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In ([6]; pages 36-41), Lambek constructs the maximal ring of quotients Q(R) of a
commutative ring R by denning a multiplication on limHomH(D, R) where D ranges over all

the dense ideals of R, and this generalizes the classical construction of ring of quotients,
(cf. [6] for all the references on the subject.)

This programme is carried over, in the first section of this article, to the category of
commutative reductive semigroups. Examples show that the maximal semigroup of quotients
of a commutative monoid can be different from the classical one.

In [6] again (pages 94-101), the complete ring of quotients of a (not necessarily commu-
tative) ring R is given. It is essentially the bicommutator of the injective envelope of the ring
R considered as a right /J-module over itself, and it is shown to coincide with the maximal ring
of quotients of R. This construction is extended to (not necessarily commutative) monoids
in Section 2, and we show that contrary to rings the two constructions do not in general
coincide.

In the last section, the notion of rational completion of a ring, as introduced in [5], is
also extended to monoids and shown to coincide with the construction of Section 2.

The proofs of the theorems will usually be omitted or only sketched when they are
similar to the corresponding ones for rings: the details can then be found in [6].

1. Maximal semigroups of quotients. DEFINITION 1. An ideal D of a commutative
semigroup S is dense in S whenever for any two distinct elements s^ and s2 in S, there exists an
element d in D such that $t rf # s2 d.

If a semigroup contains at least one dense ideal, then 5 is said to be reductive. In
particular, every monoid is reductive.

From now on in this section, semigroup will always mean commutative reductive semi-
group. The letters S, S',... will always designate such semigroups, while the set of (semigroup)
homomorphisms between S and S' will be denoted by Hom(S, S'), a typical element of which
being/:S->S'. As,Bs,... will stand for right 5-sets (see [1]),/:As-*Bs being an S-homo-
morphism and Koms(A, B) the set of all such S-homomorphisms between As and Bs. If 5
is a subsemigroup of S', we write S £ S' and similarly As £ Bs.

PROPOSITION 1. Let D and D' be ideals of S.

(1) IfD is dense and D £ D', then D' is dense.
(2) If D and D' are dense, then so are DnD' and DD' = {dd':deD,d'eD'}.
(3) Iff: Ds -»Ss andf :D'S-* Ss both agree on some dense ideal D" ofS, where D and D'

are dense in S, then f andf agree on DnD'.

Proof of (3). If deDr\D' then for all xeD", (f(d))x = (f(x))d = (f'(x))d=(f'(d))x
which implies the result.

Now the set 2){S) of all dense ideals of 5 is directed by the relation Dt g D îfTZ), 2 Dj,
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and if K):Homs(Z>j, S)-*Homs(Dj, S) is defined by *,(/) =f\Dj (/restricted to Dj) then
@(S) = {Homs(Z>, S):De@(S)} is a directed system. Taking the union of the set ®(S) we
let (2(5) = [J^(S)I= where for any/:Ds-> Ss and/':D's-> Ss, f'=/' i f f /and/ ' agree on
some dense ideal of S. This is an S-congruence relation (cf. [1]) on the right S-set \j@(S) and
Q(S) is obviously a right S-set with [f]s = [fs] where seS and [/] is the equivalence class of
/modulo = , fs being denned by (Js){d) =f{ds) for all deD. It is then easy to verify that
Q(S) is the direct limit of @(S).

Let us agree to call an S'-homomorphism / : D -* S, with D a dense ideal of S, a fraction
on S. We then obtain the following:

THEOREM 2. IfS is a reductive semigroup (resp. monoid), then Q(S) is a reductive semigroup
(resp. monoid) with [/]•(/'] = [/•/'], where f-f':D-D'-> S is defined by (f-f')(d-d') =
f(d)-fid'), f:D-+ S and f':D'-*S being two fractions on S. Moreover the mapping
K:S-* Q(S) defined by K(S) = [j/1] where {sj\){x) = sxfor all xe S is an infective homomorphism
(resp. unitary).

