
J. Functional Programming 8 (3): 201–237, May 1998. Printed in the United Kingdom

c© 1998 Cambridge University Press

201

Profiling large-scale lazy functional programs

R. G. MORGAN
Department of Computer Science, Durham University,

South Road, Durham, UK

S. A. JARVIS
Oxford University Computing Laboratory, Wolfson Building,

Parks Road, Oxford, UK

Abstract

The LOLITA natural language processor is an example of one of the ever-increasing number

of large-scale systems written entirely in a functional programming language. The system

consists of over 47,000 lines of Haskell code (excluding comments) and is able to perform a

wide range of tasks such as semantic and pragmatic analysis of text, information extraction

and query analysis. The efficiency of such a system is critical; interactive tasks (such as query

analysis) must ensure that the user is not inconvenienced by long pauses, and batch mode tasks

(such as information extraction) must ensure that an adequate throughput can be achieved.

For the past three years the profiling tools supplied with GHC and HBC have been used

to analyse and reason about the complexity of the LOLITA system. There have been good

results, however experience has shown that in a large system the profiling life-cycle is often

too long to make detailed analysis possible, and the results are often misleading. In response

to these problems a profiler has been developed which allows the complete set of program

costs to be recorded in so-called cost-centre stacks. These program costs are then analysed

using a post-processing tool to allow the developer to explore the costs of the program in

ways that are either not possible with existing tools or would require repeated compilations

and executions of the program. The modifications to the Glasgow Haskell compiler based

on detailed cost semantics and an efficient implementation scheme are discussed. The results

of using this new profiling tool in the analysis of a number of Haskell programs are also

presented. The overheads of the scheme are discussed and the benefits of this new system are

considered. An outline is also given of how this approach can be modified to assist with the

tracing and debugging of programs.

Capsule Review

Lazy functional languages provide good control over what is evaluated, but less control over

the final time and space behaviour of a program. Profilers provide a partial solution to this

problem in that they can be used to detect aberrant run-time behaviour: a full solution relies

on the programmer understanding how subsequent modifications to the code can improve its

behaviour.

The authors present an extension to the cost-centre profiler which is shipped with the

Glasgow Haskell Compiler (GHC). Their new technique records complete stacks of lexical

containment for paths in the call-graph: this extends both cost-centre profiling (which only

records one level of containment) and lexical profiling (which only records two levels of

containment).

https://doi.org/10.1017/S0956796898003013 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796898003013

202 R. G. Morgan and S. A. Jarvis

The technique has the immense advantage that comprehensive run-time information is

retained and therefore multiple post-mortem analyses can be run without the need to modify

the source code and/or run the program again. However, a key challenge is to implement

the technique efficiently. The authors provide very clear and detailed explanations of how

efficiency is achieved and present profiling results from large-scale applications.

This excellent paper should be of great interest to anyone who intends to develop

performance-critical systems in Haskell using GHC.

1 Introduction

One would like to think that most programmers understand what a profiler is by

now and that they use a profiler in everyday programming. Even when a program

appears to be efficient, an inquisitive programmer will run a program and study the

profiling results. In doing so he may find that parts of his code are not as efficient as

he hoped, and, as a consequence of this, the code may be changed, recompiled, and

profiled once more. It is hoped that the results are an improvement on the original.

A number of reliable profiling tools are now available to Haskell programmers.

Of these, the York heap profiler (Runciman and Wakeling, 1993) supplied with

the Chalmers Haskell compiler and the Glasgow cost-centre profiler (Sansom and

Peyton Jones, 1995) supplied with the Glasgow Haskell compiler are probably the

most well-known. Each can measure heap usage during the execution of a Haskell

program. At regular intervals during program execution the amount of heap used by

each function is recorded; these results can then be viewed as a graph of total heap

usage over execution time. The cost-centre profiler also displays time-profiling results

for the program. The results of the profiler show, in tabular form, the percentage of

the total execution time spent in each of the program’s functions.

The tools allow many variations on this theme: the heap profiler can display the

results in terms of the producers or constructors; the cost-centre profiler can also

display a serial time profile, similar to the heap graphs; there is also the possibility

of limiting the number of functions which the programmer profiles, allowing him to

concentrate on only that part of the code which he believes to be inefficient.

The aim is to supply the programmer with enough material to identify possible

bottlenecks in the program, to identify space leaks, or to locate those parts of the

code which use a disproportionate amount of time or memory.

One large programming project which has made considerable use of these pro-

filing tools is the LOLITA natural language processing system at the University of

Durham. This system consists of over 47,000 lines of Haskell source code, written

in over 180 different modules. The development of the system began in 1986 and

there are currently 20 developers working on it (Long and Garigliano, 1994).

LOLITA is an example of a large system which has been developed in a lazy

functional language purely because it was felt that this was the most suitable

language to use. It is important to note the distinction between this development,

where the choice of a lazy functional language is incidental, and projects which

are either initiated as experiments in lazy functional languages or have a vested

https://doi.org/10.1017/S0956796898003013 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796898003013

Profiling large-scale lazy functional programs 203

interest in functional languages. Because of this, conclusions drawn regarding the

effectiveness of functional languages, and in particular their profilers, were based on

genuine end users of functional language technology.

An analysis of the use of the heap and cost-centre profilers within the LOLITA

project identified the following problems:

• Profiling takes a long time – Compiling and running programs with the profiling

options takes longer than without them, due to the extra bookkeeping needed.

Programmers also have a tendency to select and reselect functions a number of

times before they are completely satisfied with the results. This may require the

code to be recompiled and rerun a number of times. For this reason profiling

a large program can conceivably take a number of weeks!

• Profiling results can be misleading – Once the results of a large program have

been produced, the programmer is then faced with the separate problem of

interpreting what they mean. Often the programmer will want to display the

results at a high level in the code and then decompose them to constituent

functions; alternatively, the results may be displayed at a low level in the code

and inherited to functions higher in the functional dependency of the program.

Previous methods of inheritance have either been inaccurate or limited to a

fixed number of generations, because the overheads were considered to be too

high to make such a scheme feasible. The heap profiler has no inheritance

at all; costs can only be related to the functions or constructors which were

directly responsible. The cost-centre profiler does allow a limited form of

inheritance in which the cost of functions which are not included in the profile

are attributed to their parent functions. However, this only allows information

about one particular level in the program to be gathered during any one

execution of the program; profiling results may therefore be restricted and

problems difficult to identify.

These problems were compounded by the scale of the LOLITA system and it was

necessary to design a new method of profiling. This is described in the next section.

2 The cost-centre-stack profiler

When profiling, the programmer is required to identify the portion of the program

which he is interested in analysing. The identification of parts of the program may be

performed automatically (Runciman and Wakeling, 1993) or more explicitly by the

programmer annotating the source-level code (Sansom and Peyton Jones, 1995). It

is argued that the latter approach gives the programmer more control over selecting

the parts of the code in which he is interested, though automatic annotation can

prove to be particularly useful for profiling large programs. Cost-centre profiling

makes use of both these techniques, and therefore offers a balanced and flexible

https://doi.org/10.1017/S0956796898003013 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796898003013

204 R. G. Morgan and S. A. Jarvis

approach. It is for this reason and because the cost centre provides time profiling

that the cost-centre profiling system is used as the basis for the new profiler.

2.1 Cost centres

A cost centre is described as a label to which costs are assigned. During profiling

the programmer may annotate the code with an scc expression (set cost centre)

which is followed by the cost-centre name. For instance

function x =

scc "costOfFunction"

(map expensiveFunction x)

will assign to the cost centre costOfFunction the costs of the evaluation of the

expression (map expensiveFunction x).

In large programs such a scheme could become difficult to use, so to avoid the

programmer annotating every function definition, he is also able to select all top-level

functions, functions in a named module or just those explicitly added by hand.

When the program is executed any costs incurred are allocated to a single cost

centre which is currently in scope according to a set of cost-attribution rules. Such

rules state that given an expression, ‘scc cc exp’, the costs attributed to cc are the

entire costs of evaluating the expression exp as far as the enclosing cost centre

demands it, excluding, first, the cost of evaluating the free variables of exp, and

secondly, the cost of evaluating any scc expressions within exp (or within any

function called from exp).

This means that any costs incurred by functions within the scope of the enclosing

cost centre are aggregated and that the results are not affected by the fact that lazy

evaluation may cause the evaluation of the expression within the cost centre to be

interleaved with the evaluation of other expressions in the program.

The behaviour of cost aggregation is specified using cost semantics in (Sansom,

1994) which avoids any ambiguity that an informal description may introduce. The

costs of evaluating an expression are written in a judgement form:

cc, Γ : e ⇓θ ∆ : z, ccz

This reads that, in the context of heap Γ and the current cost centre cc, the expression

e evaluates to the value z, producing a new heap ∆ and a new current cost centre

ccz .

