%
cl

can suppose dist(p, D) >d >diameter of D. Let N*z, p) be an N-Green’s

function of G+ (CG N D). Then N*z, p)= N(z, p) and N*(z,p) is harmonic
in a neighbourhood of €’/ Hence by Harnack’s theorem, there exists a

w(z)ds > >0. Without loss of generality we

const.K such that max N*(z, p) < K min N*¥(z, p). Let L = maxN*z,p).
ze C" ze C!" ze C"

Then N*(z p)zl; w(z) iIn D and 27r>S-a— N*z, p)ds = L3 whence
=K S omn ? = K~

L=*K  Hence also by Harnack’s theorem, for any point z, there

0
exists a const. L(z,d) such that N(z, p) < L(z,d) if dist(z,p)=d. If G has

a continuum 7 (is not an analytic curve). Map D onto |£/<1. Then
the image of 7 is an analytic curve. Hence even when 7 is not analytic
curve, we have the same conclusion.

Case 2. 3G has no continuum. By N(z,p)=Ec0, we can find a point z, in
oG such that inf N(z,9)=0. Let D be a simply connected domain in R

Z-2

such that 8D is an analytic curve, D>z, and (@D N3G)=0. Then
dist (8D, G) >0. We suppose p & D, dist(p, D) >diameter of D and
dist (3G, aD) >0, where {G,}is an exhaustion of G. Let U, ,(#) be a harmo-
nic function in G, N R, such that U, ,(z) =0 on 3G, N R 9 Un,a(z)=0

ma‘é‘n-
on 4R, N G, and U, ,(z) has a logarithmic singularity at p: R, 2 D. Then
lim lim U, .(z) = N(z,p). Let w,(2) be a harmonic function in G, N D
such that w,(2) =0 on 8G, N D, =1 on 4D. Then %’&ﬂg w,(z) and
27'E >~ 1 _i > , = 1
Lww = S Lo, an Umalddds = S wa()ds >0, where Ly, , = min Un ().
3G, 9G,
b] _ 0 _a =
Now by S = Unaz)ds = S WUm‘n(z)ds >0 and S o w,(2)ds
oD 8G,ND oD
0 _0 > 0 Let
o wy(2)ds >0 we have S o Unpi(z)ds =L, , S i w,(z)ds . e
3G, N D oD oD

N —>r 0 and m—r 0, Then since oD iS compact
[ 0
> A > v =
on = aS 3 N(z,p)ds=L 88 3 w(z)ds = L6 >0,

where L = min N(z, p) and S 9 w(z)ds = §.
ze 0D oD on
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inf N(z,p) =0 implies w(z)==1 and §>0. Hence L< @-. Whence by

z2>2 0

Harnack’s theorem we have the same conclusion.

Let {p,} in G be a divergent sequence tending to the boundary of R or
dG. Then N(z,p;)<L(z,d)<o for any point z if dist(z,p;)=d. Then
we can choose a subsequence {py} such that N(z, p) converges uniformly
to a harmonic function denoted by N(z, p) and we call {p} a fundamental
sequence determining an ideal point ». We denote by B the all the ideal
points (» may be on 8G). We show N(z,p) =0 (p € B) for a regular boundary
point z of 8G.

Case 1. oG has a continuum 7 with endpoinis q, and q,. Let z,€7, 2%+ ¢,
and #¢,. Let C be an analytic curve in G connecting ¢, and ¢, so that
C+ 7 may enclose a simply connected domain D in R and D® p; (i = 1,2,

), where {p;} is a fundamental sequence determining p. Map D
conformally onto [£]<1. Then 7 and C are mapped onto the images
denoted by the same notations for simplicity. N(z,p;)=0 on 7+ (8G N D)
except a set of cap.zero. Let N*(z,p;) be an N-Green’s function of
G4 (CG N D). Then there exists a const. L*(¢,) such that oo > L*¢,)=