To show that this generalizes the classical construction, let @>'(S) be the union of S and
the set of principal dense ideals dS of S (i.e., d is cancellable) and @'(S) = {Homs(£>, S):

the corresponding directed system. Then again one easily verifies that Qcl =
= is a reductive semigroup (resp. monoid) isomorphic to the direct limit of @'(S),

and as in the case of rings, Qcl is also isomorphic over S (i.e. S remains invariant) to the
classical semigroup of quotients (resp. monoid of quotients) of S. In fact, every element of
fiCi(S) is of the form [s/l] or [s/d] where d is cancellable and (sjd){dx) = sx, and K factors
through K': S^> Qct(S) with K'(S) = [s/l].

We shall often write more simply S £ Qci(S) £ Q(S) and equality when the embeddings
are isomorphisms. We finally note that when every element of S is cancellable then
Qci(S) — Q(S) a nd this is also true when every ideal of S1 is principal.

PROPOSITION 3. Every equivalence class [/] of Q(S) contains exactly one irreducible
fraction (i.e. of which the domain cannot be properly extended) which extends all fractions in the
class.

Proof. If [/] = {/,: Df -> S: ieI}, define / on the union U D; by f(d) = f^d) if de Dt.
iel

THEOREM 4. The following are equivalent.

(l)S = Q(S).
(2) Every irreducible fraction has domain S and is thus equal to s/\ for some seS.
(3) For every fraction f: D-+ S there exists an seS such that for all deD,f(d) = sd.

Proof. (1)=>(2). For any irreducible fraction/:D-> S there exists an seS such that
If] — fa/l] by hypothesis, but/and s/l are both irreducible and thus/= si I.

(2) => (3). If/: D -* S is a fraction then there is an s e S such that J= s/l by (2), and thus

(3) => (1). The former says that [/] = [j/1 ].

PROPOSITION 5. Ifq = [f]eQ(S) then q-1S = {seS:qs = [sf]eS} is a dense ideal of S
and if(j>:K^ Q(S) is a fraction on Q(S) then D = <^"1(5)n5 £ K is a dense ideal of S.
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Proof. Dzq'^S where / : D -> S since for any deD, qd = d[f] = [f(d)ll]eS, which
implies that q~1S is dense by (2) of Proposition 1. If keK, then fc-1S and (4>(k))~lS are
both dense ideals of S, together with their intersection. If D' = k~lSn((j>(k))~iS, then
<l>(kD') = (4>(k))D' £ s and thus kD' £ D. Now kD' is dense in S for if s{kd') = s'{kd') for
all d'eD', then sk = s'k (where S and K(S) are identified), and since this is true for all keK,
s = s\ the latter being any two elements of S. D is thus dense in S by Proposition 1.

DEFINITION 2. If S is a sub-semigroup of S' and As a sub-S-set of S's, then As is said to
be dense in S' whenever for any two distinct elements 5 and s' in S', there exists anaeA such
that sa =£ s'a. If D is an ideal of S, then we say that D is dense in S'.

PROPOSITION 6. If S £ S" £ £(S) f/ien D w a rfe/ue ideal of S iff it is dense in S'. In
particular, q~*S is dense in S' for all q in Q(S).

Proof. If for all s in D, [sft] = [sf2], then sf^ and sf2 agree on some dense ideal of S which
implies that [/J = [f2].

THEOREM 7. g(g(S)) = Q(S).

Proof. If (f>:K^ Q(S) is a fraction on Q(S), D = (j)~1Sr>S and/denotes the restriction
of (j> to D, then/ i s a fraction on S with domain Z). Thus for keK and afeZ), (<j)(k))d =
(<j>(k))[dll] = A: • (t>([dll]) = )fc. [/(rf)/l] = ([/I • *) ̂  which means that <£(A:) = [/] • A: by the last
two propositions, and the result follows from (3) of Theorem 4.

Thus an iteration of the operation yields nothing new.

DEFINITION 3. If 5 e S' then S' is said to be a semigroup of quotients of 5 whenever for
a l l i e s ' , s~*S= {xeS:sxeS} is dense in 5".

Or, said otherwise, if st and s2 are distinct in S' and soeS',then there is an seS such that
sQseS and sts 56 s2s.