The costs of this evaluation are recorded in θ, a set of mappings between cost

centres and costs; cc 7→ A, for instance, would represent the cost of an application

charged to the cost centre cc.

The semantics are specified as a series of judgements, statements which will always

hold in the system, and a set of rules. The semantic rules are defined as premises, the

sequents above the line, and the conclusion, the sequent below the line. An instance

of the application of a logical rule is called an inference if it is applied from the

https://doi.org/10.1017/S0956796898003013 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796898003013

Profiling large-scale lazy functional programs 205

premise to the conclusion. Such an instance is called a reduction if it is applied in

an inverted fashion from the conclusion to the premises. The rule

A1 A2 ... An

B

states that if the premises A1 to An hold then the conclusion B also holds; it is

possible to apply the rules in either direction.

These rules can be used in the reduction of expressions written in Haskell. Rules

exist to cover constructs such as function application, case expressions, variable,

let, constructor and scc expressions (Sansom, 1994). The scc expression shows the

scoping of cost centres:

ccscc, Γ : e ⇓θ ∆ : z, ccz

cc, Γ : scc ccscc e ⇓θ ∆ : z, ccz
SCC

The SCC rule evaluates the expression e to the new expression z in the context

of the annotating cost centre ccscc and the heap Γ. The cost reported from e will

respect the scope of the scc expression and will be stored in the set of costs θ (no

costs are given for the reduction of the scc expression). The resulting heap is shown

as ∆ and the cost centre as ccz .

It is the cost of such a reduction, rather than the actual result, which is of primary

interest. Reduction sequences of this nature are expressed as proof trees. Rather than

showing them in tree form the sequential nature of the reduction can be stressed by

setting out the proofs vertically.

So for example, cc,Γ : e ⇓θ ∆ : z, ccz is written:

1 cc, {Γ} : e

2x a sub-proof

3y another sub-proof

4z {∆} : z, ccz, θ

This notation is adopted from the work by Launchbury (1993) and Sansom (1994)

with slight differences included to make the reading of the proof easier. For example,

each reduction step is numbered so that parts of the proof can be referred to

individually. The rules employed in the derivation are indicated by the exponent of

each proof step, e.g. 2x indicates that the second step in the reduction is attained by

applying the rule x.

Each derivation may be made up of many smaller derivations. This is demon-

strated in lines 2 and 3. At any one point in the derivation a cost centre is currently

in scope if the costs of the reduction are associated with that particular cost centre.

As the reduction proceeds, the current cost centre in scope will change which means

that different parts of the program have their evaluation attributed to different cost

centres. In the example above, the cost centre cc is in scope for the derivation steps

2 and 3. This simple case is expanded upon.

https://doi.org/10.1017/S0956796898003013 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796898003013

206 R. G. Morgan and S. A. Jarvis

An example is considered which specifically makes use of the SCC rule.

Working from the conclusion of the rule to the premises (reduction), this rule

states that the current cost centre, cc, is replaced with the cost centre following the

scc annotation. So for example, in the code

scc "plus" 2 + 3

the reduction of the scc annotation sets the current cost centre to the new cost

centre plus. The costs of evaluating the primitive + and the constructors 2 and 3

are also attributed to the cost centre plus, as the expression is in the scope of scc1.

The proof of the judgement: cc, Γ: scc "plus" 2 + 3 ⇓θ′′ ∆:5, plus

1 cc, Γ: scc "plus" 2 + 3

2scc plus, Γ:(2 + 3)

3prim a sub-proof of the primitive + returning θ′ = θ∪{plus 7→ P (+)}
4const a sub-proof of the constructors 2 and 3

returning θ′′ = θ′ ∪ {plus 7→ (C(2) + C(3))}
5prim Heap ∆:5, plus θ′′

6scc ∆:5, plus θ′′

results in the set θ′′ of reduction costs:

{plus 7→ P (+), plus 7→ (C(2) + C(3))}

These results can be interpreted as being the set of costs which map the cost centre

plus to, first, the cost of evaluating the primitive +, and secondly, the cost of

evaluating the the constructors 2 and 3. These costs will be aggregated so that a

total cost can be assigned to the cost centre plus. This will represent the cost of

evaluating all the code defined within the scope of this cost centre.

With more than one cost centre, the allocation of costs to cost centres becomes

clear. Consider, for example, the slightly more complicated piece of code:

scc "times" 2 * 46 * (scc "plus" 4 + 8)

A reduction of this code will follow a similar form. It is important to notice the

point in the reduction at which the cost centre currently in scope changes. In the

following reduction this is in lines 7 (when the SCC rule is invoked for the second

time) to 10 (where the second SCC is finally reduced):

1 The semantic rules for primitives and constructors can be found in Sansom (1994).

https://doi.org/10.1017/S0956796898003013 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796898003013

Profiling large-scale lazy functional programs 207

1 cc, Heap Γ: scc "times" 2 * 46 * (scc "plus" 4 + 8)

2scc times, Γ: 2 * 46 * (scc "plus" 4 + 8)

3prim a sub-proof of the primitive ∗
returning θ1 = θ ∪ {times 7→ P (∗)}

4const a sub-proof of the constructors 2 and 46

returning θ2 = θ1 ∪ {times 7→ (C(2) + C(46))}
5prim Heap ∆ : 92 * (scc "plus" 4 + 8), times θ2

6prim a sub-proof of the primitive ∗ returning θ3 = θ2 ∪ {times 7→ P (∗)}
7scc plus, Γ: (92 *) : (4 + 8)

8prim a sub-proof of the primitive +

returning θ4 = θ3 ∪ {plus 7→ P (+)}
9const a sub-proof of the constructors 4 and 8

returning θ5 = θ4 ∪ {plus 7→ (C(4) + C(8))}
10prim Heap ∆ : 92 * 12, plus θ5

11scc Heap ∆:1104, times θ5

12scc Heap ∆:1104, times θ5

The resulting set θ5 of reduction costs is:

{plus 7→ (C(4) + C(8)), plus 7→ P (+), times 7→ P (∗), times 7→
(C(2) + C(46)), times 7→ P (∗)}

These semantic rules describe a complete language within which any reduction of a

Haskell expression can be demonstrated while describing exactly where the cost of

the reduction should go.

Further semantic rules for lambda and constructor expressions, application rules,

variable let and case rules, are defined in Sansom’s (1994) thesis. Since the semantics

for cost-centre stacks only requires modification of the rule for setting cost centres,

any further discussion is restricted to this rule.

2.2 Cost-centre stacks

The cost-centre profiler is extended to include the notion of a cost-centre stack

(Morgan and Jarvis, 1995). The objective of the cost-centre stacks is to record not

just the immediately enclosing cost centre but all the enclosing cost centres to a

certain part of a program. This provides a wealth of profiling information that

can be used in a variety of ways. For example, with costs attributed to cost-centre

stacks, individual cost centres can be removed from the results and their costs can

be inherited upwards without any need to modify, recompile and rerun the program.

Furthermore, full inheritance profiles can be produced, associating cost centres with

the entire cost of reducing the enclosed expression, including the cost of any cost

centres contained within that expression.

Many of the failures to effectively produce inheritance profiles have been caused

by the schemes used to inherit costs.

Consider an example: ‘statistical inheritance’ means that the cost of a shared

https://doi.org/10.1017/S0956796898003013 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796898003013

208 R. G. Morgan and S. A. Jarvis

function h would be split between its calling functions, f and g, depending on how

many calls were made to the shared function. For example, if there are eight calls

from f to h and only two calls from g to h then the time spent in (or below) h will

be divided 8:2.

Realistically, these results might not be true: g may have called h twice with a

list argument of size 100,000; f may have called h eight times with a list argument

of size 10. Statistical inheritance does not account for calls to functions with very

different arguments.

A solution to this is to subsume costs. If the shared function h is not profiled then

any computation performed in h will be included in the scope of the cost centres

f and g. This will accurately distribute the costs between the calling functions.

However, the programmer must recognise that this is the case and annotate the

functions accordingly, which is not always straightforward in a large program. This

method also means that the program must be compiled and profiled once again,

which may take some considerable time. Significantly the results will no longer

display the costs of h.

An alternative solution is to store the function calls of h from g and h from f

(Clack, Clayman and Parrott, 1995). It is possible to assign the costs of h to the two

pairs (h, f) and (h, g); the programmer then knows exactly which pair caused the

most costs and his attention is drawn to the correct part of the code. Unfortunately

if h is relatively inexpensive itself, but calls a function i which is expensive, the above

method will no longer work. The pair (i, h) will be attributed large costs while the

pairs (h, f) and (h, g) will be attributed small costs, which does not give a reliable

indication of how the cost of i should be inherited up to the level of f and g.

