SUPERHARMONIC FUNCTIONS IN A DOMAIN OF A RIEMANN SURFACE

ZENJIRO KURAMOCHI

To Professor Kiyoshi Noshiro on the occasion of his 60th birthday

Let R be a Riemann surface. Let G be a domain in R with relative boundary ∂G of positive capacity. Let U(z) be a positive superharmonic function in G such that the Dirichlet integral $D(\min(M, U(z))) < \infty$ for every M. Let D be a compact domain in G. Let $_{D}U^{M}(z)$ be the lower envelope of superharmonic functions $\{U_n(z)\}$ such that $U_n(z) \ge \min(M, U(z))$ on $D + \partial G$ except a set of capacity zero, $U_n(z)$ is harmonic in G-D and $U_n(z)$ has M.D.I. (minimal Dirichlet integral) $\leq D(\min(M, U(z))) < \infty$ over G - D with the same value as $U_n(z)$ on $\partial G + \partial D$. Then ${}_D U^{M}(z)$ is uniquely determined. Put $_{D}U(z) = \lim_{M = \infty} U^{M}(z).$ The mapping from U(z) to ${}_{D}U(z)$ is clearly linear. Hence there exists a positive measure $\lambda(\xi, z)^{[1]}$ such that $_D U(z) = \int U(\xi) d\lambda(\xi, z)$ for $z \in G - D$. If for any compact domain D, $_D U(z) = U(z)$ or $_D U(z) \leq U(z)$, we call U(z) a full harmonic (F.H.) or full superharmonic (F.S.H.) function in G respectively. If U(z) is an F.S.H. in G and U(z) = 0 on ∂G except at most a set of capacity zero, U(z) is called an F_0 .S.H. in G. Let U(z) be an F.S.H. Then ${}_{D}U(z)\uparrow$ as $D\uparrow$. Put ${}_{D}U(z) = \lim_{n \to G_n} U(z)$ for a non compact in G_{\cdot} domain D, where $\{G_n\}$ is an exhaustion of G with compact relative boundary $\partial G_n(n=0,1,\ldots)$.

Function theoretic mass $\mathfrak{M}^{f}(U(z))$ of an F_{0} .S.H. in G. Let U(z) be an F_{0} .S.H. in G. Then $g_{M} = E[z : U(z) > M]$ is open. Let $\omega(g_{M}, z, G)$ be a function in G such that $\omega(g_{M}, z, G)$ is harmonic in $G - g_{M}$, = 1 in g_{M} and has M.D.I. over $G - g_{M}$ and further $\omega(g_{M}, z, G) = 0$ on ∂G , = 1 on ∂g_{M} except a set of cap. zero. Clearly such a function exists by $D(\min(U(z), M))) < \infty$ and $\min(M, U(z)) = M$ on ∂g_{M} , = 0 on ∂G except a set of cap. zero. It is easily seen, $\omega_{n}(z) \rightarrow \omega(g_{M}, z, G)$ in mean as $n \rightarrow \infty$, where $\omega_{n}(z)$ is a harmonic function in $R_{n} \cap (G - g_{M})$ such that $\omega_{n}(z) = 0$ on ∂G , $\omega_{n}(z) = 1$ on ∂g_{M} except a set of

Received July 12, 1966.

capacity zero and $\frac{\partial}{\partial n} \omega_n(z) = 0$ on $(G - g_M) \cap \partial R_n$, where $\{R_n\}$ is an exhaustion of R with compact relative boundary ∂R_n . We call $\omega(g_M, z, G)$ C.P. (capacitary potential) of g_M relative to G and define $\operatorname{Cap}(g_M)$ by $D(\omega(g_M, z, G))$. Then there exists a regular niveau^[2] C_{δ} such that

$$D(\omega(g_{M}, z, G)) = \int_{C_{\delta}} \frac{\partial}{\partial n} \, \omega(g_{M}, z, G) ds$$

for almost δ with $0 \leq \delta \leq 1$. Since U(z) is an F_0 .S.H. in G, $U(z) \geq g_{M_1}U(z)$, whence

$$E[z: g_{M_1}U(z) > M_2] = g'_{M_2} \subset g_{M_2} = E[z: U(z) > M_2] \text{ for } M_2 < M_1.$$
(1)

By the definition $g_M U(z) = M \omega(g_M, z, G)$ in Cg_M . On the other hand, $\delta \omega(g_{\delta}, z, G) = \omega(g_M, z, G)$ in Cg_{δ} , where $g_{\delta} = E[z : \omega(g_M, z, G^{[3]}) > \delta]$ and

$$D(\omega(g_{\delta}, z, G)) = \frac{1}{\delta} D(\omega(g_{M}, z, G)) \quad \text{for any } \delta < 1.$$
⁽²⁾

Let $M_1 > M_2$. Then by (1) and (2)

$$D_{cg_{M_2}}(g_{M_2}U(z)) = M_2^2 D\left(\omega(g_{M_2}, z, G)\right) \ge M_2^2 D(\omega(g'_{M_2}, z, G)).$$
(3)

Put $\delta = \frac{M_2}{M_1} \cdot \text{Then}$

$$\begin{split} M_2^2 D\left(\omega\left(g'_{M_2}, z, G\right)\right) &= M_2^2 \times \frac{M_1}{M_2} \ D\left(\omega\left(g_{M_1}, z, G\right)\right) = M_1 M_2 D\left(\omega\left(g_{M_1}, z, G\right)\right) = \\ \frac{M_2}{M_1} \frac{D}{cg_{M_1}} (g_{M_1} U(z)) \ . & \text{Hence by (3)} \quad \left(\frac{1}{M_2}\right) \frac{D}{cg_{M_2}} (g_{M_2} U(z)) \geqq \left(\frac{1}{M_1}\right) \frac{D}{cg_{M_1}} (g_{M_1} U(z)) \quad \text{for} \\ M_2 &\leq M_1 \quad \text{and} \quad \left(\frac{1}{M}\right) \frac{D}{cg_{M_1}} (g_{M} U(z)) \quad \text{increases as} \quad M \to 0 \ . \quad \text{Put} \quad \mathfrak{M}^f(U(z)) = \\ \frac{1}{2\pi} \lim_{M \to 0} \left(\frac{1}{M}\right) \frac{D}{cg_{M_1}} (g_{M} U(z)) \quad \text{and call} \quad \mathfrak{M}^f(U(z)) \quad function theoretic \ mass \ \text{of} \quad U(z) \ . \\ & \text{Then we have the following} \end{split}$$

LEMMA 1. 1) Let $U_1(z)$ and $U_2(z)$ be two $F_0.S.H.s$ in G and $U_1(z) \ge U_2(z)$. Then $\mathfrak{M}^f(U_1(z)) \ge \mathfrak{M}^f(U_2(z))$.