THEOREM 8. If K':S-*S' is an injective homomorphism, where S' is a semigroup of
quotients of S, then there exists a unique injective homomorphism ic:S' -*Q(S) such that
K-K' = K:S

Proof. For each soeS', SI:SQ1S-+S:S-+SOS is a fraction on S since s^S is a dense
ideal of S by hypothesis, and thus ic:S' -+Q(S):so-> [s$] is an injective homomorphism
since (st s2)* and s* • s* agree on the intersection ((sx s2)~

1S)n(sl1S- s^S) of their respective
domains, and if [s*] = [s*] then for all des^Sds^S, std = s2d, and thus st = s2- K and
K • K' are obviously equal and if \j/ • K' = K then for all s e S', \j/(s) and ic(s) agree on the dense
ideal s~lS which proves the uniqueness.

Thus if Q(S') = S' then K is an isomorphism and Q(S) is unique up to isomorphism
over 5 with the property that Q(Q(Sj) = Q(S). Also by Proposition 6 and Theorem 8, if
S £ 5" then 5 ' is a semigroup of quotients of 5 iff for all s e S', s ~1S is a dense ideal of S, or
equivalently, iff S £ S' £ 2(5), (more precisely: up to isomorphism over 5), and thus the
intersection of any family of semigroups of quotients of S is a semigroup of quotients of S.

We now proceed to give some examples. In the rest of this section, R will always denote
a commutative ring with identity. By a semi-ideal of R, we will understand an ideal of R, the
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latter being considered as a monoid, while an ideal will be an ordinary ideal, and similarly for
semi-fractions and fractions. Qcl{R) and Q(R) will be the classical and maximal monoids of
quotients of R regarded as a monoid, with Qct(R) and Q(R) the classical and maximal rings of
quotients of the ring R as constructed in [6], and density in the sense of Definition 1 as applied
to R will be called semi-density.

It is clear that an ideal D of R is dense iff it is semi-dense and that Qci(R) = Qci(R) for the
principal semi-ideals of R are those of the form rR and the latter are dense iff r is cancellable
\nR.

THEOREM 9. R s gel(J?) = Qcl(R) s Q(R) s Q(R).

Proof. An ideal D of R is semi-dense iff it is dense, thus every fraction is a semi-fraction
and two fractions are equivalent iff they are equivalent as semi-fractions.

The above theorem guarantees the existence of monoids with a maximal monoid of
quotients distinct from the classical one, since such examples are known for rings, but before
giving an effective example, we review some properties of lower semi-lattices.

PROPOSITION 10. If M is a lower semi-lattice with largest element 1 (i.e., a commutative
idempotent monoid), then M = Qci(M) and Q{M) is a semi-lattice with 1.

Proof. The first statement is true since the only cancellable element of M is 1, and
Q(M) is a semi-lattice since for any fraction/on M,f2 =/(cf. Theorem 16 of [1]).

In [3], Brainerd and Lambek have shown that the maximal ring of quotients Q(R) of a
Boolean ring R with 1 is its Dedekind completion D(R). If we apply this to the preceding
theory, we get:

THEOREM 11. If R is a Boolean ring with 1, then

R = SeiW = QdiR) £ 5(JQ = D(R) = Q(R).

Proof. By Theorem 9, R £ D(R) £ Q(R), and thus D(R) is a monoid of quotients of R
by the remark following Theorem 8. But £>(./?) = Q{R) since it satisfies (3) of Theorem 4 by
Theorem 17 of [1]. (In fact, as pointed out to me by Fred McMorris, Theorem 17 of [1]
need not be true if S is a semilattice or even a lattice, but it is true if S is a chain or a Boolean
algebra since in the latter two cases infinite distributivity does hold and here D{R) is a Boolean
algebra.)

COROLLARY. If R is a non complete Boolean ring with 1, then Qci(R) ^ Q(R) = D(R).

1. Complete monoids of quotients. The monoids considered in this section are not
necessarily commutative and the letters M,M',... will always denote such monoids. Homo-
morphism will mean unitary homomorphism (i.e. the identity element is mapped onto the
identity element) and AM, BM,... will always denote right Af-sets.