The cost-centre-stack profiler extends this idea by replacing pairs of cost centres

with a stack of cost centres. Rather than costs being attributed to cost centres,

or pairs of cost centres, they are attributed to cost-centre stacks. This allows

more accurate results than Sansom’s cost-centre profiler and Clack, Clayman and

Parrott’s lexical profiler; results of which can be replicated using the cost-centre-

stack profiler. In recording all the enclosing cost centres to an expression, costs can

be unambiguously assigned to those parts of the program which caused them.

The semantics of the cost-centre-stack profiler can be specified with a simple

modification to Sansom’s cost-centre semantics: In the cost-centre-stack semantics,

sequence notation, 〈xn, xn−1, .., x1〉, is used to represent a stack. Catenation of a cost

centre, x4, to a cost-centre stack, 〈x3, x2, x1〉, is performed using x4
_〈x3, x2, x1〉, and

results in the sequence 〈x4, x3, x2, x1〉. The cost centre x4 is said to be at the top

of the stack; this corresponds to the current cost centre of Sansom’s cost-centre

profiler.

The cost-centre-stack extension is modelled in the semantic rules by modifying

the reduction rule for the scc annotations. It is enough to modify this single rule

and use the remainder of the rules in their current form.

ccscc
_cc, Γ : e ⇓θ ∆ : z, ccz

cc, Γ : scc ccscc e ⇓θ ∆ : z, ccz
SCC ′

This rule makes it possible to push the current cost centre onto the top of the

https://doi.org/10.1017/S0956796898003013 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796898003013

Profiling large-scale lazy functional programs 209

cost-centre stack. This shows how the above example then scopes with the new SCC

rule:

1 cc, Heap Γ: scc "times" 2 * 46 * (scc "plus" 4 + 8)

2scc
′ 〈times〉, Γ: 2 * 46 * (scc "plus" 4 + 8)

3prim a sub-proof of the primitive ∗ returning θ1 = θ ∪ {〈times〉 7→ P (∗)}
4const a sub-proof of the constructors 2 and 46

returning θ2 = θ1 ∪ {〈times〉 7→ (C(2) + C(46))}
5prim Heap ∆ : 92 * (scc "plus" 4 + 8), 〈times〉 θ2

6prim a sub-proof of the primitive ∗
returning θ3 = θ2 ∪ {〈times〉 7→ P (∗)}

7scc
′ 〈plus, times〉, Γ: (92 *) : (4 + 8)

8prim a sub-proof of the primitive +

returning θ4 = θ3 ∪ {〈plus, times〉 7→ P (+)}
9const a sub-proof of the constructors 4 and 8

returning θ5 = θ4 ∪ {〈plus, times〉 7→ (C(4) + C(8))}
10prim Heap ∆ : 92 * 12, 〈plus, times〉 θ5

11scc
′

Heap ∆ : 1104, 〈times〉 θ5

12scc
′

Heap ∆ : 1104, 〈times〉 θ5

2.3 Secondary semantics for stack inheritance

The cost-centre-stack semantics presented in the previous section would lead to a

highly inefficient implementation without any form of optimisation. However, before

any optimisations are described it is important to clarify how these cost-centre stacks

are used to produce profiling results which are suitable for presentation.

The cost-centre stack information is used to provide the following facilities:

1. Normal cost-centre profiles can be produced. The cost-centre-stack profiler

therefore provides at least those facilities offered by the cost-centre profiler.

2. The user may choose to view the profiling results in terms of a subset of the

cost centres which were present when the program was compiled and run.

Given a particular subset of cost centres, the profile results are the same as

those which would be produced by the normal cost-centre profiler if only the

subset of cost centres had been present. In effect, the costs attributed to any

cost centres not in the selected subset will be moved up to the appropriate

enclosing cost centres. This allows a mode of operation in which the program

is compiled and run once, with a cost centre on every function, and the user

can then obtain a number of different profiling results simply by selecting and

de-selecting cost centres.

3. The user can chose between an inheritance profile and a flat profile (or

indeed, see a profile which includes both figures). In the inheritance profile, a

cost centre is attributed with all of its costs, including those which it incurs

through the evaluation of cost centres that it contains.

Producing the above results from the cost-centre stacks is straightforward. A set

https://doi.org/10.1017/S0956796898003013 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796898003013

210 R. G. Morgan and S. A. Jarvis

of selected cost centres is stored in a set SELECTED. For a non-inherited profile

(case 1 above), this set is equal to the entire set of cost centres, unless otherwise

specified by the user.

First consider the non-inherited semantics. Each cost stack in the set θ will contain

a selected cost centre nearest the top of the stack. The costs associated with that

particular cost stack are attributed to that top-selected cost centre. Consider for

instance the stack 〈c, b, a〉 and the associated costs, say 10. The cost 10 is added

to the selected cost centre c. The cost centre c will eventually contain all the costs

for the stacks for which c is the top-selected cost centre; it is then printed as a

post-processed result. As an example consider the set θ of

{〈b, a〉 7→ 10, 〈a〉 7→ 20, 〈c, a〉 7→ 10, 〈c, b, a〉 7→ 50}.

Under this scheme the non-inherited post-processed results,

a = 20, b = 10, c = 60,

would be produced. If the cost centre b was not selected, then the results

a = 30, c = 60,

would be printed instead. Such a scheme is defined more formally as:

∀ cc : cost centre; θ : (seq cost centre) ; N •
COST cc = sum { cost | ∀ S, T : seq cost centre; ∃ stack : seq cost centre; cost : N •

({stack 7→ cost} ∈ θ) ∧ (S_〈cc〉_T = stack) ∧
(cc ∈ SELECTED) ∧
(∀ cc′ : cost centre • cc′ in S ⇒ cc′ 6∈ SELECTED) }

The operator ; represents an injective function and N represents the set of

natural numbers.

The inherited costs are a simple variation on the above. Rather than adding the

cost associated with a cost stack to the top-selected cost centre, the cost is added to

all the selected cost centres within the cost stack. The results

a = 90, b = 60, c = 60,

are produced when the above example is considered under this inheritance scheme.

Again, a formal definition of the scheme is offered:

∀ cc : cost centre; θ : (seq cost centre) ; N •
INHERITED COST cc = sum { cost | ∀ S, T : seq cost centre; ∃ stack :

seq cost centre; cost : N • ({stack 7→ cost} ∈ θ) ∧
(S_〈cc〉_T = stack) ∧ (cc ∈ SELECTED)}

This ensures that all selected cost centres have their costs inherited.

https://doi.org/10.1017/S0956796898003013 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796898003013

Profiling large-scale lazy functional programs 211

2.4 An efficient implementation

Profiling a program written using thousands of functions is potentially an expensive

business. The cost-centre information recorded for each function will increase the

runtime, which in turn may cause large programs to be almost un-executable.

Introducing cost-centre stacks may therefore seem a limited exercise, as cost

stacks require more information to be stored than the original cost-centre model.

An efficient implementation must therefore be considered to make such a scheme

feasible.

Two efficiency problems were considered key in the implementation of cost-centre

stacks; the first was the storage requirements needed for the cost-centre stacks,

and the second was the efficiency of the Push operation, required when a new cost

centre was entered. The storage problems occur because of the potentially large

number and size of distinct stacks to which it might be necessary to attribute

costs. The efficiency of the Push operation is critical because it is likely to be

called once for every function call in the program. Its task is non-trivial. If the

stack which it produces has already been encountered, it must be sure to re-

use the space associated with the existing stack rather than allocating further

storage.

2.4.1 Space-saving mechanisms

Cost-centre-stack codes:

To produce a practical implementation, applicable to large as well as small programs,

cost-centre stacks are replaced with Cost-Centre-Stack Codes; each cost-centre-stack

code is derived from a Cost-Centre-Stack Table. The cost-centre-stack code acts

as a pointer to the relevant stack entry in the cost-centre-stack table, so at any

one time the cost-centre stack is simply a code which addresses an entry in the

cost-centre-stack table. See Fig. 1.

The top left of the figure shows a reference to a cost-centre-stack code at an

arbitrary point in a program’s execution. This code, 0006, refers to the current

cost-centre stack. This code references a point in the cost-stack table, the larger

box below. Inside the cost-stack table (top right) a reference to the code 0006 is

found; this is the representation of a stack. On the top of this stack is the cost

centre F . A back pointer will show the reference to the cost-centre stack onto

which F was pushed; this was the stack 〈A,MAIN〉. Therefore, the stack referred to

by the cost-centre-stack code 0006 is 〈F, A,MAIN〉; this is the current cost-centre

stack.