2) Let
$$U_m(z)$$
 be $F_0.S.H.s$ and $U_m(z) \uparrow U(z)$ as $m \to \infty$. Then

$$\lim_{m \to \infty} \mathfrak{M}^f(U_m(z)) = \mathfrak{M}^f(U(z)). \tag{4}$$

(1) is clear by $E[z: U_1(z) > M] \supset E[z: U_2(z) > M]$. At first we suppose $\mathfrak{M}^{f}(U(z)) < \infty$. For any given $\varepsilon > 0$, there exists a const. M such that

$$\begin{split} &\frac{1}{2\pi M} \mathop{D}_{cg_{\mathcal{U}}} (g_{\mathcal{M}} U(z)) = \frac{1}{2\pi} MD \left(\omega(g_{\mathcal{M}}, z, G) \right) \geqq \mathfrak{M}^{f}(U(z)) - \varepsilon \,. \quad \text{Since } E[z : U_{m}(z) > M] = \\ &g_{\mathcal{M}, m} \uparrow g_{\mathcal{M}} = E[z : U(z) > M] \quad \text{as} \quad m \to \infty \,, \quad D(\omega(g_{\mathcal{M}, m}, z, G)) \to D(\omega(g_{\mathcal{M}}, z, G))^{[4]} \quad \text{as} \\ &m \to \infty \,. \quad \text{Hence} \lim_{m = \infty} \mathfrak{M}^{f}(U_{m}(z)) \geqq \frac{1}{2\pi} \lim_{m = \infty} M D(\omega(g_{\mathcal{M}, m}, z, G)) \geqq \mathfrak{M}^{f}(U(z)) - \varepsilon \,. \\ &\text{Let} \ \varepsilon \to 0 \,. \quad \text{Then} \lim_{m = \infty} \mathfrak{M}^{f}(U_{m}(z)) \geqq \mathfrak{M}^{f}(U(z)) \,. \end{split}$$

Next by Lemma 1.1) $\lim_{m = \infty} \mathfrak{M}^{f}(U_{m}(z)) \leq \mathfrak{M}^{f}(U(z)) . \quad \text{If } \mathfrak{M}^{f}(U(z)) = \infty \text{, we}$ have similarly $\lim_{m = \infty} \mathfrak{M}^{f}(U_{m}(z)) = \infty$.

 $\mathfrak{M}^{f}(U(z))$ of an F.S.H. U(z) in G. For a compact domain D in G, suppose that we can define functions $\{U_n(z)\}$ such that $U_n(z)$ is superharmonic in G, $U_n(z)$ is harmonic in G - D, $U_n(z) \ge \min(M, U(z))$ on D, $U_n(z) = 0$ on ∂G except a set of cap. zero and $U_n(z)$ has M.D.I. over G - D. Let ${}_{D}^{o}U^{M}(z)$ be the lower envelope of $\{U_n(z)\}$. Put ${}_{D}^{o}U(z) = \lim_{M = \infty} {}_{D}^{o}U^{M}(z)$ (clearly ${}_{D}^{o}U(z) \le {}_{D}U(z)$). Since ∂D is compact, ${}_{D}^{o}U(z) = 0$ on ∂G except a set of cap. zero. For non compact domain, ${}_{D}^{o}U(z)$ is defined as ${}_{D}U(z)$. For U(z), put $\mathfrak{M}^{f}(U(z)) =$ $\lim_{n \to \infty} \mathfrak{M}^{f}(G_n U^0(z))$, where $\{G_n\}$ is an exhaustion of G with compact relative boundary.

N-Green's functions of *G*. Let $N_n(z, p)$ be a positive harmonic function in $(G - p) \cap R_n : p \in G$ such that $N_n(z, p) = 0$ on ∂G except a set of capacity zero, $N_n(z, p)$ has a logarithmic singularity at p and $\frac{\partial}{\partial n}N_n(z, p) = 0$ on $\partial R_n \cap G$. Then $N_n(z, p) \to N(z, p)$ in mean as $n \to \infty$ and N(z, p) has M.D.I. (in this case the Dirichlet integral of N(z, p) is taken with respect to N(z, p) $+ \log |z - p|$ in a neighbourhood of p). If ∂G is composed of a finite number of analytic curves in G, we say that ∂G is completely regular. Then as case that ∂G is completely regular we see easily^[5]

- 1). N(z, p) = 0 on ∂G except at most a set of cap. zero.
- 2). $D(\min(M, N(z, p))) = 2\pi M$.

3). For any domain $D_{D}N(z, p) = N(z, p)$ if $p \in D$ and $_{D}N(z, p) \leq N(z, p)$.

4). By 2) and 3) we have $\mathfrak{M}^{f}(N(z, p)) = 1$.

We show, for any point z in G and a positive const. d there exists a const. L(z, d) such that N(z, p) < L(z, d) if dist (z, p) > d.

Case 1. ∂G has a continuum $\hat{\tau}$. Suppose $\hat{\tau}$ contains a small arc C' with endpoints p_1 and p_2 . Let C'' be also an arc in G connecting p_1 and p_2 so that C' + C'' may enclose a simply connected domain D of R. Let C''' be a subarc in C'' such that dist $(C'', \partial G) > 0$. Let w(z) be a harmonic

function in D such that w(z) = 1 on C''', w(z) = 0 on $\partial D - C'''$. Then w(z) = 0 on C' and $\infty > \int_{C'} \frac{\partial}{\partial n} w(z) ds > \delta > 0$. Without loss of generality we can suppose dist (p, D) > d > diameter of D. Let $N^*(z, p)$ be an N-Green's function of $G + (CG \cap D)$. Then $N^*(z, p) \ge N(z, p)$ and $N^*(z, p)$ is harmonic in a neighbourhood of C'''. Hence by Harnack's theorem, there exists a const.K such that $\max_{z \in C''} N^*(z, p) \le K \min_{z \in C''} N^*(z, p)$. Let $L = \max_{z \in C''} N^*(z, p)$. Then $N^*(z, p) \ge \frac{L}{K} w(z)$ in D and $2\pi > \int_{C'} \frac{\partial}{\partial n} N^*(z, p) ds \ge \frac{L\delta}{K}$, whence $L \le \frac{2\pi K}{\delta}$. Hence also by Harnack's theorem, for any point z, there exists a const. L(z, d) such that $N(z, p) \le L(z, d)$ if dist $(z, p) \ge d$. If G has a continuum τ (is not an analytic curve). Map D onto $|\xi| < 1$. Then the image of τ is an analytic curve. Hence even when τ is not analytic curve, we have the same conclusion.