N*(t, p;) = ~2];r— SN*(S, pi)—a‘% G(&, t)ds for any i, where G(&, ¢) is the Green’s
¢

function of D. On the other hand, there exists a const. M such that
o< M< %G(S,to) on C, whence SN*(E, pi)dsgﬁan;}b)A. Let U(¢) be a
C

harmonic function in |&] <1 such that U(€) = N*¢& p;) on |&] =1. Then

* L) = =A1_ * N 1_‘7’2 M = ¢0 1
N¥(t,p) = U(t) = - SCN (& P T —7c05 gy e 99 1 = e Since

& =&z €7, there exists a neighbourhood v(&) such that »(&)NC=0.
Now there exists a const. M such that 1 —2rcos(@ —¢)+ 2= M for e’ &7

and £€v(&): €=7re'’. Hence U§g) < ﬁﬁ%ﬂ%“lm (1—17%) for £ev(&). Then

by Fatou’s lemma N*(, p)gﬁjf‘%ﬂ%‘i (1 —7% and by Nz, p;) < N*z, p;) we

have N(z, p) =0 as z—z,.

Case 1.2. 2z, € endpoint of an arc . Let D be a domain such that
9D 4+ 7 encloses a simply connected domain D—7. Map D—7 onto || <1
Then the image (z,) of z, is an inner point of the image of 7. Then as
case 1.1. we have N(z,p)—0 as z —>z,.

Case 2. 2, is a regular point and z, is not contained in any continuum. Let
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D be a simply connected domain such that D=3z, and 4D N 4G =0 and
D#3p(i=12...). Then since (3D N 3G)=0 implies dist(dD,3dG) >0,
there exist const.s L, and L, such that N(z,p;)<L, and N(z, p;,)=L, on
dD. Whence there exists a const. M such that N(z, p,) < MN(z, p,) in D.
Hence lim Nz, p) <M 11_{2 N(z,p,)=0. Thus N(z,p) =0 on 3G except at

2 2y

most a set of capacity zero. D(min (M, N(z, p))) < lim D(min (M, N(z, p,;))) = 2zM.

z

Hence we can define ,N(z,p) for any compact domain. N(z, p;) > N(z, p)
uniformly on 4D as i—co. Hence by pN(z, p;)<N(z,p;) we have

oN(z, p) < N(z, p). Next we have at once M/ (N(z, p)) < D(miné%,/IN(z, p)) <1.

Hence we have the following.

LemMMmA 2. N(z,p) s an Fo.S.H. in G such that D(min (M, N(z, p))) < 2rM
and M/ (N(z,p)) <1 for € G+ B.

N-Martin topology in G. Let D be a compact disc in G and p, be a
fixed point in D. we define the distance between two points p, and p, of G + B

as
N(Z, pl) —_ N(z7>_P2)

3Pu P2 = SUP | T NG ) T T4 Newwy) |

Then the topology induced by this metric is homeomorphic to the original
topology in G. In the following we use this topology. d(p,»;) =0 if and
only if N(z, »;)—>N(z,p). Put Gs= E[z:N(z,p,) >6]. Then the distance
between G; and CGy = E[z: N(z,p)<&] is not less than 5:;5, , if

0<d<o<1l. In fact, by the symmetry of N(p,q) we have at once

N(py, 1) N(po, 45) s—39 .
> 0 > . ’
qn, 42) = |5 N(po 00 TFNowg) |= 4 g€ Gy and g, € CGy.

Also we easily see B N Gy is compact for every 6 >0.

Potentials. Let x>0 be a positive mass distribution on G + B such that
Sdﬂ(p)<oo and put U(z) = SN(z, p)du(p). If a potential U(z)=0 on 4G
except at most a set of cap. zero, we call U(z) a regular potential. Then we
have the following

THEOREM 1.1). D(min (M, U(2))) < ZnMS dy .

2). Let D be a compact or non compact domain. Then pU(z) = S oN(z, p)du(p).
3). Let p. be the restriction of u on G, = E[z: N(z,p) >¢l. Then

Ule) = lim S N(z, p)du.(p).
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4). If Uz) is a regular potential, U(z) 1is an F.S.H. in G with
W) = [ du.