If AM is such an M-set, TA the monoid of all endomaps of the set A and (j>:M-> T(A)
the antirepresentation of M in TA defined for all m in M and a in A by (4>(m)){a) = am, then
4>(M) is a submonoid of TA and its centralizer (or commutator) H in TA is by definition the
commutator of AM and is equal to HomM(A, A). Repeating the procedure leads to the
bicommutator of AM which is equal to the monoid HomH(A, A) since A is a left H-sct.
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If M is a given monoid, replace in the above introduction AM by the injective envelope
7M of MM (cf. [1]) and denote the M-embedding of MM into IM by t. Now once and for all we
set H = HomM (/, / ) and let B = B(M) be the dual of the bicommutator of IM, i.e.,
B = HomH (/, / ) with the 7/-homomorphisms written to the right of their argument. B is then a
submonoid of the dual of 77 and <t> becomes an injective homomorphism with 4>(M) a sub-
monoid of B since for any h in H,i in I and m in M,h((i)(4>(m))) = h(im) = (h(i))m = (h(i))((j)(m)).

In fact, we shall in the future consider M as a submonoid of B (written M s 5 ) and this
makes B into a right M-set. Similarly, HH and HI are both left 77-sets, and " evaluation at 1 ",
i.e. y: HH-* HIdefined by y(h) = /i(l), 1 the identity of M £ /, is a surjective 7i-homomorphism
since 7Af is injective (same proof as for rings again). <p introduced above becomes an M-
homomorphism <$>: MM -»BM since for any i in /, m and m' in M, (i)(j)(mm') = i{mrri) =
(im)rri = ((i)($(m)))m', and the M-embedding i:MM->IM factorizes through i/^^, where
i/f: 5 M -> 7M is defined by \jj(b) = (1)6 and is injective (cf. [6]; Lemma 1).

Writing ip(BM) = (IB)M we obtain the following characterization of 15 (which corresponds
to Proposition 1, page 94 of [6] and of which the proof is essentially the same).

PROPOSITION 12. Ifiel, then ie IB if and only if for any h andh! in H, h(\) = ^'(1) implies
that h(i) = h'(i).

It is clear that I, IB and B are all right B-sets, that IB becomes a monoid extending M by
defining (1)6 • (1)6' = (l)(bb') and that (IB)B is a sub 5-set of IB.

LEMMA. g:CB-+ IB is an M-homomorphism if and only if it is a B-homomorphism.

Proof. For each c in C, define gc and g'c by gc(b) = g(cb) and g'£b) = (g(c))b for all 6 in
5. Both are M-homomorphisms of BM into 7M and can thus be lifted to gc and g'c respectively,
both in H, by the injectivity of IM and the fact that \j/: BM -* IM is injective. Now gc and
g'c agree on 15 by Proposition 12 since they agree on 1, i.e. g(cb) = (g(c))b for all c in C and
b in B.

PROPOSITION 13. IB is the injective envelope of{\B)B.

Proof. By the corollary of Theorem 11 of [1] it suffices to show that IB is injective and
that it is an essential extension of (1 B)B. Let 6 be a 5-congruence relation on 7B with restriction
to (\B)B the identity relation. 9 is then an M-congruence relation on IM with restriction to
MM the identity relation, which implies that 0 is also the identity on IM since IM is an essential
extension of MM (Theorem 7 of [1]) and thus 9 is the identity on IB. The latter is injective for
let/ : AB->IB and 8: AB -> CB, 5 injective. There then exists an M-homomorphism g:CM-+IM

such that g • 5 = / a n d by the Lemma, g is also a 5-homomorphism.

THEOREM 14. The monoids B(M) and B(B) are isomorphic.

Proof. The monoids H and H' = HomB(7B, 7B) are equal since for any i in I, b in B and
h in H, h((i)b) = (h(i))b.

And so, iterating the construction we have been studying in this section does not lead to
anything new, and we call B(M) the complete monoid of quotients of M.
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PROPOSITION 15. The following are equivalent.

(1) The H-epimorphism y: HH-+ HI is an isomorphism.
(2) The injective M-homomorphism \j/: BM -*• IM is an isomorphism.
(3) The two monoids H and B are isomorphic under the correspondence h-> b if and only if

MX) = CO*-
(4) BM is injective.
(5) The injective B-homomorphism \JJ:BB-*IB is an isomorphism.
(6) BB is injective.

Proof Essentially the same as that of Proposition 3, page 95 of [6].

PROPOSITION 16. P = y~1(\B) is a sub-monoid of H and y-.P^B defined by
y(h) = {j/'1 -y{h) (i.e.y(h) = b if and only if /i(l) = (X)b) is a surjective homomorphism. Thus
y':P/0 -* B, with y'iQh) = y{h) is an isomorphism, where 9 defined on P by hdh' if and only if

= h'(l) is the " kernel" ofy.