 ∂G has no continuum. By $N(z, p) \equiv \infty$, we can find a point z_0 in Case 2. ∂G such that $\inf N(z, p) = 0$. Let D be a simply connected domain in R ∂D is an analytic curve, $D \ni z_0$ and $(\partial D \cap \partial G) = 0$. such that Then We suppose $p \notin D$, dist (p, D) > diameter of D and dist $(\partial D, \partial G) > 0$. dist $(\partial G_n, \partial D) > 0$, where $\{G_n\}$ is an exhaustion of G. Let $U_{m,n}(z)$ be a harmonic function in $G_n \cap R_m$ such that $U_{m,n}(z) = 0$ on $\partial G_n \cap R_m, \frac{\partial}{\partial n} U_{m,n}(z) = 0$ on $\partial R_m \cap G_n$ and $U_{m,n}(z)$ has a logarithmic singularity at $p: R_m \supset D$. Then $\lim_{m \to \infty} \lim_{m \to \infty} U_{m,n}(z) = N(z, p).$ Let $w_n(z)$ be a harmonic function in $G_n \cap D$ such that $w_n(z) = 0$ on $\partial G_n \cap D$, = 1 on ∂D . Then $\frac{U_{m,n}(z)}{L_{m,n}} \leq w_n(z)$ and $\frac{2\pi}{L_{m,n}} \ge \int_{\partial G} \frac{1}{L_{m,n}} \frac{\partial}{\partial n} U_{m,n}(z) ds \ge \int_{\partial G} w_n(z) ds > 0, \text{ where } L_{m,n} = \min_{z \in \partial D} U_{m,n}(z).$ Now by $\int_{\partial D} \frac{\partial}{\partial n} U_{m,n}(z) ds = \int_{\partial C} \frac{\partial}{\partial n} U_{m,n}(z) ds > 0$ and $\int_{\partial D} \frac{\partial}{\partial n} w_n(z) ds =$ $\int_{C} \frac{\partial}{\partial n} w_n(z) ds > 0 \quad \text{we have } \int_{\partial D} \frac{\partial}{\partial n} U_{m,n}(z) ds \ge L_{m,n} \int_{\partial D} \frac{\partial}{\partial n} w_n(z) ds . \quad \text{Let}$

 $n \to \infty$ and $m \to \infty$. Then since ∂D is compact

$$2\pi \ge \int_{\partial D} \frac{\partial}{\partial n} N(z, p) ds \ge L \int_{\partial D} \frac{\partial}{\partial n} w(z) ds = L\delta > 0$$

where $L = \min_{z \in \partial D} N(z, p)$ and $\int_{\partial D} \frac{\partial}{\partial n} w(z) ds = \delta$.

 $\inf_{z \to z_0} N(z, p) = 0 \text{ implies } w(z) \equiv 1 \text{ and } \delta > 0. \text{ Hence } L \leq \frac{2\pi}{\delta}. \text{ Whence by Harnack's theorem we have the same conclusion.}$

Let $\{p_i\}$ in G be a divergent sequence tending to the boundary of R or ∂G . Then $N(z, p_i) \leq L(z, d) < \infty$ for any point z if dist $(z, p_i) \geq d$. Then we can choose a subsequence $\{p_{i'}\}$ such that $N(z, p_{i'})$ converges uniformly to a harmonic function denoted by N(z, p) and we call $\{p_{i'}\}$ a fundamental sequence determining an ideal point p. We denote by B the all the ideal points $(p \text{ may be on } \partial G)$. We show N(z, p) = 0 $(p \in B)$ for a regular boundary point z of ∂G .

Case 1. ∂G has a continuum τ with endpoints q_1 and q_2 . Let $z_0 \in \tau$, $z_0 \neq q_1$ and $\neq q_2$. Let C be an analytic curve in G connecting q_1 and q_2 so that C + r may enclose a simply connected domain D in R and $D \Rightarrow p_i$ (i = 1, 2, ..., C)), where $\{p_i\}$ is a fundamental sequence determining p. Map Dconformally onto $|\xi| < 1$. Then r and C are mapped onto the images denoted by the same notations for simplicity. $N(z, p_i) = 0$ on $r + (\partial G \cap D)$ Let $N^*(z, p_i)$ be an N-Green's function of except a set of cap. zero. $G + (CG \cap D)$. Then there exists a const. $L^*(t_0)$ such that $\infty > L^*(t_0) \ge$ $N^*(t_0, p_i) = \frac{1}{2\pi} \int_{\Omega} N^*(\xi, p_i) \frac{\partial}{\partial n} G(\xi, t_0) ds$ for any *i*, where $G(\xi, t)$ is the Green's function of *D*. On the other hand, there exists a const. *M* such that $0 < M < \frac{\partial}{\partial n} G(\xi, t_0)$ on *C*, whence $\int_C N^*(\xi, p_i) ds \leq \frac{2\pi L^*(t_0)}{M}$. Let $U(\xi)$ be a harmonic function in $|\xi| < 1$ such that $U(\xi) = N^*(\xi, p_i)$ on $|\xi| = 1$. Then $N^{*}(t, p_{i}) = U(t) = \frac{1}{2\pi} \int_{C} N^{*}(\xi, p_{i}) \frac{1 - r^{2}}{1 - 2r\cos(\theta - \varphi) + r^{2}} d\varphi : t = re^{i\theta}.$ Since $\xi_0 = \xi(z_0) \in \mathcal{T}$, there exists a neighbourhood $v(\xi_0)$ such that $v(\xi_0) \cap C = 0$. Now there exists a const. M' such that $1 - 2r \cos(\theta - \varphi) + r^2 \ge M'$ for $e^{i\varphi} \notin r$ and $\xi \in v(\xi_0)$: $\xi = re^{i\theta}$. Hence $U(\xi) \leq \frac{2\pi L^*(t_0)}{MM'} (1-r^2)$ for $\xi \in v(\xi_0)$. Then

by Fatou's lemma $N^*(\xi, p) \leq \frac{2\pi L^*(t_0)}{MM'} (1 - r^2)$ and by $N(z, p_i) \leq N^*(z, p_i)$ we have $N(z, p) \to 0$ as $z \to z_0$.

Case 1.2. $z_0 \in endpoint$ of an arc τ . Let D be a domain such that $\partial D + \tau$ encloses a simply connected domain $D - \tau$. Map $D - \tau$ onto $|\xi| < 1$. Then the image (z_0) of z_0 is an inner point of the image of τ . Then as case 1.1. we have $N(z, p) \to 0$ as $z \to z_0$.

Case 2. z_0 is a regular point and z_0 is not contained in any continuum. Let

D be a simply connected domain such that $D \ni z_0$ and $\partial D \cap \partial G = 0$ and $D \ni p_i(i = 1, 2, ...)$. Then since $(\partial D \cap \partial G) = 0$ implies dist $(\partial D, \partial G) > 0$, there exist const.s L_1 and L_2 such that $N(z, p_i) \leq L_1$ and $N(z, p_i) \geq L_2$ on ∂D . Whence there exists a const. *M* such that $N(z, p_i) \leq MN(z, p_1)$ in *D*. Hence $\lim_{z \to z_0} N(z, p) \leq M \lim_{z \to z_0} N(z, p_1) = 0$. Thus N(z, p) = 0 on ∂G except at most a set of capacity zero. $D(\min(M, N(z, p))) \leq \lim_i D(\min(M, N(z, p_i))) \leq 2\pi M$. Hence we can define ${}_DN(z, p)$ for any compact domain. $N(z, p_i) \to N(z, p)$ uniformly on ∂D as $i \to \infty$. Hence by ${}_DN(z, p_i) \leq N(z, p_i)$ we have ${}_DN(z, p) \leq N(z, p)$. Next we have at once $\mathfrak{M}^f(N(z, p)) \leq \frac{D(\min(M, N(z, p)))}{2\pi M} \leq 1$. Hence we have the following.

LEMMA 2. N(z, p) is an $F_0.S.H.$ in G such that $D(\min(M, N(z, p))) \leq 2\pi M$ and $\mathfrak{M}^f(N(z, p)) \leq 1$ for $p \in G + B$.