Proof of 1). For any number ¢>0 we can find a compact set K
in H= E[z: U(z) < M] such that D(min (M, U(2))) < Q(U(z)) + ¢. Since N(z, p)

1s a continuous function of p for fixed z, U(z) can be approximated on K

(i)
by a sequence of linear forms : U,z)= _]21 2N, D), 2; =20, p,€G,
5
Sdu =32;:1=12,.... Hence Q(U(z))glim Il{)(Ui(z)). Also U; .(2) > U,(2)
7 <

in mean as n-—>co, where U; ,(2) = 3I4;;N,(2, p,) and N,(z,p;) is a harmonic
function in G N R, such that N,(z,p;) =0 on 8G N R, except a set of cap.
zero, -~£4—Nn(z, p;)=0 on @R, N G and N,(z, p,;) has logarithmic singularity
at p;. Put eI—lI’;—- Elz:U; (2) <M+ ¢]. Then H o K for n=n,, wheren,is a

e, t,n

sufficiently large number. We can prove (with some modefication to the
fact N,(z, p;) =0 on oG except a set of cap. zero instead of N,(z,p;) =0 on
3G) that D (U, .(2)) = 2n(M + ¢) S du(p). Let n—>oo, i—ocoand then ¢—0.

€, t,n

Then D(min (M, U(z)) < 2eM S du(p).

Proof of 2). Put D,=DnNG,. Then D, is compact. Put Nz, p)=
min (M, N(z,p)). Then NX(z,p) is uniformly continuous with respect to p
on D,. Hence SNM(z, p)dp(p) can be approximated uniformly on D,

by a sequence of linear forms:  Ui(s) = g’l 20 N" (2, D3)s ey =0,
Clearly pUi(¢) = S4:;0.N"z,p;). Let i >co. Then DH(SNM(Z, p)dp(p)) =
[o.N%e, paun).  Now by | Nz p)dpn) tUR) as Moo, we have
oSNz )t ([ Newan®) = nU@ and | 0Nz pdpp)t
[ o.M, p)an(p) as M+ 0. Hence nUG) = | Nz p)du(p). Since n.N(z p)
1 bN(p) and pU) 1 pU) as w0, (| N@pdum) = lim (, (N p)

du(®)) = | lim 0.N(z, p)dp(p) = | DN PYp()

Proof of 3). Suppose p& G.. Let {p;} be a fundamental sequence
determining p B (if pe G, put p;=9p). Then 6(p,p)—>0 as i—oo.
Then by dist (CG,, Gze);_—z’, (f 2¢<1), p; & G, for i ={,, where i;isa
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number. Hence N(py, p;) <2¢ and N(p,, p)=<2¢ for p € (B+ G)—G,,. Let
¢, =p—p.. Then U'l(p,)= SN(po,p)dp'e(p) =<2 S dp’. Ul(z) is harmonic
in G— G,.. Hence by Harnack’s theorem U.(z) >0 as ¢ >0 at every point
2. Hence we have 3).

Proof of 4). D (5U(2)) =< D(min (M, U(z)))§2nMSd,u by (1). Hence by
(=778
. . D (5, U(2))
definition M/ (U(z)) = }}To L 5 = S dp, where gy = E[z : U(z) > M]. By

(2) HU()<U(z), hence U(z) is an F,.8.H. in G with mf(U(z))_ng/z.

TueoreM 2. Let U(z) be an Fo.SH. in G with M/ (Uz)) < o . Then
U(z) can be represented by a positive mass distribution p on G+ B such that

Jan=wwe.

Let D and D’ be compact domains in G with finite number of analytic
curves as their relative boundaries such that dist (D,8D’)>0 and D’'D>D.
Let M be a number. Put U¥z)=min (M, U(z)). Then U¥z) is also an
Fi.S.H. in G and M/ (UMz)) <M/ (U(z)). Let & be a positive const. such
that 6 <<min ,Uz). Then 8H;N D' =0, where H, = Elz: ,U"z)>al.

ze pr
Then LU™z) = éw(Hy,2,G) in CH;. Hence we can find a const. & such
that & <6 and 0Hy is a regular niveau of w(Hj 2, G). Hence

M o)) = iy Pmin (M, yUM(z)) _ D(min (3, 2U"(2))) _
M(UMz)) = M (GU(2)) = lim ST = ux =