To ensure that stack-table entries are not duplicated, each entry contains an index

table of other stacks which can be reached by pushing a single cost centre onto the

stack represented by the entry. For example, the stack 〈MAIN〉 is represented by

the entry with code 0001 and contains an index table entry for cost centre A with a

corresponding stack pointer 0002. If the cost centre A is entered while the current

cost-centre-stack code is 0001, then the Push operation will return cost-centre-stack

code 0002, corresponding to the stack 〈A,MAIN〉.

https://doi.org/10.1017/S0956796898003013 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796898003013

212 R. G. Morgan and S. A. Jarvis

Current Cost Centre

Implemented as a Cost Stack Code

Execution time

Pointer to Cost StackFunction

A

B

C

0001

Initial Cost Centre Stack

Cost Stack Index Table

Function Pointer to Cost Stack

Pointer to Cost StackFunction

0002

0003

<A, MAIN>

<B, MAIN>

<MAIN>

D

E

G

H

I
J

Further
Cost Stacks

COST STACK TABLE Cost Centre Stack Code

0006

0005

F

0007

0008

0009

0010

0006 Showing a reference to the stack, <F, A, MAIN>

to previous

cost centre stack

Back pointer

[MAIN]

[MAIN]

Calling function

of head of

stack

[]

Fig. 1. Implementation of cost stacks.

Compressed stacks

The cost-centre stacks themselves can be compressed. Consider the simple case

of a function a which calls function b, this latter function then calls function a

again2. To avoid this leading to an arbitrarily large number of stacks of the form

〈a, b, a, b, ..〉, only the top instance of a cost centre is stored in a cost-centre stack.

This optimisation has no effect on the profiles produced, because in the flat profile

the top-selected cost centre is the only one of interest and in the inherited profile

the presence or absence of a selected cost centre on the stack is the only point of

interest.

When a function is pushed onto the cost-centre stack, all previous instances of

the function are removed from the stack. Such a scheme allows an infinite number

2 In the case of this and subsequent examples, it is assumed that all top-level functions are
annotated with a cost centre.

https://doi.org/10.1017/S0956796898003013 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796898003013

Profiling large-scale lazy functional programs 213

of logical stacks to be stored in a single physical stack. The example using two

functions a and b requires two such stacks, 〈a, b〉 and 〈b, a〉, to represent an infinite

number of stacks. Such stacks are referred to as Compressed Stacks.

This would seem a good mechanism for keeping the sizes of the stacks small.

However, what is the effect on the results? Some figures are given to illustrate the

behaviour of this model.

During the duration of the stack 〈a〉, 3 units of time are accrued. This is written

as {〈a〉 7→ 3}, representing the cost-centre stack and the costs attributed. When the

function b is called, the cost-centre stack 〈b, a〉 is produced. During this part of the

program, 7 units of time are accrued. Finally, the function a is called once again,

producing the compressed stack 〈a, b〉, and a further 1 unit of time is accrued.

This produces the set of cost-centre stacks:

{〈a〉 7→ 3, 〈b, a〉 7→ 7, 〈a, b〉 7→ 1}

Using the secondary semantics for cost inheritance defined earlier, COST (a)

produces the result 4 and COST (b) produces the result 7; these are the non-

inherited costs for each of these cost centres. INHERITED COST (a) produces the

inherited result for cost centre a, which is 11; INHERITED COST (b) produces

the result 8.

These results can be compared with the results produced by using uncompressed

cost-centre stacks. The function calls above would produce the following set of

uncompressed stacks:

{〈a〉 7→ 3, 〈b, a〉 7→ 7, 〈a, b, a〉 7→ 1}

The difference between the two models is determined by the cost-centre stack

〈a, b, a〉 7→ 1. The non-inherited results are the same for this uncompressed stack

as they are for the compressed stack; COST (a) is 4, COST (b) is 7. For the

inherited results, however, the results are different; INHERITED COST (a) is 12

and INHERITED COST (b) is 8. It will be noticed that the inherited costs for a are

1 greater than before. The reason for this is that in the cost-centre stack 〈a, b, a〉 7→ 1

the inheritance function adds 1 to cost centre a twice.

Is this really what is required? Should costs be added more than once to a cost

centre in the inheritance? If a were in the cost-centre stack 50 times then these

inherited results would become 61. This is certainly not desirable.

Using compressed stacks allows mutually-recursive functions to be modelled with

a fixed number of stacks. It also allows costs to recursive functions to be inherited

once rather than a number of times, producing the inheritance results which are

representative of the program’s actual costs. The definition of cost inheritance

therefore works precisely because of the fact that compressed stacks are used. If

uncompressed stacks were used then the definition of inheritance would have to be

re-written to prevent the multiple aggregation of single costs.

https://doi.org/10.1017/S0956796898003013 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796898003013

214 R. G. Morgan and S. A. Jarvis

2.4.2 The Push operation

The Push operation is written Push(cost centre, cost-stack code). When performing

a Push, the cost-stack code is used to reference the relevant entry in the cost-stack

table. The table entry will contain the name of the top cost centre on the stack,

a pointer to the previous cost-centre-stack table entry, and a Cost-Centre Index Table.

In the remainder of this section cost-centre-stack tables are defined using the

following notation:

Xn Represents a cost-centre-stack table entry n with X as the cost

centre at the head of the stack;

Xn ⇒ Y m Indicates the cost-centre-stack index table entry from cost-

centre stack n to cost-centre stack m, given a push of Y onto n;

Xn ← Y m Indicates a back pointer from cost-centre stack m to cost-

centre stack n.

The cost-centre stack is represented simply as the head of the stack, as the remainder

of the stack can be accessed by the back pointer.

Initially, a program starts with a cost-centre-stack table containing only one entry,

MAIN1, further table entries are then added by the Push operation. There are a

number of cases which need to be considered in the construction of cost-centre stacks.

Each individual case will help to demonstrate that the choice of structure is key to

the implementation of efficient stacks and how neatly the scheme can be constructed.

Consider the cost-centre-stack table represented by the following:

MAIN1 ←⇒ A2 ←⇒ B3

⇓↑
C4

The cost-centre stack which contains the cost centre MAIN is represented by

the cost-centre-stack code 1; the cost-centre stack referred to by the code 4 is,

〈C,A,MAIN〉; the back pointer from this stack points to the cost-centre stack

〈A,MAIN〉.
Some examples of the push operation using this cost-centre-stack table can now

be considered in turn.

Case 1

The first case considers the situation in which a cost centre is being pushed onto a

stack which has already had that cost centre pushed onto it before. For instance,

in the cost-stack table shown above, pushing the cost centre B onto the cost stack

represented by the cost-stack code 2, results in the cost-stack code 3.

The implementation of this case is efficient. The cost-centre index table for stack

2 will contain entries for cost centres B and C , so all that is required of the Push op-

https://doi.org/10.1017/S0956796898003013 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796898003013

Profiling large-scale lazy functional programs 215

eration is to scan the index table and return the stack code found. Even a simplistic

algorithm can perform this scan in O(n) time where n is the number of entries in the

table. Since n is bounded by the number of functions called from the function whose

cost centre is at the head of the stack, it is typically small and does not usually get

larger with overall program size. An O(n) scan has been found to be an adequate

result.

Case 2

In the second case, the cost-stack index table would have no reference to that

particular cost centre (there will have been no previous attempt to push this cost

centre onto the current cost stack) and the cost centre would not have appeared

anywhere in the cost stack. In this situation, it is enough to add the new cost centre

to the index table of the current stack table entry and thus create a reference to a

new cost stack.

In the previous cost-centre-stack table, pushing the cost centre C onto the cost-centre

stack with the code number 3 results in the following cost-centre-stack table and

the cost-centre-stack code 5.

MAIN1 ←⇒ A2 ←⇒ B3 ←⇒ C5

⇓↑
C4

The back pointers are used during this case to check to see if the cost centre C

already exists in the cost-centre stack 3. The overheads of this case are therefore

O(n+ m), where n is the number of memoised entries contained in the cost-centre-

stack index table of stack 3 and m is the depth of the cost-centre stack.

Case 3

The third case considers a cost centre already existing in a current stack.

First subcase

The first subcase which is considered demonstrates that stacks can be built without

any intermediate stacks having to be created.

Consider the case where the cost centre B is pushed onto the cost-centre stack

identified by the code 5 in the following cost-centre-stack table.

MAIN1 ←⇒ A2 ←⇒ B3 ←⇒ C5

⇓↑
C4

The resulting cost-centre-stack table will, perhaps surprisingly, be as follows:

MAIN1 ←⇒ A2 ←⇒ B3 ←⇒ C5

⇓↑ ⇓
C4 ←⇒ B6

https://doi.org/10.1017/S0956796898003013 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796898003013

216 R. G. Morgan and S. A. Jarvis

The resulting cost-centre-stack code is 6. The subtlety lies in the fact that from

the cost-centre-stack code 5 a new cost-centre stack is built, 6, with B as the top

cost-centre stack. The duplicate copies of the cost centre B are avoided in this

cost-centre stack by the fact that the back pointer from cost-centre stack 6 points to

4 and not 5. This results in the stack 〈B,C, A,MAIN〉 and not 〈B,C, B, A,MAIN〉,
results which were expected.