N-Martin topology in G. Let *D* be a compact disc in *G* and p_0 be a fixed point in *D*. we define the *distance between two points* p_1 and p_2 of G + B as

$$\delta(p_1, p_2) = \sup_{z \in D} \left| \frac{N(z, p_1)}{1 + N(z, p_1)} - \frac{N(z, p_2)}{1 + N(z, p_2)} \right|.$$

Then the topology induced by this metric is homeomorphic to the original topology in G. In the following we use this topology. $\delta(p, p_i) \to 0$ if and only if $N(z, p_i) \to N(z, p)$. Put $G_{\delta} = E[z : N(z, p_0) > \delta]$. Then the distance between G_{δ} and $CG_{\delta'} = E[z : N(z, p) \le \delta']$ is not less than $\frac{\delta - \delta'}{4}$, if $0 < \delta' < \delta < 1$. In fact, by the symmetry of N(p, q) we have at once

$$\delta(q_1, q_2) \ge \left| \frac{N(p_0, q_1)}{1 + N(p_0, q_1)} - \frac{N(p_0, q_2)}{1 + N(p_0, q_2)} \right| \ge \frac{\delta - \delta'}{4} : q_1 \in G_{\delta} \text{ and } q_2 \in CG_{\delta'}.$$

Iso we easily see $B \cap \bar{G}$, is compact for every $\delta > 0$.

Also we easily see $B \cap G_{\delta}$ is compact for every $\delta > 0$.

Potentials. Let $\mu > 0$ be a positive mass distribution on G + B such that $\int d\mu(p) < \infty$ and put $U(z) = \int N(z, p)d\mu(p)$. If a potential U(z) = 0 on ∂G except at most a set of cap. zero, we call U(z) a regular potential. Then we have the following

Theorem 1.1). $D(\min(M, U(z))) \leq 2\pi M \int d\mu$.

2). Let D be a compact or non compact domain. Then $_{D}U(z) = \int _{D}N(z, p)d\mu(p)$.

3). Let μ_{ε} be the restriction of μ on $G_{\varepsilon} = E[z: N(z, p_0) > \varepsilon]$. Then

$$U(z) = \lim_{\varepsilon \to 0} \int N(z, p) d\mu_{\varepsilon}(p) \, .$$

4). If U(z) is a regular potential, U(z) is an $F_0.S.H.$ in G with $\mathfrak{M}^f(U(z)) \leq \int d\mu$.

Proof of 1). For any number $\varepsilon > 0$ we can find a compact set Kin $H = E[z : U(z) \leq M]$ such that $D(\min(M, U(z))) < D(U(z)) + \varepsilon$. Since N(z, p)is a continuous function of p for fixed z, U(z) can be approximated on Kby a sequence of linear forms : $U_i(z) = \sum_{j=1}^{j(i)} \lambda_{ij}N(z, p_j), \lambda_{ij} \geq 0, p_j \in G$, $\int d\mu = \sum_j \lambda_{ij} : i = 1, 2, \ldots$ Hence $D(U(z)) \leq \lim_{i \in K} D(U_i(z))$. Also $U_{i,n}(z) \to U_i(z)$ in mean as $n \to \infty$, where $U_{i,n}(z) = \sum \lambda_{ij}N_n(z, p_j)$ and $N_n(z, p_j)$ is a harmonic function in $G \cap R_n$ such that $N_n(z, p_j) = 0$ on $\partial G \cap R_n$ except a set of cap. zero, $\frac{\partial}{\partial n} N_n(z, p_j) = 0$ on $\partial R_n \cap G$ and $N_n(z, p_j)$ has logarithmic singularity at p_j . Put $H = E[z : U_{i,n}(z) < M + \varepsilon]$. Then $H \supset K$ for $n \geq n_0$, where n_0 is a sufficiently large number. We can prove (with some modefication to the fact $N_n(z, p_j) = 0$ on ∂G except a set of cap. zero instead of $N_n(z, p_j) = 0$ on ∂G) that $D_{H_{\varepsilon,i,n}}(U_{i,n}(z)) = 2\pi(M + \varepsilon) \int d\mu(p)$. Let $n \to \infty$, $i \to \infty$ and then $\varepsilon \to 0$. Then $D(\min(M, U(z)) \leq 2\pi M \int d\mu(p)$.

Proof of 2). Put $D_n = D \cap G_n$. Then D_n is compact. Put $N^{M}(z, p) = \min(M, N(z, p))$. Then $N^{M}(z, p)$ is uniformly continuous with respect to p on D_n . Hence $\int N^{M}(z, p)d\mu(p)$ can be approximated uniformly on D_n by a sequence of linear forms: $U_i(z) = \sum_{j=1}^{j(i)} \lambda_{i,j}N^{M}(z, p_j), \ \lambda_{i,j} \ge 0$. Clearly $D_n U_i(z) = \sum \lambda_{ij} D_n N^{M}(z, p_j)$. Let $i \to \infty$. Then $D_n \left(\int N^{M}(z, p) d\mu(p) \right) = \int D_n N^{M}(z, p) d\mu(p)$. Now by $\int N^{M}(z, p) d\mu(p) \uparrow U(z)$ as $M \to \infty$, we have $D_n \left(\int N^{M}(z, p) d\mu(p) \right) \uparrow D_n \left(\int N(z, p) d\mu(p) \right) = D_n U(z)$ and $\int D_n N^{M}(z, p) d\mu(p) \uparrow \int D_n N(z, p) d\mu(p)$. Since $D_n N(z, p) d\mu(p) \uparrow DN(z, p)$ and $D_n U(z) \uparrow DU(z)$ as $n \to \infty$, $D \left(\int N(z, p) d\mu(p) \right) = \lim_n \left(D_n \int N(z, p) d\mu(p) \right) = \lim_n D_n N(z, p) d\mu(p)$.

Proof of 3). Suppose $p \notin G_{\varepsilon}$. Let $\{p_i\}$ be a fundamental sequence determining $p \in B$ (if $p \in G$, put $p_i = p$). Then $\delta(p, p_i) \to 0$ as $i \to \infty$. Then by dist $(CG_{\varepsilon}, G_{2\varepsilon}) \ge \frac{\varepsilon}{4}$, (if $2\varepsilon < 1$), $p_i \notin G_{2\varepsilon}$ for $i \ge i_0$, where i_0 is a

number. Hence $N(p_0, p_i) \leq 2\varepsilon$ and $N(p_0, p) \leq 2\varepsilon$ for $p \in (B + G) - G_{2\varepsilon}$. Let $\mu'_{\varepsilon} = \mu - \mu_{\varepsilon}$. Then ${}_{\varepsilon}U'(p_0) = \int N(p_0, p)d\mu'_{\varepsilon}(p) \leq 2\varepsilon \int d\mu'$. $U'_{\varepsilon}(z)$ is harmonic in $G - G_{2\varepsilon}$. Hence by Harnack's theorem $U'_{\varepsilon}(z) \to 0$ as $\varepsilon \to 0$ at every point z. Hence we have 3).