1 0
o | Vs,

oHy'
Put
U, 2) = pUMz) — & + 8’o(D,2,Hy) in Hy — D. (4)

Then U(#,2) is a harmonic function in Hy — D such that U(¥, z) = ,U¥(z) on
aD, = ,UMz)— & =0 on 8Hy except a set of cap. zero and U(#,2) has
M.D.I. over Hy — D, because both ,U¥z) and «(D,z, Hy) have M.D.Ls
over Hy — D. Now by the regularity of aHy

9 Nge— — [0 Nds = al&
0= LoD,z Hyds = = | -2 oD,z Hyds = ald").
aHy 9D

Since S %w(D, 2, Hy)ds | as &' |,
0H '
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Py S _%m(D,z,H)dsio as & —>0. (5)
0Hy'

S M, — 15 ;EL M = hi jﬁ
Hence 220 (,U*(z)) = ;’1210 S i 2UM(2)ds ;}Lno S o (U, 2)
0Hy' 0Hy'

_ ’ = i ,kak,, /
¥o(D, 2 Hy))ds = lim S 2 v, 2ds.

0Hy
Hence for any ¢ >0 we can find a const. §* such that aHs+ is regular and
20 (Ue) = | -2 Ur s -« (6)
O H y*

Since ,U(z) is an F..S.H. in G, there exists a uniquely determined positive
mass distribution z on D such that

»U2) = | Niz, p)du(p).

Let N'(z,p) be an N-Green’s function of Hzx -+ D with pole at p. Then
N.(z,p) is uniformly bounded on 8D’ for p € D’ and N,(z,p)—>N'(z,p) in
mean as n# —roco, where D’/ is another domain such that D c D/ ¢ D’ and
dist (6D, 0D"’) >0 and dist (0D',0D’) >0 and N,(z,p) is a harmonic function
in (Hs+ D) N R,) — p such that N;(z, p) has a logarithmic singularity at p,
Ni(z,p) =0 on oHy« and %N;(z,p) =0 on dR, N (Hy+ D). Then by the
regularity of 9H ;%1

a 7 — M ¥3* ’ —
[ -2 N pas=lim [ 2 N, p)ds = 2. @)
9 Hg* O0H§*NR,

N'-Martin topology induced by N’(z,p) is homeomorphic to N-Martin
topology on G+ B in (D+ Hzx) N G. Hence p can be approximated by a

sequence of points masses : ;(Zj})lzi,-(p“) uniformly in D, i.e. both SN(z,p)d,u(p)
and SN’ (2, p)dp(p) can be approximated by sequences of linear forms
Uiz) =j’:2ii 2Nz pyy) and Ule) =:§ 2N, piy), where 2, = 2,20 and
p;; € D”. Hence SN(z, p)dp(p) — SN’(z, p)dp(p) is full harmonic in Hz + D
and =é* on 0H;x. Hence by the maximum principle SN(z,p)d;z(p) —

SN/(z, P)dpu(p)=6* in Hy+ D .
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Now (D, z, Hg+) is represented by a positive mass distribution g* on
D. Hence by (4) U(3*z2) = SN’(z,p)d(y + 6*p*)(p) in Hypx+ D. Whence
3 —_— a 4 p— a /
by @ [ 2-vemads= |2 [N pde+ omids = | [0 NG pas
0Hg* 0H g* 9 H g%
d{p + 5%p*)(p) = 27':3~ d(p + 6*p*) = 2n S dp.

Hence by (6) 2n§)ﬁf(DUM(z))%2ngdy—e.

Let ¢=0. Then M/(U()) =M (GUR) = W GUM) = [ dulp) and HU() is
representable by a mass distribution g on D of total mass < M/ (U(z)) for
every M. Let {G,} be an exhaustion of G. Then ¢,U"z) is representable
by mass distribution g on G,. Then {¢#¥} has a weak limit g, on G, as
M* e, Also {g,} has a weak limit # on G+ B such that U(z) =
SN(z,p)d,u(p) and Sd.u(P)éiUlf(U(z)) as n >0 . Thus we have the theorem.