Second subcase

A second subcase is introduced with the following example: The cost centre B is

pushed onto the cost-centre stack 4 in the following cost-centre-stack table:

MAIN1 ←⇒ A2 ←⇒ B3 ←⇒ C4

The cost centre B already exists on the cost-centre stack. According to the rules

introduced in the compressed-stack scheme, only one instance of the cost centre can

appear in the cost-centre stack at any one time.

The previous stack pointers make such an operation possible. They allow pre-

existing stacks to be located and new stacks to be created if necessary. It is now

feasible to follow the previous stack pointers back and check to see if the cost centre

B had already been pushed onto the stack. (This checking process will also have

taken place in cases 1 and 2.)

Once the previous reference to B has been identified, the new stack is built with

the previous occurrence of the cost centre effectively removed from the stack. This

results in the cost-centre stack 6 in the following cost-centre-stack table:

MAIN1 ←⇒ A2 ←⇒ B3 ←⇒ C4

⇓↑ ⇓
C5 ←⇒ B6

Again, from cost-centre stack 4 the cost centre B is added without a back pointer

to the cost-centre stack 4. Instead it points to a cost-centre stack 5, an intermediate

stack which needed to be built to support the new cost-centre-stack table. The

cost-centre stack 6 produced in this case is 〈B,C, A,MAIN〉; the intermediate stack

which is built is 〈C,A,MAIN〉.
It is possible that this intermediate stack will have needed to be built at some

previous stage in the program’s execution. If so, then the stack will already exist,

as in case 1 above. Of course it might be possible that such a stack will not need

to be built. Intermediate stacks can therefore be constructed with reduced storage,

without explicit profiling details such as time and heap usage.

Third subcase

It is possible that once the occurrence of the new cost centre in the cost-centre stack

has been identified, the resulting new stack already exists3. A reference to this stack

is produced as the result.

3 This is a slightly more complicated example of case 1.

https://doi.org/10.1017/S0956796898003013 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796898003013

Profiling large-scale lazy functional programs 217

G

H I J

F

Fig. 2. Example call-graph.

Extending the example seen above,

MAIN1 ←⇒ A2 ←⇒ B3 ←⇒ C4

⇓↑ ⇓
C5 ←⇒ B6

and pushing the cost centre C onto the cost-centre stack 6, produces the cost-centre-

stack code 4 in the following cost-centre-stack table:

MAIN1 ←⇒ A2 ←⇒ B3 ←⇒ C4

⇓↑ ⇓
C5 ←⇒ B6

From the cost-centre stack 〈B,C, A,MAIN〉 the function C is called again. The

crude approach to creating the new cost centre would have been to remove C from

the stack and build the stack 〈C,B, A,MAIN〉 again, but this is not necessary as

this stack already exists. The previous stack pointers allow the location of the stacks

〈A,MAIN〉, 〈B,A,MAIN〉, and finally the cost-centre stack 〈C,B, A,MAIN〉, to be

identified, all of which exist in this case.

The previous stack pointers allow ‘the stack which came before’ to be identified.

They also allow previous occurrences of cost centres to be found, and found in

an economic manner. The backtracking procedure which has been described only

needs to be followed until the previous occurrence of a cost centre is found; the cost

centre may be discovered through the first previous stack pointer (in a recursive call

to a function), or after 50 previous stack pointers, although it is certain that if the

previous stack pointers are exhausted and the first cost centre is found then the cost

centre has not been pushed before. Most of the time the backtracking will not need

to go all the way back to the first cost centre, as the previous stack pointers ensure

that the search is done as efficiently as possible.

If n is the number of cost centres in the current cost-centre stack and m is the

total number of entries in the cost-centre index tables for all ni, then the complexity

of this last case is O(n+ m).

https://doi.org/10.1017/S0956796898003013 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796898003013

218 R. G. Morgan and S. A. Jarvis

2.5 Two examples

Consider the call-graph in Fig. 2. The current cost-centre stack, after calls from F to

G and then successful calls from G to H and I , would simply be 〈G, F〉 at some point

in time when I had been executed and G was still executing. The corresponding

index table to this cost-centre stack would have references to the functions H and I

and pointers to their corresponding cost-stack codes.

The cost-stack code 2 may represent this cost-centre stack in the cost-centre-stack

table:

F1 ←⇒ G2 ←⇒ H3

⇓↑
I4

The cost-stack table will also include references to the cost-stack codes 3 and 4.

Cost-centre-stack code 3 represents the cost-centre stack 〈H,G, F〉
Cost-centre-stack code 4 represents the cost-centre stack 〈I, G, F〉

These codes, plus the cost-stack code 1 for the cost-centre stack 〈F〉, make up the

cost-stack table which will be referred to as T .

On calling function J , the operation Push(J, 2), the cost-centre-stack system will:

1. Look up the cost-stack code 2 in the cost-stack table and return the state.

2. Determine whether its index table has a reference to the cost centre.

3. If there is a reference to the cost centre, then the pointer to the corresponding

cost-stack code is returned as the new cost-centre stack.

4. If not, the previous stack pointers are followed back to determine whether

there is a previous reference to the cost centre in the cost-centre stack. The

code of each cost-centre stack visited is recorded on a conventional stack until

the previous reference to the cost centre is identified or the top cost-centre

stack, 〈MAIN〉, is reached. If the pushed cost centre is identified, its parent

state is found; from here cost centres are popped off the conventional stack

and the appropriate index-table entry is followed until no more cost centres

remain on the conventional stack. At this point the current stack will be the

stack which is required as the result of the Push operation, and the only

remaining action is to set up an appropriate index table entry in the stack

that was originally pushed. If any of the index-table entries are not present for

a cost centre from the conventional stack, then a new cost-centre-stack table

entry must be created and an appropriate entry added to the index table. The

same thing will then need to be done for each of the remaining entries in the

conventional stack.

5. If there are no previous references to the cost centre in the cost-centre stack

then a new table entry is created. This is linked to the stack, given as an

argument to Push, via a back pointer and an index-table entry.

https://doi.org/10.1017/S0956796898003013 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796898003013

Profiling large-scale lazy functional programs 219

2

DC

B

A

MAIN

<A, MAIN>

<B, A, MAIN>

<D, B, A, MAIN>

A

B

2

3

4

<B, MAIN>

5

1 1

6

<C, B, MAIN>

D 7

7

<D, B, MAIN>

<A, D, B, MAIN>

8

B 5

D

A

2

6

5

8

3

C 4

3 3

7

- -

-

1

<MAIN>

Call Graph which Cost Stack

Table represents

COST STACK TABLE

Cost Centre Stack

Calling Function

Cost Stack Index Table

-MAIN

A

B

D

B

C D

A

Fig. 3. Example cost-centre-stack table.

The resulting situation in the example is:

J4

⇑↓
F1 ←⇒ G2 ←⇒ H3

⇓↑
I4

The example considers function calls in a simple situation. It is more likely that a

call-graph of a program execution is far more complicated, with calls to previously-

called functions and recursive definitions. The cost-stack implementation responds

equally well in such situations. Consider the call graph and cost-stack table in Fig. 3.

An interesting case is presented when function D calls function A which is already

in the current cost stack, state 6 in the example cost-stack table. The cost-stack rules

state that a function can only appear in the cost stack once. It is therefore necessary

to delete the previous reference to function A and create a new cost stack.

The back pointers are followed, popping each cost-centre-stack code onto a

conventional stack, until cost centre A is found.

From the current cost stack indexed by the number 6 in Fig. 3, the back pointers

are followed starting with the current function at the head of the stack D. The

descending stack 〈B,D〉 is recorded before the previous call to A is found. This

previous reference to A is not added to the descending stack and its parent function

https://doi.org/10.1017/S0956796898003013 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796898003013

220 R. G. Morgan and S. A. Jarvis

MAIN is found. From the MAIN function the descending stack 〈B,D〉 is unwound

to create the new cost stack. It is quite possible that part, or all, of the new cost

stack already exists. For instance in the example the function B has already been

called from the function MAIN and this cost stack already exists. Likewise, the

function D has already been called from the function B so there is no need to create

a new cost stack 〈D,B,MAIN〉. Finally, the function call to A is added to the cost

stack. This creates state 8 in the figure.

There will in general be many cases when the cost-centre stack which is referenced

already exists and it is only the exception when a new stack must be created. For most

of the time, therefore, updating the current cost-centre stack simply means using a

reference to another cost-centre stack in the cost-centre-stack index table; the expense

is simply the look-up in the cost-centre table, an operation which is easily optimised.