Proof. Let h and h' be in P, i.e., there exist b and b' in B such that h{\) = (1)6 and
h'{\) = (l)i'. Then h(h'(l)) = h((l)b') (h(\))b' = {{\)b)b' = {\){b• b')elB, and this implies that
P is a monoid. 9 is obviously an equivalence relation on P. It is a congruence for let hl6h2

and h\0h2, then h[(l) = h'2(l), which implies that h^h'^V)) = h^h^l)), i.e. h^eh^.
Similarly hl 9h2 implies hlh29h2h'2. since h2eP. Thus by transitivity, hlh'10h2h'2. The rest
is obvious.

Finally as in the case of rings again, Hr\B is the center of H, that is,

{beB:(VmeM)bm = mb},

while if Mi s commutative and we write b{i) — (i)b for all / e / a n d be B, then B is the center of
H and is thus commutative.

We will now show that Q(M) constructed in the first section can be regarded as a sub-
monoid of B(M).

DEFINITION 4. A sub-M-set AM of B is said to be M-dense whenever for any h and h' in
H, if /i(l) 9& h'(l), there exists an as A such that h{(\)a) ± h'{{\)a).

PROPOSITION 17. AM is M-dense if and only if for any i and i' in I, if i # /', then there
exists an aeA such that {i)a # («')«•

Proof. This follows from the fact that y:HH-> HI is surjective.

PROPOSITION 18. If M is commutative, then an ideal D of M is dense in M (Definition 1)
if and only if it is M-dense.

Proof. If D is dense in M then rj defined on IM by ir\i' iff (VdeD)(i)d= {i')d is an M-
congruence relation by the commutativity of M, with restriction to MM the equality relation
by the density of D: thus r\ is also the equality relation on IM since IM is an essential extension
of MM (Theorem 7 of [1]) and D is Af-dense. The converse is obvious.
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PROPOSITION 19. IfAM is M-dense and if for all aeA, ba = b'a, where b and b' are in B,
then b = b'.

Proof, ba = b'a implies that ((l)b)a = ((l)6')a for all aeA, and the result follows from
Proposition 17.

PROPOSITION 20. If M is commutative then an ideal D of M is dense in M if and only if it
is dense in B (Definition 2).

Proof. By Proposition 18, D is dense in M iff Z> is M-dense and the result follows from
Proposition 19.

PROPOSITION 21. If DM and CM are two sub M-sets of BM with DM M-dense, then for any
/eHomM(D, C) there exists a unique beB such that f(d) = bdfor all deD.

Proof. Let again W = \j/(D) and 1C = i^(C) and define /*:(1D)M->(1C)M by
f*((l)d) = (l)(f(d)). Since/* is an M-homomorphism and IM is injective, it can be lifted
to J*eH. In fact/*(lfi) s \B by Proposition 12 for if ht(l) = A2(l), hv and h2 in H, then for
all deD,

= h2(J*((l)d))

and thus ( V / * ) 0 ) = (hz•/*)(!) by the M-density of D, which implies that for all beB,
hi(J*(V)b)) = h2(f*((l)b)). In particular, there exists a beB such that/*(l) = (l)b, which
implies that for all deD, (l)(/(c/)) = (/*(1))^ = ((l)b)d = (l)bd, and thus/(d) = bd while the
uniqueness of b follows from Proposition 19.

THEOREM 22. If f:DM^MM is a fraction on M with [f]eQ(M), then the mapping
[f] -* b (b defined in Proposition 21) is an injective homomorphism of Q(M) into B with re-
striction to M equal to the embedding <t>:M-+ B.

Proof. Any two fractions/and/' on M are equivalent iff there is a dense ideal D" such
that for all deD", bd = b'd, where/'++6', which means that b = b' by Proposition 19, and
thus we get an injection [/] -* b. This is a homomorphism for if/'/' +•» b", where/': D'M -»MM,
then for all deDnD',

(1X(/-/%O) =/*((l)(/'(<0)) = J W « Q =/*((( W ) = (/

= (OX/W =
where/* was defined in the last proposition, and thus bb' = b" by the uniqueness property.
The last assertion is obvious.