Corollary. Let p be a positive mass distribution on a compact set F in G.
Then U(z) = { Niz, p)dp(p) is an Fo.S.H. in G with W/(Uz) = gd,u.

Let D, o D, be two domains in G such that D, o D, > F, dist (D,,3D,) >0
and dist(F, 4D,)>0. Then N(z,p):p € F is uniformly bounded on 4D, .
Put L = max (maxN(z p)) and L’ = mmN(z p,), where p, is a fixed point in

peFze oD

F. Then N(z,p,) = L—N(z, p)in G— D, for any p € F'. Hence U(z) =0 on 4G
except at most a set of cap. zero. Also 5,U(z) = U(z) and M/ (U(2))=M'(5,U(z)).
By Theorem 2 U(z) is representable by a mass distribution g* on D, such
that 9’ (U(z))%gd,u*. But since D, is compact, by the uniqueness of distri-
bution, g = pg* and M (U(z) = Sd,u On the other hand, by Theorem

1.2. E)th(U(z))ggdp. Hence M/ (U(z)) = gdﬂ and U(z) is an F,.S.H. in G.

TueorREM 3. Let U(z) be an F.S.H. in G with M (U(z)) < o . Then
Ul(z) is representable by a positive mass distribution p with degsz (Uz)). Con-

versely a potential U(z) = SN(z p)dp(p) is an F.S.H. in G with W/ (U(z)) < Sd,u
Let {G,} be an exhaustion of G. Suppose U(z) is an F.S.H. in G.
Then ¢,U(z) can be defined and there exists a mass distribution g, on G,

such that ¢ U(z) = SN(z, p)dp,(p) and Sdﬂ,,, =W (GUR) =M/ (UR). Hence

{¢,) has a weak limit g such that U(z) = lim¢U(z) = SN(z,p)dy(p). Let
U(z) be a potential. Let D be a compact domain. Then ,U(z) =
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SDN(z, p)dp(p) and pU(z) can be defined and ,U(z) <U(z). Now N(z,p) is

an F.S.H. in G with 9/(N(z, p)) <1 by Theorem 1, whence by the corollary

N p) = | N, dpya): [dpl@=1. Hence ,U) = || Nz, dpp(@dpin)=
D

[N adpta) : p@ = | m(@dpp) and W GUE) = {duig) < (dp for any D.
Hence U(z) = lim¢,U(z) is an F.S.H. in G with WM/ (U(z)) < Sd/z.

Remark. Let U(z) be an F.S.H. in G with W' (U(z)) < oo . Then
Vu=Elz:U(z)>M] is so thinly distributed in a neighbourhood of 8G. In fact,
D(o(Vy, 2,G) < 2aMM/(U(z)). This means V, is thin. If V, is very thik,
Do(VyNn G, 2 G) T o as n >,

Let D be a domain. Then by Theorems 1 and 2 we can consider the
mass distribution of vn(mN(z,p) , where v,(p) = E[z e G+ B: dist(z,p)< 11,7]

As case that 9G is completely regular we have the followingf®

LEmma 3. Let U(z) be an F,.S.H. (or F.S.H.) in G with W/ (U(z)) < o .
Let F be a closed set. We define U(z) b_))nlizl’I;F,,U(z), where F, = E[z eG+ B:
dist (z, F)g—;—]. Then

1). #UER) =7U@R), if o(F,2 G)=0. (8)
2). o(F,2G)=j0(F,z2G), if olF,2 G)>0. (9)
M/ (N(@z,p)=<1 for pe€ G+ B. If 3G is completely regular M/ (N(z,p))

=1 (_9_ =
= S o N(z,p)ds=1.

BuatG in the present case M (N(z,p)) is not necessarily equal to 1. Then we
shall prove the following

THEOREM 4. 1). Put M(p) = M/ (N(z,p)). Then M(p)=1 for p € G and
M(p) is lower semicontinuous.

2). Put ¢(v,(p) = éth(vﬂ(p)N(z,p)). Then ¢(v,(p) =1 for pe G and
d(a(p)) s lower semicontinuous. Clearly ¢(v.(p)) | asn—>oo. Put ¢(p)
= }liqus(vn(p)). Then ¢(p)=1 or 0.