3 Results of the profiler and post-processor

The cost-centre-stack profiler, outlined in the preceding section, has been imple-

mented as a modification to the Glasgow Haskell Compiler version 0.22. The

cost-stack code is written in C and is included within the GHC run-time code. A

large amount of effort has been spent on making this code efficient and providing

tools for analysing the information produced by the profiler.

In this section results from the cost-centre-stack profiler and the accompanying

post-processor are presented (Jarvis and Morgan, 1996). Case studies are used to

compare the results of the cost-centre profiler and the cost-centre-stack profiler. The

results of both large and small programs are discussed.

The first example demonstrates the effect which the cost-centre-stack profiler has

on the results of shared functions. It is difficult to illustrate the benefits of accurate

cost inheritance when working with larger programs; the quantity of code means

that it is not always easy to see why the results are so different. Therefore, the

first example program is only 14 lines long. The results gained from the cost-centre

profiler and the cost-centre-stack profiler are significantly different. This first example

is also used to explain the post-processing procedure.

Results are then presented from the LOLITA system. This is a considerable

example and contains hundreds of thousands of function calls. It is therefore a

substantial test case for the profiler. Attention is paid to the process of profiling

using the inheritance results; this contains some different observations from those

identified in previous methods of profiling.

The final set of results are from the nofib benchmark suite, including the tradi-

tional benchmark program clausify. From these results some general conclusions

are drawn.

3.1 Introductory example

The first set of results are from a simple program designed to be computationally

expensive. The program, which repeatedly reverses lists of numbers, makes use of a

number of shared functions. These functions illustrate the difference in the results

https://doi.org/10.1017/S0956796898003013 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796898003013

Profiling large-scale lazy functional programs 221

main

g

rev

ed

b c

f

ih

a

j

(-10)

([-10..100]) ([-1000..100]) ([1..100])

Very expensive

Expensive

(1)

(1) (1)

(1)

Fig. 4. Call-graph of the experimental program.

achieved using a method of cost inheritance, produced by the cost-centre-stack

profiler, and a method of flat profiling, produced by the original cost-centre profiler.

The example is clearly contrived, but serves to illustrate the basic differences between

the two sets of profiling results. The program

module Main where

main = print (length a)

a = (b 1) ++ (c 1)

b x = (d x) ++ (e x)

c x = f x

d x = g (x - 10)

e x = g x

f x = (h x) ++ (i x)

g x = (j [x..100]) ++ (rev (rev (rev (rev [x..100]))))

h x = j [-1000..100]

i x = rev (rev (rev (rev [x..100])))

j l = rev (rev (rev (rev (rev (rev (rev l))))))

rev [] = [] -- An O(n^2) reverse function

rev (x:xs) = (rev xs) ++ [x]

is depicted in the call-graph in Fig. 4. The shared functions g and j serve to illustrate

expensive functions, if called with suitably large arguments. It is a function call from

h to j which causes the largest amount of computation; the function call from g to

https://doi.org/10.1017/S0956796898003013 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796898003013

222 R. G. Morgan and S. A. Jarvis

Thu Jun 20 14:46 1996 Time and Allocation Profiling Report (Final)

(Hybrid Scheme)

run +RTS -pT -H60M -RTS

COST CENTRE MODULE GROUP scc subcc %time %alloc

Main_rev Main Main 20867 20834 99.7 99.8

Main_f Main Main 3 2 0.1 0.0

Main_a Main Main 2 3 0.0 0.0

Main_b Main Main 2 2 0.0 0.0

Main_g Main Main 2 12 0.0 0.0

MAIN MAIN MAIN 1 0 0.0 0.0

Main_c Main Main 1 3 0.0 0.0

Main_d Main Main 2 1 0.0 0.0

Main_e Main Main 1 1 0.0 0.0

Main_h Main Main 1 2 0.0 0.0

Main_i Main Main 1 4 0.0 0.0

Main_j Main Main 6 21 0.0 0.0

PRELUDE Prelude Prelude 0 0 0.2 0.1

Main_main_CAF Main Main 0 0 0.0 0.0

CAF.Main Main Main 0 3 0.0 0.0

Main_h_CAF Main Main 0 0 0.0 0.0

Main_g_CAF Main Main 0 0 0.0 0.0

Main_i_CAF Main Main 0 0 0.0 0.0

Fig. 5. Results of the cost-centre profiler.

j causes significantly less. The arguments passed to the called function are shown in

brackets in the figure; for example function e calls function g with the argument 1.

The program is time-profiled with the cost-centre profiler4 and the results are

displayed in Fig. 5. As expected, the reverse function rev (from the program Main)

accounts for nearly all of the execution time, 99.7% in total5. The remaining 0.3%

of costs are attributed to the functions f (0.1%) and the prelude (0.2%). This last

figure is due to the catenation function (++) used throughout the program.

The flat cost-centre profile presented in Fig. 5 does not provide the programmer

with very useful information. It is not clear which of the functions g, j and i, which

share the function calls to the utility function rev, is responsible for the highest

proportion of the costs. Without any recompilation and reprofiling further results

are impossible to calculate.

The cost-centre-stack profiler produces two sets of results. Firstly, a flat profile is

produced in the same way as for the cost-centre profiler, Fig. 6. It is important to

note that the results of the cost-centre-stack flat profile are almost identical to the

results of the flat profile of the cost-centre profiler. This is an important observation;

it shows that the results of the original cost-centre profile will not be distorted by

4 Compile-time flags: -prof -auto-all; Run-time flags: -pT.
5 This O(n2) reverse function is included in the Main program to prevent costs from being

assigned to the O(n) reverse function defined in the PRELUDE library.

https://doi.org/10.1017/S0956796898003013 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796898003013

Profiling large-scale lazy functional programs 223

Total Number of Time Ticks = 1237

Cost centre Ticks as head of CC stack Total time ticks %time

Main_rev 1237 1237 100.0

Main_main 0 0 0.0

Main_a 0 0 0.0

Main_b 0 0 0.0

Main_c 0 0 0.0

Main_d 0 0 0.0

Main_e 0 0 0.0

Main_f 0 0 0.0

Main_g 0 0 0.0

Main_h 0 0 0.0

Main_i 0 0 0.0

Main_j 0 0 0.0

Prelude 0 0 0.0

Fig. 6. Flat profile of the cost-centre-stack profiler.

<Main_rev,Main_j,Main_h,Main_f,Main_c,Main_a,Main_main,> 1181 TICKs

<Main_j,Main_h,Main_f,Main_c,Main_a,Main_main,> 0 TICKs

<Main_f,Main_c,Main_a,Main_main,> 0 TICKs

<Main_j,Main_g,Main_e,Main_b,Main_a,Main_main,> 0 TICKs

<Main_rev,Main_j,Main_g,Main_e,Main_b,Main_a,Main_main,> 16 TICKs

<Main_g,Main_e,Main_b,Main_a,Main_main,> 0 TICKs

<Main_rev,Main_g,Main_e,Main_b,Main_a,Main_main,> 10 TICKs

<Main_a,Main_main,> 0 TICKs

<Main_b,Main_a,Main_main,> 0 TICKs

<Main_i,Main_f,Main_c,Main_a,Main_main,> 0 TICKs

<Main_rev,Main_i,Main_f,Main_c,Main_a,Main_main,> 7 TICKs

<Main_main,> 0 TICKs

<Main_c,Main_a,Main_main,> 0 TICKs

<Main_g,Main_d,Main_b,Main_a,Main_main,> 0 TICKs

<Main_rev,Main_g,Main_d,Main_b,Main_a,Main_main,> 11 TICKs

<Main_j,Main_g,Main_d,Main_b,Main_a,Main_main,> 0 TICKs

<Main_rev,Main_j,Main_g,Main_d,Main_b,Main_a,Main_main,> 12 TICKs

<Main_d,Main_b,Main_a,Main_main,> 0 TICKs

<Main_e,Main_b,Main_a,Main_main,> 0 TICKs

<Main_h,Main_f,Main_c,Main_a,Main_main,> 0 TICKs

Prelude no stack

Fig. 7. Results of the cost-centre-stack profiler.

the inclusion of the cost-centre stacks in the compiler. The 0.3% error is due to

sampling differences.

The cost-centre-stack profiler also produces the cost-centre stacks found in Fig. 7.

Each cost-centre stack is displayed with the units of time spent computing values

within its scope. These results are useful as they immediately indicate the cost stack

https://doi.org/10.1017/S0956796898003013 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796898003013

224 R. G. Morgan and S. A. Jarvis

Fig. 8. Post-processor displaying non-inherited post-processed results.

of the most computationally expensive part of the program. As expected, function

rev is at the head of this stack:

<Main_rev,Main_j,Main_h,Main_f,Main_c,Main_a,Main_main> 1181 TICKs

The reader will observe from Fig. 7 that the function rev is also at the head of five

further cost-centre stacks which show the path of cost centres to the function rev

via d, e and i. The programmer is presented with a complete set of unambiguous

results which avoids there being any misunderstanding when they are interpreted.