Proof of 4). $D_{cg_{\mathcal{M}}}(g_{\mathcal{M}}U(z)) \leq D(\min(M, U(z))) \leq 2\pi M \int d\mu$ by (1). Hence by definition $\mathfrak{M}^{f}(U(z)) = \lim_{M \to 0} \frac{D(g_{\mathcal{M}}U(z))}{2\pi M} \leq \int d\mu$, where $g_{\mathcal{M}} = E[z:U(z) > M]$. By (2) $_{D}U(z) \leq U(z)$, hence U(z) is an \mathbf{F}_{0} .S.H. in G with $\mathfrak{M}^{f}(U(z)) \leq \int d\mu$.

THEOREM 2. Let U(z) be an F_0 .S.H. in G with $\mathfrak{M}^f(U(z)) < \infty$. Then U(z) can be represented by a positive mass distribution μ on G + B such that $\int d\mu \leq \mathfrak{M}^f(U(z))$.

Let D and D' be compact domains in G with finite number of analytic curves as their relative boundaries such that dist $(D, \partial D') > 0$ and $D' \supset D$. Let M be a number. Put $U^{M}(z) = \min(M, U(z))$. Then $U^{M}(z)$ is also an $F_0.S.H.$ in G and $\mathfrak{M}^{f}(U^{M}(z)) \leq \mathfrak{M}^{f}(U(z))$. Let δ be a positive const. such that $\delta < \min_{z \in \overline{D'}} {}_{D}U^{M}(z)$. Then $\partial H_{\delta} \cap \overline{D'} = 0$, where $H_{\alpha} = E[z : {}_{D}U^{M}(z) > \alpha]$. Then ${}_{D}U^{M}(z) = \delta \omega(H_{\delta}, z, G)$ in CH_{δ} . Hence we can find a const. δ' such that $\delta' < \delta$ and $\partial H_{\delta'}$ is a regular niveau of $\omega(H_{\delta}, z, G)$. Hence $\mathfrak{M}^{f}(U^{M}(z)) \geq \mathfrak{M}^{f}({}_{D}U^{M}(z)) = \lim_{M' \to 0} \frac{D(\min(M', {}_{D}U^{M}(z)))}{2\pi M'} = \frac{D(\min(\delta, {}_{D}U^{M}(z)))}{2\pi \delta} = \frac{1}{2\pi} \int_{\partial H_{\delta'}} \frac{\partial}{\partial n} {}_{D}U^{M}(z) ds$. Put

$$U(\delta', z) = {}_{D}U^{M}(z) - \delta' + \delta'\omega(D, z, H_{\delta'}) \text{ in } H_{\delta'} - D.$$
(4)

Then $U(\delta', z)$ is a harmonic function in $H_{\delta'} - D$ such that $U(\delta', z) = {}_{D}U^{M}(z)$ on ∂D , $= {}_{D}U^{M}(z) - \delta' = 0$ on $\partial H_{\delta'}$ except a set of cap. zero and $U(\delta', z)$ has M.D.I. over $H_{\delta'} - D$, because both ${}_{D}U^{M}(z)$ and $\omega(D, z, H_{\delta'})$ have M.D.I.s over $H_{\delta'} - D$. Now by the regularity of $\partial H_{\delta'}$

$$0 \leq \int_{\partial H_{\delta'}} \frac{\partial}{\partial n} \omega(D, z, H_{\delta'}) ds = - \int_{\partial D} \frac{\partial}{\partial n} \omega(D, z, H_{\delta'}) ds = a(\delta').$$

Since $\int_{\partial H_{\delta'}} \frac{\partial}{\partial n} \omega(D, z, H_{\delta'}) ds \downarrow$ as $\delta' \downarrow$,

SUPERHARMONIC FUNCTIONS IN A DOMAIN OF A RIEMANN SURFACE

$$\delta' \int_{\partial H_{\delta'}} \frac{\partial}{\partial n} \omega(D, z, H) ds \downarrow 0 \text{ as } \delta' \to 0.$$
(5)

Hence
$$2\pi\mathfrak{M}^{f}({}_{D}U^{M}(z)) = \lim_{\delta' \to 0} \int_{\partial H_{\delta'}} \frac{\partial}{\partial n} {}_{D}U^{M}(z)ds = \lim_{\delta' \to 0} \int_{\partial H_{\delta'}} \frac{\partial}{\partial n} (U(\delta', z))$$

 $-\delta'\omega(D, z, H_{\delta'}))ds = \lim_{\delta' \to 0} \int_{\partial H_{\delta}} \frac{\partial}{\partial n} U(\delta', z)ds.$

Hence for any $\varepsilon > 0$ we can find a const. δ^* such that ∂H_{δ^*} is regular and

$$2\pi \mathfrak{M}^{f}({}_{D}U^{M}(z)) \geq \int_{\partial H_{\delta^{*}}} -\frac{\partial}{\partial n} U(\delta^{*}, z) ds - \varepsilon .$$
⁽⁶⁾

Since $_{D}U^{M}(z)$ is an F₀.S.H. in G, there exists a uniquely determined positive mass distribution μ on \overline{D} such that

$$_{D}U^{M}(z) = \int N(z, p) d\mu(p) \, .$$

Let N'(z, p) be an N-Green's function of $H_{\delta^*} + D$ with pole at p. Then $N'_n(z, p)$ is uniformly bounded on $\partial D'$ for $p \in D''$ and $N'_n(z, p) \to N'(z, p)$ in mean as $n \to \infty$, where D'' is another domain such that $D \subset D'' \subset D'$ and dist $(\partial D, \partial D'') > 0$ and dist $(\partial D'', \partial D') > 0$ and $N'_n(z, p)$ is a harmonic function in $((H_{\delta^*} + D) \cap R_n) - p$ such that $N'_n(z, p)$ has a logarithmic singularity at p, $N'_n(z, p) = 0$ on ∂H_{δ^*} and $\frac{\partial}{\partial n} N'_n(z, p) = 0$ on $\partial R_n \cap (H_{\delta^*} + D)$. Then by the regularity of $\partial H_{\delta^*}^{[5]}$

$$\int_{\partial H_{\partial^*}} \frac{\partial}{\partial n} N'(z, p) ds = \lim_{n \to \infty} \int_{\partial H_{\partial^*} \cap R_n} \frac{\partial}{\partial n} N'_n(z, p) ds = 2\pi.$$
(7)

N'-Martin topology induced by N'(z, p) is homeomorphic to N-Martin topology on G + B in $(D + H_{\delta^*}) \cap G$. Hence μ can be approximated by a sequence of points masses: $\sum_{j=1}^{i(j)} \lambda_{ij}(p_{ij})$ uniformly in D, i.e. both $\int N(z, p)d\mu(p)$ and $\int N'(z, p)d\mu(p)$ can be approximated by sequences of linear forms $U_i(z) = \sum_{j=1}^{j(i)} \lambda_{ij} N(z, p_{ij})$ and $U'_i(z) = \sum_{j=1}^{j(i)} \lambda'_{ij} N'(z, p_{ij})$, where $\lambda_{ij} = \lambda'_{ij} \ge 0$ and $p_{ij} \in D''$. Hence $\int N(z, p)d\mu(p) - \int N'(z, p)d\mu(p)$ is full harmonic in $H_{\delta^*} + D$ and $= \delta^*$ on ∂H_{δ^*} . Hence by the maximum principle $\int N(z, p)d\mu(p) - \int N'(z, p)d\mu(p) = \delta^*$ in $H_{\delta^*} + D$.