Proof of 1). Let pe G. Then clearly D(min (M, N(z,p)) = 2zM and
M(p) =1 for p € G. By definition (- ) D(w(Vu(p)2,G) T DM(p) as M L0,
where Vy(p) = E[z : N(z,p) >M]. Hence for any given ¢ >0, there exists
a number M such that M(p) < (—ﬁ) D(o(Vu(p),2,G)) + ¢ and we can find
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a compact set K in Vy(p) such that D(o(Vy(p),z, G)) < DM w(K,z)) + 2¢,
because, if F, 1 F, D((Fn2 G) 1t D(F,z G)1. Since d(p, p;) =0
implies N(z,p;)— N(z,p) in every compact set, we can find a number i,

. L D(w(K,2,G)) _ D@V y-c(ps, 2, G)))
such that V,_.(p;) D K for i =i,, whence oM = z,f(fM_ e)

=M(p;):i=4d,. Let e>0. Then M(p)=<LimM(p,).

Proof of 2). If p €G, clearly )N(z, p)=N(z, p) and ¢(v,(p)) = 1 for every
n. Put gy(p)=Ez: ot N(z, p)>M] Then by the definition of ¢(v,()),
for any given >0, there exists a number M,<1 such that ¢(v,(p))=<

DMolgw2,G)) 4 e - M D(o(gu, 2,G)) + —5— for M< M,. Also we can
or on 2r 2r

find a compact set K in Cgy(p) such that D(w(gu(p), 2, G)) < D(0(K,2,G)) + <.
Now N(z p) = lim N(z,p), where {G,} is an exhaustion of G. Hence

m =0 ,(PNGn

there ex1sts a number m, such that

M€ >~
vn(p)N(z,p)g o+ vn(p%(cz;p) on K for m=m,.

Now N(z,q) is continuous in G — ¢, whence N(z,q) is continuous on K
2.()NGn

and there exists a number i, such that

N@p)= N@p)= N@p)— - > Nep)—Me on K for

,(m0) T 0,(8)NGn 2,(P)NG 2 v,(p)

i=1i,. This implies E[z : (J;J(z,p) = M — Me] D K and
Un(Pi
D(w(gM—M‘s(pi): 2, G)) ; D(Q)(K, 2, G)) ; D(w(gM(p)> 2, G)) — & for l ; iO .
Thus 2u6(0.(p.)) = M(L — &)D(o{gu-e(P:), 2 G) = M Dlolgu(p), 2, G)) (ML)

— M1 — e)e =2n(¢(v,(p) —e) (L —e) — Me for i =i,.
Let i > and then ¢—>0. Then lim ¢(v,(p:))= ¢(va(p)).

By Lemma 1,2, M/( N(z, p)) = lim M’( N(z,p)). Since v,(p) N G,

2,(P) m = oo 2,(D)NGn

is compact, by the corollary of Theorem 2 ol N(z,p) is representable by
V(P m
ta.m OD U,(p) N G, with S.)Rf( ( )Jg(z,p)) = Sd”""’“' Next {z,,n} has a weak
0,(P) NG

limit p, as m— oo such that IM/( g\f)(z, p)) = Sd‘u” on 7,(p). Let n—>o.

n

Then {p,} has also a weak limit pz at p= r; 0v,,(p) such that de =
lim 9%/( (J\)’(z,p))=¢(p). Thus ,N(z,p) = ¢(p)N(z, D).

(D,
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Case 1. peG. Then ¢(p)=limgv,(p)) =1.

Case 2. o(p,2,G)>0. In this case o(p,2,G)=1lim )co(p, 2,G) =

lim S N(z, p)dp(p) = KN(z,p). Now by (9), ,0(p,%, G) = o(p,2,G), i.e. N(z,p) =
2,(P)
»N(z,p), whence ¢(p)=1.

Case 3. o(p,2,G) = 0. By (8) ¢(p)N(z,p) = ,N(z,p) = ,(,N(z,p)) =
6% p)N(z,p). Hence ¢(p)=0 or 1.