The first stage of post-processing involves the cost-centre stacks being transformed,

using a C program, into a format which can be interpreted by a graph-tool. Cost

centres in the stacks become graph nodes and adjacent cost centres in a cost-centre

stack are connected with directed arcs.

The total number of time ticks is calculated for each of the functions at the head

of each cost-centre stack. This figure is divided by the total number of time ticks

recorded to obtain a percentage. This is equivalent to calculating a flat profile, as in

Fig. 6.

The second stage of post-processing involves the programmer selecting those

functions which he is interested in profiling. This activity has been moved from

pre-profiling to post-profiling. For the sake of this initial example all functions are

selected.

This task is implemented in a second C program, taking the graph-tool input

file and producing an augmented input file depending on which cost centres are

selected. The resulting file is then loaded into the graph-tool; this is the third stage

of post-processing.

The structure of the program becomes clear when the results are displayed in the

graph-tool. In this example the programmer is presented with the call-graph of the

program containing all top-level functions. These results are shown in Fig. 8.

https://doi.org/10.1017/S0956796898003013 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796898003013

Profiling large-scale lazy functional programs 225

Total Number of Time Ticks = 1237

Cost centre Ticks in CC stack Total time ticks %time

Main_main 1181 + 16 + 10 + 7 + 11 + 12 1237 100.0

Main_a 1181 + 16 + 10 + 7 + 11 + 12 1237 100.0

Main_b 16 + 10 + 11 + 12 49 4.0

Main_c 1181 + 7 1188 96.0

Main_d 11 + 12 23 1.9

Main_e 16 + 10 26 2.1

Main_f 1181 + 7 1188 96.0

Main_g 16 + 10 + 11 + 12 49 4.0

Main_h 1181 1181 95.5

Main_i 7 7 0.6

Main_j 1181 + 16 + 12 1209 97.7

Main_rev 1181 + 16 + 10 + 7 + 11 + 12 1237 100.0

Prelude

Fig. 9. Inherited results of the cost-centre-stack profiler.

Each node in the graph contains the cost-centre name and the associated costs (in

time ticks or as a percentage; the figure shows the former). Each arc in the call-graph

is annotated with a number. This number indicates in how many cost-centre stacks

this arc was found.

The results are also displayed textually in the cost-stack post-processor. The

programmer can view the cost-centre stacks, select cost centres or choose different

profiling options from this window. All functions are executed within a couple of

seconds without any further execution or compilation of the program.

The post-processing tool is also able to perform inheritance of results, accurately

inheriting the profiling results to all the selected functions. This is achieved by

adding the costs associated with each cost-centre stack to every cost centre in the

cost-centre stack. This mechanism is demonstrated in Fig. 9.

These results can also be displayed by reloading the graph-tool with the new input

file, see Fig. 10. If it was not already clear in the previous results, the expensive arm

of the graph now becomes immediately obvious. To emphasise this fact, it is possible

to highlight the expensive arm of the graph (or display this arm of the graph only).

This proves to be a useful function in graphs which contain a large number of nodes.

There are two issues which must be addressed in the analysis of these results. The

first is the usefulness of the cost-centre-stack data and the post-processing techniques

for presenting these data. The second is that of the overheads involved in collecting

the extra data.

3.1.1 Usefulness

The cost-centre-stack information allows a dynamic call-graph of the program (such

as those seen in Fig. 8 and in Fig. 10) to be displayed. Even if the programmer

https://doi.org/10.1017/S0956796898003013 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796898003013

226 R. G. Morgan and S. A. Jarvis

Fig. 10. Post-processor displaying inherited post-processed results.

is familiar with the code this makes the task of determining the relationships

between parts of the code easier, particularly in the context of a large program. This

information has not previously been shown in the profile of a program.

The dynamic call-graph constructed from compressed cost-centre stacks may look

different to a call-graph produced by static analysis of the program, particularly if

the program contains many mutually-recursive function definitions.

Compressed stacks ensure that cost centres will only appear in a cost-centre stack

once, therefore removing the possibility of loops from the final call-graph. This

may appear to the programmer to be different to the way in which the program

is actually coded. It does not, however, affect the accuracy of the profiling results

and evidence has shown that the programmer is quickly able to adjust to the way

in which the results are displayed. It is thought that the simplified call-graphs may

even make it easier for the programmer to identify expensive portions of the code.

Profiling with cost-centre stacks allows the complete set of program costs to be

recorded. They are an accurate record of the program’s computational behaviour,

and therefore a true profile of the program in the sense that no statistical averaging

has been used to produce the results.

The post-processor allows these results to be explored instantaneously and without

any further execution or compilation of the program. This has not previously been

possible when profiling a program. Fig. 10 shows the complete set of inherited

results. Post-processing enables the expensive portion of the code to be identified,

this may be highlighted in the call-graph. The programmer is then free to identify

the cause.

There are a number of profiling and graph-tool options available to the program-

mer which allow, amongst other things, the most expensive arm of the graph to be

https://doi.org/10.1017/S0956796898003013 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796898003013

Profiling large-scale lazy functional programs 227

displayed, functions to be selected, and flat and inheritance profiles of the program

to be produced. None of these options take more than two or three seconds to

execute.

The graph in Fig. 10 clearly shows the distribution of costs in the program,

focusing the programmers attention on the functions c, f, h and j. The programmer

can quickly identify the function call from h to j as causing a significant amount of

computation.

Using the post-processor it is also possible to select and de-select cost centres. In

the example the programmer might have chosen to view the flat profile with the

cost centre Main rev de-selected. The post-processor would accurately subsume the

costs of Main rev to its calling functions, again highlighting Main j as part of the

expensive arm of the program. Repeating this exercise on Main j would confirm

that the call from Main h to Main j was instigating most of the program costs.

A similar top-down (as opposed to bottom-up) approach to profiling can be

performed using the post-processor. This is easy to achieve without reprofiling and

recompiling the program and the time benefits are considerable.

3.1.2 Overheads

The study of the overheads for the cost-centre-stack profiling scheme is important.

Previous profiling literature has shown that earlier attempts at similar cost collection

methods were abandoned because of the extremely high overheads. The success of

the cost-centre-stack method of recording results relies on the fact that the overheads

are low enough to make such a system practical.

There are a number of overheads to consider:

• The size of the cost-centre-stack table should not become so large that cost-

centre-stack profiling becomes impossible on normal workstations.

• The time that the program takes to compile and any extra heap space needed

during compilation should be acceptable. That is, the extra compilation over-

heads should be small enough to make cost-centre-stack profiling preferable to

repeated compilations of a cost-centre profile. Although most of the changes

to the Glasgow Haskell compiler are to the run-time system, the changes to

the compiler optimiser and the generation of extra run-time code mean that

the size of the executable file is slightly larger.

• Finally, the execution time costs should be small enough to make the collection

of costs practical. The run-time overheads should not be unacceptably high

and the extra heap needed for execution should not be unacceptably large.

These overheads are considered for the first example program:

Cost-centre stacks: execution of the first example program produces 20 cost-centre

stacks (when using the -prof -auto-all compile time option). There are a total of

12 cost centres in this program.

Analysing the structure of the cost-centre stacks and calculating how many bytes

are needed to store this information shows that the size of the cost-centre-stack table

https://doi.org/10.1017/S0956796898003013 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796898003013

228 R. G. Morgan and S. A. Jarvis

for this program is 528 bytes. Compared with the total size of the executable which

GHC produces, 696,320 bytes, these extra bytes are insignificant.

Compilation overheads: there is no detectable difference in the size of the heap

needed for compilation between the two profilers. The GHC default of 4 MBytes is

used. The cost-centre profiler takes a total of 94.3 seconds to compile and link the

program. This time is taken from an average of ten compilations using the Unix

system time command. The cost-centre-stack profiler takes a total of 98.5 seconds

to compile and link the code. This gives a time overhead of 5.57%.

Executable differences: the cost-centre profiler produces an executable file of 696,320

bytes. The cost-centre-stack profiler produces an executable file of 712,704 bytes.

This gives a 2.35% size overhead when using the cost-centre-stack profiler. The

execution time measured using the Unix time command is averaged over 10 execu-

tions of the program. The cost-centre profiler produces an executable which runs in

130.5 seconds; the cost-centre-stack profiler runs in 133.5 seconds. These run-time

overheads are 2.29%6. The size of the heap needed to execute the program is the

same for both profilers7.

These results are encouraging for small programs, but the results of some larger

programs must also be considered.