https://doi.org/10.1017/S0027763000012629 Published online by Cambridge University Press

ZENJIRO KURAMOCHI

Now $\omega(D, z, H_{\delta^*})$ is represented by a positive mass distribution μ^* on \overline{D} . Hence by (4) $U(\delta^*, z) = \int N'(z, p)d(\mu + \delta^*\mu^*)(p)$ in $H_{\delta^*} + D$. Whence by (7) $\int_{\partial H_{\delta^*}} \frac{\partial}{\partial n} U(\delta^*, z)ds = \int_{\partial H_{\delta^*}} \frac{\partial}{\partial n} \int N'(z, p)d(\mu + \delta^*\mu^*)(p)ds = \int_{\partial H_{\delta^*}} \frac{\partial}{\partial n} N'(z, p)ds$ $d(\mu + \delta^*\mu^*)(p) = 2\pi \int d(\mu + \delta^*\mu^*) \ge 2\pi \int d\mu$. Hence by (6) $2\pi\mathfrak{M}^f({}_DU^{M}(z)) \ge 2\pi \int d\mu - \varepsilon$.

Let $\varepsilon \to 0$. Then $\mathfrak{M}^{f}(U(z)) \geq \mathfrak{M}^{f}({}_{D}U(z)) \geq \mathfrak{M}^{f}({}_{D}U^{\mathfrak{m}}(z)) \geq \int d\mu(p)$ and ${}_{D}U^{\mathfrak{m}}(z)$ is representable by a mass distribution μ on \overline{D} of total mass $\leq \mathfrak{M}^{f}(U(z))$ for every M. Let $\{G_n\}$ be an exhaustion of G. Then ${}_{G_n}U^{\mathfrak{m}}(z)$ is representable by mass distribution $\mu_n^{\mathfrak{m}}$ on \overline{G}_n . Then $\{\mu_n^{\mathfrak{m}}\}$ has a weak limit μ_n on \overline{G}_n as $M \uparrow \infty$. Also $\{\mu_n\}$ has a weak limit μ on G + B such that $U(z) = \int N(z, p)d\mu(p)$ and $\int d\mu(p) \leq \mathfrak{M}^{f}(U(z))$ as $n \to \infty$. Thus we have the theorem.

Corollary. Let μ be a positive mass distribution on a compact set F in G. Then $U(z) = \int N(z, p) d\mu(p)$ is an $F_0.S.H.$ in G with $\mathfrak{M}^f(U(z)) = \int d\mu$.

Let $D_1 \supset D_2$ be two domains in G such that $D_1 \supset D_2 \supset F$, dist $(D_2, \partial D_1) > 0$ and dist $(F, \partial D_2) > 0$. Then $N(z, p) : p \in F$ is uniformly bounded on ∂D_1 . Put $L = \max_{p \in F} (\max_{z \in \partial D_1} N(z, p))$ and $L' = \min_{z \in \partial D_1} N(z, p_0)$, where p_0 is a fixed point in F. Then $N(z, p_0) \ge \frac{L'}{L} N(z, p)$ in $G - D_2$ for any $p \in F$. Hence U(z) = 0 on ∂G except at most a set of cap. zero. Also $_{D_1}U(z) = U(z)$ and $\mathfrak{M}^f(U(z)) = \mathfrak{M}^f(_{D_1}U(z))$. By Theorem 2 U(z) is representable by a mass distribution μ^* on \overline{D}_1 such that $\mathfrak{M}^f(U(z)) \ge \int d\mu^*$. But since D_1 is compact, by the uniqueness of distribution, $\mu = \mu^*$ and $\mathfrak{M}^f(U(z)) \ge \int d\mu$. On the other hand, by Theorem 1.2. $\mathfrak{M}^f(U(z)) \le \int d\mu$. Hence $\mathfrak{M}^f(U(z)) = \int d\mu$ and U(z) is an F_0 .S.H. in G.

THEOREM 3. Let U(z) be an F.S.H. in G with $\mathfrak{M}^{f}(U(z)) < \infty$. Then U(z) is representable by a positive mass distribution μ with $\int d\mu \leq \mathfrak{M}^{f}(U(z))$. Conversely a potential $U(z) = \int N(z, p)d\mu(p)$ is an F.S.H. in G with $\mathfrak{M}^{f}(U(z)) \leq \int d\mu$.

Let $\{G_n\}$ be an exhaustion of G. Suppose U(z) is an F.S.H. in G. Then $G_nU(z)$ can be defined and there exists a mass distribution μ_n on \overline{G}_n such that $G_nU(z) = \int N(z, p)d\mu_n(p)$ and $\int d\mu_n \leq \mathfrak{M}^f(G_nU(z)) \leq \mathfrak{M}^f(U(z))$. Hence $\{\mu_n\}$ has a weak limit μ such that $U(z) = \lim_n G_nU(z) = \int N(z, p)d\mu(p)$. Let U(z) be a potential. Let D be a compact domain. Then ${}_pU(z) =$

50

 $\int_{D} N(z, p) d\mu(p) \text{ and } {}_{D}U(z) \text{ can be defined and } {}_{D}U(z) \leq U(z). \text{ Now } N(z, p) \text{ is an } F_0.S.H. \text{ in } G \text{ with } \mathfrak{M}^{f}(N(z, p)) \leq 1 \text{ by Theorem 1, whence by the corollary } {}_{D}N(z, p) = \int_{D} N(z, q) d\mu_p(q): \int_{D} d\mu_p(q) \leq 1. \text{ Hence } {}_{D}U(z) = \iint_{D} N(z, q) d\mu_p(q) d\mu(p) = \int_{D} N(z, q) d\mu(q): \mu(q) = \int_{D} \mu_p(q) d\mu(p) \text{ and } \mathfrak{M}^{f}(DU(z)) = \int_{D} d\mu(q) \leq \int_{D} d\mu \text{ for any } D.$ Hence $U(z) = \lim_{n \to \infty} G_n U(z)$ is an F.S.H. in G with $\mathfrak{M}^{f}(U(z)) \leq \int_{D} d\mu$.

Remark. Let U(z) be an F.S.H. in G with $\mathfrak{M}^{f}(U(z)) < \infty$. Then $V_{M} = E[z : U(z) > M]$ is so thinly distributed in a neighbourhood of ∂G . In fact, $D(\omega(V_{M}, z, G)) \leq 2\pi M \mathfrak{M}^{f}(U(z))$. This means V_{M} is thin. If V_{M} is very thik, $D(\omega(V_{M} \cap G_{n}, z, G)) \uparrow \infty$ as $n \to \infty$.