As we shall see, the above embedding is not in general surjective, but first we need a new
characterization of Q(M).

PROPOSITION 23. If DM and CM are two sub M-sets of BM with DM M-dense, then
HomM(£>, C) and C:D= {beB\bD £ C} are isomorphic sets under the mapping b-*b*,
where beB and b*(d) = bdfor all deD. If M is commutative, this extends to an isomorphism
of {left and right) M-sets.
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Proof. The mapping is injective by Proposition 19 and surjective by Proposition 21. If
M is commutative, then for any meM, deD, beB, (bm)* (d) = bmd = (mb*)d.

LEMMA. If Jt is a family of left ideals JofM closed under products and containing M, then
U (M : J) is a submonoid of B.

JeM

Proof. lfbeM:Jandb'eM:J', then for any de J and d'eJ', (bb')(d' d) = b((b' d')d)eM
since b' d'eM and J is a left ideal, which implies that bb'eM:J'J.

THEOREM 24. If M is commutative, then Q(M) is isomorphic to JJ (M:D) through the
DZM

injection [f] -* b of Theorem 22, where D varies over all the dense ideals of M.

Proof. If beM:D for some dense ideal D then using Propositions 23 and 21 we get
[b*] -* b, which shows that the above injection is onto. "

THEOREM 25. IfM is commutative, then the injection Q(M) -+B:[f]++b (of Theorem 22)
is an isomorphism if and only if for allbeB,b~1M' = {m e M \ bm e M } is dense in M.

Proof. The condition says that B is a monoid of quotients of M, by Definition 3, and the
result follows from Theorem 8.

We will now give an example of a commutative monoid where Q(M) and 5(M) are not
isomorphic. In what follows, M will denote a lower semi-lattice (M, ^ , 1) with largest
element 1 (i.e. a commutative idempotent monoid (M, •, 1) with m-m! = m iffw ^ m'), I its
Dedekind-MacNeille completion and K an ideal of / (i.e. a semi-filter of (/, ^ , 1)). (cf. [1],
Section 3.)

LEMMA. Iffe HomM (K, I) then for all keK and meM, kg, m implies that f(k) ^ m.

Proof, k^m means that km = k and this implies that f(k) =f{km) = (f(k))m, i.e.
Rk)Zm.

PROPOSITION 26. Iffe HomM (K, I), then for any keK, f(k) ^ k.

Proof. If Kk= {meM\k^m} then k = infKk and by the above Lemma f(k) ^ m for
all meKk, which implies that f(k) ^ k.

For the rest of this section, we moreover assume that M is a chain (i.e. linearly ordered)
with / and K as above (see Theorem 12 of [1]).

PROPOSITION 27. HomM (K, I) = Horn, (K, I).

Proof. Let/eHomM(K, I), keK and iel. To show that/(A:i) = (f(k))i we must study
all the possibilities.

(1) k ^ /: then/(£i) =f(k) ^ k ^ i by Proposition 26, and thus (f(k))i =f(k).
(2) / < k: then f(ki) =/(/) and we must show that /(/) = (f(k))i. By Proposition 26

again, f(k) ^ k and/(i) ^ i, and this leads to the three sub cases:
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(0 / (0 ^/(*0 ^ i ̂  k: then (f(k))i =f(k) and i f / (0 </(£) then there exists a n m e M
with/(j) < m <f{k) which implies that/(/) = (f(i))m =f(im) = f(m) =f(km) = (/(A:))»1 = w,
a contradiction.

(ii) /(Jk) g / ( i ) £i£k: then (/(£))« =/(£) and if f{k) < / ( / ) there is an meM with
/(A:) < m <f(i), which implies that f(k) = (/(*0>n / ( M =/(»») =f(im) = (/(/))/" = m, a
contradiction.

(iii)/(j) g / ^/(A:) g k: then (/(A;))/ = i and if/(i) < i there will be another meM with
/(/) <m< jandthus/(0 = (f(0)m = = /0 w ) —f(m) =f(km) — (f(k))m = m, a contradiction.

THEOREM 28. If H = HomM (/, / ) then the epimorphism y: HH -> HI is an H-isomorphism.