N-minimal function and N-mimimal points. Let U(z) be an F.S.H. in G.
If V(z) = 2U(z) : 0<2<1 for any F.S.H. V(2) such that both V(z) and U(z)
—V(z) are F.S.H.s in G, we call U(z) an N-minimal function. Then as the
case that G is completely regular we have the following

THEOREM 5.1).[11  Let A be a closed set in G+ B. Then o(A,z,G) =

| Nz, p)dpm).
A

2. o»2G) =0 for peG. If op,2,G)>0, op,z2G)=KN(0p):
K>0. We call such a point a singular point and denote by B, the set of singular
points. By Theorem 2 we have

3).  pN(z,p) = ¢(p)N(z,p) and ¢(p)=1 for p with w(p,z,G)>0 and ¢(p)
=1or 0. Denote by B, and B, sels of points of B for which ¢(p)=0 and
&(p) = 1 respectively. Then by (2) B, C B, and B= B, + B,.

4). By is an F, set of capacity zero, whence B; C B,.

5. If Ul)={N(p)dpup), »U@=0.

By

6). Let Ulz) be an N-minimal function such that U(z) = SN(z, 2)du(p).
A
Then U(z) = KN(z,p) : p € (G+ B) N A.

7). Nz, p) is N-minimal or not according as ¢(p) =1 or Q.

8). Let Vy(p) = E[z: N(z,p) > M] and suppose p € G+ B,. Then N(z,p)

= N(,p)= N(z,p) for M<sup N(z,p) and for every n, whence N(z,p) =
Vu(D) V(D) Nv,(0) 2eG

Mo(Vu(p),2,G) in G —Vy(p).
9). Every potential U(z) = SN(z, p)dp(p) can be represented by another distribution
p on G+ B, without any change of U(z). Thus distribution is called canonical.
If 3G is completely regular 3M/(p) =1 for p € G+ B. But in general
cases M(p) is not necessarily = 1. We shall prove
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Lemma 4. M(p) = M/ (N(z,p)) =1 for p€ G+ B,.
Let {G,} be an exhaustion of G. By pe G+ B, <1\)/'(z, »)=N(z,7p).
v,(P
Assume M/ (N(z,p)) <6<<1. Then M/( . N, P =M (N(zp)=<s. By
2, ()NGp
Theorem 2 JGV(z,p) is represented by a mass g, ., on v,(p) N G, with

200N

Sd#n,m£5- Let m —c and then n —+co. Then ,N(z,p)<N(z,p). This

contradicts ,N(z,p) = N(z,p). Hence M(p)=1.

TuEOREM 6. Let Uz) = S N(z,p)du(p). Then
G + By

W (U(z)) = S dy,

where U(z) ts not necessarily an F.S.H. in G (clearly for an F.S.H. in G).
This is an extension of the corollary of Theorem 2.
Put ¢(p, n, m) = M'( ( )nGN(z, p)). Then by Theorem 4 and by p € G + B,
Vp(P

m

d(p,m,m) T d(p,n) = M/ (pi)\’(z,p))= M/(N(z,p))=1 as m—o. Put

n

Une)=| NGz pdp(p). Then

2, (PINGn

U(z) = S lim N(z, p)du(p) = lim S N(z, p)du(p) = lim U,(z).
m= MNG, m = oo

m=o (PNGn o < Un(P,

Now . é\/(z, p) = S N(z,q)dp,(q) and since p,(g) >0 only on a compact
9.(D)NGrm
2,(P)NGn

set G,, we have Sd/,zp(q) = ¢(p, n,m) by the corollary of Theorem 2. Hence

Unlz) = SS N(z, q)dp(q)dp(p) and M/ (Un(z) = Sqi(p, n,mydp(p). It is easily

G.
verified that Lemma 1. 2. holds for F.S.H.s and W/ (U.(z) T W/ (U@)), if

Unlz) 1 U). Now M/ (Un(z) + M/ (Uz) and ¢(p, n,m) T ¢(p,n) =1 as m —
for pe G+ B,. Hence M(U(2)) = Sd,u(p).
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