Let D be a domain. Then by Theorems 1 and 2 we can consider the mass distribution of $v_{n(p)}N(z,p)$, where $v_n(p) = E\left[z \in G + B : \text{dist}(z,p) < \frac{1}{n}\right]$. As case that ∂G is completely regular we have the following^[6]

LEMMA 3. Let U(z) be an $F_0.S.H.$ (or F.S.H.) in G with $\mathfrak{M}^f(U(z)) < \infty$. Let F be a closed set. We define ${}_FU(z)$ by $\lim_{n \to \infty} F_nU(z)$, where $F_n = E\left[z \in G + B : \operatorname{dist}(z, F) \leq \frac{1}{n}\right]$. Then

1).
$$_{F}(_{F}U(z)) = _{F}U(z)$$
, *if* $\omega(F, z, G) = 0$. (8)

2).
$$\omega(F, z, G) = {}_{F}\omega(F, z, G), \quad if \quad \omega(F, z, G) > 0.$$
 (9)

 $\mathfrak{M}^{f}(N(z, p)) \leq 1 \text{ for } p \in G + B. \quad If \ \partial G \text{ is completely regular } \mathfrak{M}^{f}(N(z, p)) = \frac{1}{2\pi} \int_{\mathcal{M}} \frac{\partial}{\partial n} N(z, p) ds = 1.$

But in the present case $\mathfrak{M}^{f}(N(z, p))$ is not necessarily equal to 1. Then we shall prove the following

THEOREM 4. 1). Put $\mathfrak{M}(p) = \mathfrak{M}^{f}(N(z, p))$. Then $\mathfrak{M}(p) = 1$ for $p \in G$ and $\mathfrak{M}(p)$ is lower semicontinuous.

2). Put $\phi(v_n(p)) = \mathfrak{M}^f(v_n(p))$. Then $\phi(v_n(p)) = 1$ for $p \in G$ and $\phi(v_n(p))$ is lower semicontinuous. Clearly $\phi(v_n(p)) \downarrow$ as $n \to \infty$. Put $\phi(p) = \lim_{n \to \infty} \phi(v_n(p))$. Then $\phi(p) = 1$ or 0.

Proof of 1). Let $p \in G$. Then clearly $D(\min(M, N(z, p))) = 2\pi M$ and $\mathfrak{M}(p) = 1$ for $p \in G$. By definition $\left(\frac{1}{2\pi M}\right) D(\omega(V_M(p), z, G)) \uparrow \mathfrak{M}(p)$ as $M \downarrow 0$, where $V_M(p) = E[z:N(z,p) > M]$. Hence for any given $\varepsilon > 0$, there exists a number M such that $\mathfrak{M}(p) < \left(\frac{1}{2\pi M}\right) D(\omega(V_M(p), z, G)) + \varepsilon$ and we can find

ZENJIRO KURAMOCHI

a compact set K in $V_{\mathcal{M}}(p)$ such that $D(\omega(V_{\mathcal{M}}(p), z, G)) < D(M\omega(K, z)) + 2\varepsilon$, because, if $F_m \uparrow F$, $D(\omega(F_m, z, G)) \uparrow D(\omega(F, z, G))^{[7]}$. Since $\delta(p, p_i) \to 0$ implies $N(z, p_i) \to N(z, p)$ in every compact set, we can find a number i_0 such that $V_{\mathcal{M}-\varepsilon}(p_i) \supset K$ for $i \ge i_0$, whence $\frac{D(\omega(K, z, G))}{2\pi M} \le \frac{D(\omega(V_{\mathcal{M}-\varepsilon}(p_i, z, G)))}{2\pi (M-\varepsilon)}$ $\le \mathfrak{M}(p_i): i \ge i_0$. Let $\varepsilon \to 0$. Then $\mathfrak{M}(p) \le \underline{\lim_i} \mathfrak{M}(p_i)$.

Proof of 2). If $p \in G$, clearly $_{v_n(p)}N(z,p)=N(z,p)$ and $\phi(v_n(p))=1$ for every *n*. Put $g_M(p) = E[z: _{v_n(p)}N(z,p) > M]$. Then by the definition of $\phi(v_n(p))$, for any given $\varepsilon > 0$, there exists a number $M_0 < 1$ such that $\phi(v_n(p)) \leq \frac{D(M\omega(g_M, z, G))}{2\pi} + \frac{\varepsilon}{2\pi} = \frac{M}{2\pi} D(\omega(g_M, z, G)) + \frac{\varepsilon}{2\pi}$ for $M \leq M_0$. Also we can find a compact set K in $Cg_M(p)$ such that $D(\omega(g_M(p), z, G)) \leq D(\omega(K, z, G)) + \varepsilon$. Now $_{v_n(p)}N(z,p) = \lim_{m = \infty} N(z,p)$, where $\{G_m\}$ is an exhaustion of G. Hence there exists a number m_0 such that

$$v_{n(p)}N(z,p) \leq \frac{M\varepsilon}{2} + N(z,p) \quad \text{on } K \text{ for } m \geq m_{0}.$$

Now N(z,q) is continuous in G-q, whence N(z,q) is continuous on K and there exists a number i_0 such that

$$\begin{split} N(z, p_i) &\geq N(z, p_i) \geq N(z, p_i) \geq N(z, p) - \frac{M\varepsilon}{2} \geq N(z, p) - M\varepsilon \quad \text{on } K \text{ for } i \geq i_0. \end{split}$$
 $i \geq i_0. \quad \text{This implies } E[z: N(z, p) \geq M - M\varepsilon] \supset K \text{ and}$ $D(\omega(g_{M-M\varepsilon}(p_i), z, G)) \geq D(\omega(K, z, G)) \geq D(\omega(g_M(p), z, G)) - \varepsilon \quad \text{for } i \geq i_0. \end{split}$

Thus $2\pi\phi(v_n(p_i)) \ge M(1-\varepsilon)D(\omega(g_{M-M\varepsilon}(p_i), z, G)) \ge MD(\omega(g_M(p), z, G))\left(\frac{M(1-\varepsilon)}{M}\right)$ $-M(1-\varepsilon)\varepsilon \ge 2\pi(\phi(v_n(p))-\varepsilon)(1-\varepsilon) - M\varepsilon \quad \text{for } i \ge i_0.$ Let $i \to \infty$ and then $\varepsilon \to 0$. Then $\lim_{i \to \infty} \phi(v_n(p_i)) \ge \phi(v_n(p)).$

By Lemma 1, 2, $\mathfrak{M}^{f}(\underset{v_{n}(p)}{N(z, p)}) = \lim_{m \to \infty} \mathfrak{M}^{f}(\underset{v_{n}(p) \cap G_{m}}{N(z, p)})$. Since $v_{n}(p) \cap G_{m}$ is compact, by the corollary of Theorem 2 $\binom{N(z, p)}{p_{n}(p) \cap G_{m}}$ is representable by $\mu_{n,m}$ on $\overline{v_{n}(p) \cap G_{m}}$ with $\mathfrak{M}^{f}(\underset{v_{n}(p) \cap G_{m}}{N(z, p)}) = \int d\mu_{n,m}$. Next $\{\mu_{n,m}\}$ has a weak limit μ_{n} as $m \to \infty$ such that $\mathfrak{M}^{f}(\underset{v_{n}(p)}{N(z, p)}) = \int d\mu_{n}$ on $\overline{v_{n}(p)}$. Let $n \to \infty$. Then $\{\mu_{n}\}$ has also a weak limit μ at $p = \bigcap_{n > 0} \overline{v_{n}(p)}$ such that $\int d\mu = \lim_{n > 0} \mathfrak{M}^{f}(\underset{v_{n}(p)}{N(z, p)}) = \phi(p)$. Thus $pN(z, p) = \phi(p)N(z, p)$. Case 1. $p \in G$. Then $\phi(p) = \lim_{n} \phi(v_n(p)) = 1$. Case 2. $\omega(p, z, G) > 0$. In this case $\omega(p, z, G) = \lim_{n} \int_{v_n(p)} \omega(p, z, G) = \lim_{n} \int_{v_n(p)} N(z, p) d\mu(p) = KN(z, p)$. Now by (9), ${}_{p}\omega(p, z, G) = \omega(p, z, G)$, i.e. N(z, p) = pN(z, p), whence $\phi(p) = 1$.