Proof. By the above Proposition, HomM (/, / ) = Hom^ (/, / ) and the latter is obviously
if-isomorphic to „/.

COROLLARY 1. xj/: BM -*• IM is an isomorphism.

Proof. Follows from Proposition 15 and Theorem 28.

COROLLARY 2. Every heH is of the form h(i) = i ifi ^ k, and h{i) = kifkig i,for all iel
and some kel.

Proof. Set k = h(\) = y(h) in Theorem 28.

COROLLARY 3. The monoids H and I are isomorphic (through y) and B = H.

Proof. If h is as in Corollary 2 and h'(\) = k' where h'eH and k <* k', then y(hh') =
h(h'(\)) = h(k') = fc and (y(A)) • (y(/i')) = /((I) • h'(l) = A:fc' = A:. Thus H is commutative since
/ is and B = H for B is then the center of //.

Now from Theorem 18 of [1], M = 2(M) and we thus have examples where Q(M) and
B(M) are distinct: just take M to be a non-complete chain with largest element 1 (e.g. the
rationals with + oo), then its Dedekind-MacNeille completion / will be distinct from M (e.g.
the reals with + oo in the above example).

In fact the fractions in M, M a dense-in-itself chain, can be characterized as follows.

PROPOSITION 29. The only dense ideals of M are M and M' = M— {1}.

Proof. If mt <m2 then there exists anmeM with m( <m <m2 since M is dense-in-itself,
and Wj =m1-m=£m2

mm = m, which means that M' is dense. Conversely, let D be a dense
ideal distinct from both M and M', i.e., there exists an meM, not in D, and with m < 1. But
for all </e D, d < m (for m^d would imply md = meD) and md = d= Id, which means that
Z) is not dense in M.

PROPOSITION 30. For every fraction fin M there exists a unique keM such that for all m
in the domain offfim) = km (i.e.f(m) — mifm-^k andf{m) = k if k ^ m).

Proof. Follows directly from Theorem 18 of [1] and Proposition 21.
And thus two fractions on M are equivalent if and only if they are denned by the same

keM, which means that Q(M) = M.
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3. Rational extensions. In this section, M is again a monoid which is not necessarily
commutative.

DEFINITION 5. If AM and BM are right M-sets, then a. partial M-homomorphism f of AM

into BM is an M-homomorphism into BM with domain a sub-M-set of AM. / i s said to be
irreducible if it cannot be properly extended.

PROPOSITION 31. Every partial M-homomorphism of AM into BM can be extended to an
irreducible one.

Proof. Define a partial order on the set of partial M-homomorphisms from AM to BM

by f£f iff/' extends/. If {fj\jeJ} is a chain of such mappings / } : {KJ)M -* BM then
K = [JKjisa right M-set and one can define/: KM -* BM by f(k) =fj(k) ifkeKj. The rest

jeJ

follows by Zorn's Lemma.

PROPOSITION 32. If XM and YM are given right M-sets then the relation ^ defined on the
set of sub-M-sets of YM by:

AM is a sub-M-set of BM £ YM and any two partial M-homomorphisms of BM into XM

which agree on AM have a unique common irreducible extension

is a partial order relation.

Proof. Obvious.

PROPOSITION 33. AM ^ BM(XM) if and only ifAM is a sub M-set ofBM and any two partial
homomorphisms of BM into XM which agree on AM agree on the intersections of their domains.

Proof. Let f':K'M-+ XM, f":K'u-* XM, K'M and K'M two sub-M-sets of BM, / ' and / "
both agreeing on AM. It is then possible to define/: K'vK" -»• XM by f(k) =f'{k) tfkeK'
and f(k) =f"(k) XkeK" since by hypothesis/' a n d / " agree on K'nK". /extends b o t h / '
a n d / " and it has an irreducible extension/by Proposition 31. The converse is trivial.

DEFINITION 6. If M is a submonoid of M', IM the injective envelope of MM and M'M a
sub M-set of IM, then M' is a rational extension of M whenever MM ^ M'M(IM).

For the next theorem we again need the injective homomorphism 4>: M -*• B(M) defined
by (i)(<j>(m)) = im for all iel, and we say that an injective homomorphism K:M-+M' is a
rational extension of M whenever M' is a rational extension of K(M).