Case 3. $\omega(p, z, G) = 0$. By (8) $\phi(p)N(z, p) = {}_{p}N(z, p) = {}_{p}({}_{p}N(z, p)) = \phi^{2}(p)N(z, p)$. Hence $\phi(p) = 0$ or 1.

N-minimal function and N-minimal points. Let U(z) be an F_0 .S.H. in G. If $V(z) = \lambda U(z) : 0 \le \lambda \le 1$ for any F.S.H. V(z) such that both V(z) and U(z) - V(z) are F.S.H.s in G, we call U(z) an N-minimal function. Then as the case that ∂G is completely regular we have the following

THEOREM 5.1).^[7] Let A be a closed set in G + B. Then $\omega(A, z, G) = \int N(z, p) d\mu(p)$.

2). $\omega(p, z, G) = 0$ for $p \in G$. If $\omega(p, z, G) > 0$, $\omega(p, z, G) = KN(z, p)$: K > 0. We call such a point a singular point and denote by B_s the set of singular points. By Theorem 2 we have

3). ${}_{p}N(z, p) = \phi(p)N(z, p)$ and $\phi(p) = 1$ for p with $\omega(p, z, G) > 0$ and $\phi(p) = 1$ or 0. Denote by B_0 and B_1 sets of points of B for which $\phi(p) = 0$ and $\phi(p) = 1$ respectively. Then by (2) $B_s \subset B_1$ and $B = B_0 + B_1$.

4). B_0 is an F_{σ} set of capacity zero, whence $B_s \subset B_1$.

5). If $U(z) = \int_{B_0} N(z, p) d\mu(p)$, $_{B_0} U(z) = 0$.

6). Let U(z) be an N-minimal function such that $U(z) = \int_A N(z, p) d\mu(p)$. Then $U(z) = KN(z, p) : p \in (G + B_1) \cap A$.

7). N(z, p) is N-minimal or not according as $\phi(p) = 1$ or 0.

8). Let $V_{\mathcal{M}}(p) = E[z: N(z, p) > M]$ and suppose $p \in G + B_1$. Then N(z, p) = N(z, p) = N(z, p) for $M < \sup_{z \in G} N(z, p)$ and for every n, whence $N(z, p) = M\omega(V_{\mathcal{M}}(p), z, G)$ in $G - V_{\mathcal{M}}(p)$.

9). Every potential $U(z) = \int N(z, p) d\mu(p)$ can be represented by another distribution μ on $G + B_1$ without any change of U(z). This distribution is called canonical.

If ∂G is completely regular $\mathfrak{M}^{f}(p) = 1$ for $p \in G + B$. But in general cases $\mathfrak{M}(p)$ is not necessarily = 1. We shall prove

LEMMA 4. $\mathfrak{M}(p) = \mathfrak{M}^{f}(N(z, p)) = 1$ for $p \in G + B_{1}$.

Let $\{G_m\}$ be an exhaustion of G. By $p \in G + B_1 \quad N(z, p) = N(z, p)$. Assume $\mathfrak{M}^f(N(z, p)) \leq \delta < 1$. Then $\mathfrak{M}^f(\underset{v_n(p) \cap G_m}{N(z, p)}) \leq \mathfrak{M}^f(N(z, p)) \leq \delta$. By Theorem 2 $\underset{v_n(p) \cap G_m}{N(z, p)}$ is represented by a mass $\mu_{n,m}$ on $\overline{v_n(p) \cap G_m}$ with $\int d\mu_{n,m} \leq \delta$. Let $m \to \infty$ and then $n \to \infty$. Then ${}_pN(z, p) \leq \delta N(z, p)$. This contradicts ${}_pN(z, p) = N(z, p)$. Hence $\mathfrak{M}(p) = 1$.

THEOREM 6. Let
$$U(z) = \int_{G+B_1} N(z, p) d\mu(p)$$
. Then

$$\mathfrak{M}^f(U(z)) = \int d\,\mu\,,$$

where U(z) is not necessarily an F_0 .S.H. in G (clearly for an F.S.H. in G). This is an extension of the corollary of Theorem 2.

Put $\phi(p, n, m) = \mathfrak{M}^{f}(\underset{v_{n}(p) \cap G_{m}}{N(z, p)})$. Then by Theorem 4 and by $p \in G + B_{1}$ $\phi(p, n, m) \uparrow \phi(p, n) = \mathfrak{M}^{f}(\underset{v_{n}(p)}{N(z, p)}) = \mathfrak{M}^{f}(N(z, p)) = 1$ as $m \to \infty$. Put $U_{m}(z) = \int \underset{v_{n}(p) \cap G_{m}}{N(z, p)} d\mu(p)$. Then

$$U(z) = \int \lim_{m = \infty} N(z, p) d\mu(p) = \lim_{m = \infty} \int N(z, p) d\mu(p) = \lim_{m = \infty} U_m(z).$$

Now $N(z, p) = \int_{\overline{v_n(p)} \cap G_m} N(z, q) d\mu_p(q)$ and since $\mu_p(q) > 0$ only on a compact set \overline{G}_m , we have $\int d\mu_p(q) = \phi(p, n, m)$ by the corollary of Theorem 2. Hence $U_m(z) = \iint_{\overline{G}_m} N(z, q) d\mu_p(q) d\mu(p)$ and $\mathfrak{M}^f(U_m(z)) = \int \phi(p, n, m) d\mu(p)$. It is easily verified that Lemma 1. 2. holds for F.S.H.s and $\mathfrak{M}^f(U_m(z)) \uparrow \mathfrak{M}^f(U(z))$, if $U_m(z) \uparrow U(z)$. Now $\mathfrak{M}^f(U_m(z)) \uparrow \mathfrak{M}^f(U(z))$ and $\phi(p, n, m) \uparrow \phi(p, n) = 1$ as $m \to \infty$ for $p \in G + B_1$. Hence $\mathfrak{M}^f(U(z)) = \int d\mu(p)$.

References

- [1] If ∂G and ∂D are compact and smooth, $d(\lambda, z)$ is given as $\frac{\partial N}{\partial n}(\zeta, z)ds$, where $N(\zeta, z)$ is the N-Green's function of G D with pole at z.
- [2] Z. Kuramochi: Potentials on Riemann surfaces. Journ. Fac. Sci. Hokkaido Uni., XVI (1962). See page 14 of this paper.
- [3] See [2].
- [4] See [2].

54

- [5] See [2].
 [6] See [2].
 [7] See [2].
 [8] See [2].