THEOREM 34. <j):M-> B(M) is a rational extension. Moreover, an injective homomorphism
K:M-*M' is a rational extension of M if and only if there exists a unique injective homo-
morphism K :M' ->B(M) such that K-K = $.

Proof. Two partial Af-homomorphisms from (IB)M into IM which agree on M can be
extended to two M-endomorphisms of IM which agree on (15)M by Proposition 12 and the
original ones thus agree on the intersection of their domains, i.e. cp is a rational extension. If
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K is a rational extension and h and W in H agree on M, then they agree on AT, which implies
that M ' is a submonoid of IB by Proposition 12 again: we thus let ic((l)6) = b. Conversely
any two partial M-homomorphisms of M'M into IM which agree on M agree on the intersection
of their domains since they can be regarded as partial homomorphisms of (IB)M into IM.

DEFINITION 7. If K : M -»M is a rational extension of M such that for every other rational
extension K':M-+M' there exists a unique injective homomorphism K:M'-*M with
K-K' = K, then K is called a rational completion of M.

Since it is unique up to isomorphism " over M ", we may talk about the rational com-
pletion of M.

COROLLARY 1. $: M -• B{M) is the rational completion of M.

COROLLARY 2. Every monoid of quotients of a commutative monoid is a rational extension
ofM.

COROLLARY 3. The intersection of any family of rational extensions of a monoid M is a
rational extension of M.

We will end with a new characterization of commutative monoids of quotients, but first
we prove:

PROPOSITION 35. An ideal D of a monoid M is M-dense if and only if DM ^ MM(/M).

Proof. If h and h! in H agree on DM the same is true for their restriction to MM, and the
condition implies that they must agree on MM, i.e. h(l) = h'(l), and thus D is M-dense.
Conversely i f / a n d / ' are partial M-homomorphisms agreeing on D, then their respective
extensions t o / a n d / ' in H also agree on D and thus on M.

In the rest of this section, M is a submonoid of the commutative monoid M' £ B(M)
and D is an ideal of M.

PROPOSITION 36. D is dense in M' (Definition 2) if and only ifDM ^ M'M{lM).

Proof Let D be dense in M ' a n d / a n d / ' be two partial M-homomorphisms of M'M into
IM which agree on D: their respective extensions to / and / ' in H then also agree on D. Now
define 6 on IM by idi' iff (ydeD)(id=i'd): this is an M-congruence relation on IM

since M ' is commutative, and with restriction to M'M equal to the identity relation. Since
IM is an essential extension of M'M ([1], Theorem 7 and its Corollary) 9 is also the identity
relation on IM. If now / ( I ) = / and / ' ( I ) = V, then for all deD, (}(\))d=f(d) =J'(d) =
(J\\))d, which implies that/(I) = / ' ( l ) . T h u s / a n d / ' agree on 15 and in particular/and
/ ' agree on the intersection of their domains. Conversely if DM ^ M'M(IM) and m0 and mv

are in M ' with mQ d = mv d for all deD, then m* defined by m*(m) = mi m, (j = 0, 1), for all
meM', gives two M-homomorphisms of M'M into IM which agree on DM and thus on M'M.
In particular, m*(l) = mo = m1 = m*(l).

THEOREM 37. The following are equivalent.

(1) D is dense in M.
(2) D is dense in every monoid of quotients of M.
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(3) D is dense in M' (in particular in B(M)).
(4) D is M-dense.
(5) DM g M'M(IM).
(6) DM ^ MM(IM).
(7) DM Z MM(MM).

Proof. The equivalence of the first six has already been proved in Propositions 6,20,18,
36 and 35. (7) implies (1) for let m and rri in M' be such that for all dm D, md = rrid. m
and rri then generate two Af-endomorphisms of Mu which agree on D and thus on M by
condition (7), and so m = rri. That (6) implies (7) is obvious.

Applying this to monoids of quotients, we obtain the fact that M' is a monoid of quotients
of M if and only if for all m in M', m~lM ^ MM(MM).

Since the results of Section 1 were first written (see [2]), the notion of maximal monoid
of quotients has been generalised in [8] to noncommutative monoids by using the analogue of
Proposition 4, page 96 of [6] as a definition of dense ideal. It can be shown that Theorem 22
of the present paper remains valid in the noncommutative case.
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