3.2 LOLITA results

The LOLITA system is one of the largest test cases available for profiling. The version

of LOLITA which is profiled to gather these results contains 39,094 lines of Haskell

code and 10,177 lines of C code. In addition, the system contains 6.79 Mbytes of data.

3.2.1 First example

The LOLITA system is interactive and offers a number of operations to its user.

These operations will invoke different parts of the system and consequently will

produce different results during profiling. Before any of these operations can be

performed the system must load its semantic-net data. At the end of an execution, the

LOLITA system saves the semantic-network data structure. As these two operations

are required each time the LOLITA system is run, they provide the first test case for

the cost-centre-stack profiler.

When the cost-centre-stack results are produced, the programmer’s attention is

drawn to the cost-centre stack with the highest costs:

<StaticNet_load_Ascii,StaticNet_sNetLoad,StaticNet_sInitData,

Total_loadData,Okf_mapOKF,IMain_go,> with 157 TICKs

6 The reader is referred to Sansom (1994) for the overheads in relation to un-profiled
compilation and execution of programs.

7 It is noted that any improvement made to the cost-centre profiler is likely to produce an
overall improvement to the cost-centre-stack profiler.

https://doi.org/10.1017/S0956796898003013 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796898003013

Profiling large-scale lazy functional programs 229

Fig. 11. Graph-tool view of the most expensive cost-centre stack.

At the head of this stack is the cost centre StaticNet load Ascii. This cost-centre

stack alone accounts for 24.3% of the total execution time. These large costs are

due to the loading of the LOLITA semantic-net data structure. The sequence of cost

centres to this particular point in the program is clearly shown.

The investigation of the cost-centre-stack profile is facilitated by the use of the

graph-tool and post-processor. There are a considerable number of cost-centre

stacks to analyse and perhaps only the most diligent programmer is prepared to

look through the cost-centre-stack output to find the expensive stacks.

The output is loaded into the graph tool; it contains 66 different nodes and 83

arcs between these nodes. For this reason the graph is large and cannot be seen in

a single window display. The programmer is able to use the virtual display window

in the bottom right-hand corner to view the remainder of the results.

The programmer may find that the inheritance and graph-tool functions are an

easier way of managing the profiling results. Consider the following three examples

of post-processing:

• Using the post-processing tool the programmer can select the cost-centre stack

with the highest associated costs. This is effectively the most computationally

expensive part of the code. This information is straightforward to interpret.

Fig. 11 shows this function applied to the LOLITA results; there can be no

question as to where in the program the largest amount of time was spent.

Other post-processing functions could conceivably be developed which would

add arms to the graph one by one, corresponding to the descending order of

costs from the cost-centre-stack profile.

• A simplified view of the proposed function above is to display only the parts

of the graph which have non-zero costs. A reduction of the graph of the

https://doi.org/10.1017/S0956796898003013 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796898003013

230 R. G. Morgan and S. A. Jarvis

Fig. 12. Graph-tool view of all stacks with non-zero costs.

LOLITA system, to only those cost-centre stacks with associated costs, is

shown in Fig. 12. The graph is reduced by more than a half; it now contains

31 cost centres and 30 arcs. It is clearly easier to read the results in this

form as they appear on a single screen. In general, a programmer will only be

interested in a profile of the program which shows the actual program costs.

• Post-processing also allows the programmer to select particular functions which

he is interested in profiling. This facility is demonstrated on the LOLITA cost-

centre-stack profile by selecting the following four cost centres: IMain go,

Total loadData, IMain prelude and Total saveData. It may be useful for

the programmer to gather profiling costs in terms of these four functions, as

it allows the developers to see how much time is spent loading and saving the

semantic net; how much time is spent in the prelude function of the IMain

module and how much time is spent in the main function go. Those functions

which are not selected have their costs subsumed by those functions which

are selected; see Fig. 13. The costs do not account for 100% of the overall

execution costs as some of the results are attributed to constant applicative

forms (CAFs); these are top-level values which are not functions, x=[1..], for

example.

These post-processing facilities allow the programmer to explore the profiling

costs after program execution. In this example, the programmer is able to see that

loading the semantic-net data accounts for 31.1% of the total execution time. The

LOLITA prelude accounts for 7.4% of the program costs; this involves formatting

and printing the credit information and information regarding the authors of the

system. At least 4.2% of the program’s execution time is due to saving the semantic-

https://doi.org/10.1017/S0956796898003013 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796898003013

Profiling large-scale lazy functional programs 231

Fig. 13. Graph-tool view with selected cost centres.

net structure. Some of the saving costs (18.9%) have been attributed to a CAF in the

Total module; this can be seen in Fig. 12, but not in Fig. 13. It is expected that later

versions of the cost-centre-stack profiler will improve this situation; later versions

of the GHC cost-centre profile are more explicit regarding the cost information for

CAFs8. A further 20.2% of the program costs are subsumed to the cost centre go;

this corresponds to the main function of LOLITA.

These results show a clear mechanism by which a programmer can collect and

view profiling results. The post-processing facilities are clearly useful in such a large

example and the way in which they are able to filter large collections of results gives

the cost-centre-stack profiling scheme potential.

3.2.2 Second example

The second example considers a LOLITA function which makes use of a far greater

percentage of the total code. Template analysis takes as its input a passage of text.

This is then parsed and semantically analysed to produce a network of semantic

nodes from which information can be scanned to match a collection of templates.

Two sets of input data were tested. The first was a passage of text taken from the

Daily Telegraph newspaper concerning an IRA terrorist incident (i); it contained 74

words. The second piece of data was the sentence “The cat sat on the mat” (ii).

The first set of data clearly required more processing than the second, though

using these two sets of data allows the profiling overheads required for each to be

compared. Most of the time taken in (ii) is due to the loading of the semantic network.

8 Now that the prototype has been tested and has provided satisfactory results, it is proposed
that the cost-centre-stack profiler is implemented on GHC 2.02.

https://doi.org/10.1017/S0956796898003013 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796898003013

232 R. G. Morgan and S. A. Jarvis

Table 1. LOLITA results for template analysis

Input Comp. time Exec. size Run-time #Stacks Depth #Push

(i) 50123.7 (10.2%) 41279488 (7%) 110.9 (70.6%) 1807 112 278081
(ii) same same 55.4 (130.8%) 1766 94 12321

Table 1 shows: the input data used; the time taken to compile the LOLITA

system using the cost-centre-stack profiler (the difference between this and the

cost-centre profiler is shown in brackets); the size of the executable file produced

by the cost-centre-stack profiler (the difference is again shown in brackets); the

template analysis runtime (again the difference is in brackets); the number of cost-

centre stacks produced as output; the depth of the largest cost-centre stack and the

number of Push operations performed during program execution.

As expected the larger input causes more computation and as a consequence of

this the mechanics of cost-centre-stack profiling are considerably more detailed -

this is shown by the number of Push operations performed during each execution.

The depth of the largest cost-centre stacks are similar for both sets of input; 112

and 94 cost centres respectively. Since large stacks are constructed for the small

input as well as the large, many of the 265,760 Push operations (the difference

between the two tests) will be performed as fast look-ups in cost-centre index

tables. It is the speed and frequency of this look-up which is key to the success

of the cost-centre-stack profiling technique. In effect, the Push operation builds a

representation of the dynamic paths through the program in the cost-centre-stack

table. The fact that a 20-fold increase in the number of Push operations between

inputs (ii) and (i) leads to only a 2% increase in the number of stacks suggests

that there are relatively few of these paths, and that much of the time spent in a

program with larger input data is spent traversing paths which have already been

encountered.

As well as the post-processing functions shown above, the cost-centre-stack profiler

produces accurate inheritance results. These are particularly useful in the analysis of

large graphs. There are two observations which can be made about inherited results:

• If a cost centre has a small number of inherited costs and is itself inexpensive

then it is unlikely that any performance improvement made to this function

will help to improve the program. This is not true of the cost-centre profiler

where cost centres with low or even zero costs often contain a performance

bug.

• Conversely, if a cost centre has a large inherited cost and is itself inexpensive

then it may well be worth some attention, as this function may be the cause

of large costs lower down in the program graph. This is different to the way

in which the programmer would interpret a flat profile of the program.

Using these observations and the post-processing facilities, the programmer is able

to perform a comprehensive analysis of his program. This will enable improvements

https://doi.org/10.1017/S0956796898003013 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796898003013

Profiling large-scale lazy functional programs 233

to be made to parts of the program without any further compilation, execution or

profiling of the code.

3.3 nofib Results

The previous results are further supported by the results of testing the cost-centre-

stack profiler on the nofib benchmark (Partain, 1992). The nofib benchmark suite

specifically consists of:

• Source code for real Haskell programs which can be compiled and run.

• Sample inputs (workloads) to feed to the compiled programs, along with the

expected outputs.

• Specific rules for compiling and running the benchmark programs and report-

ing the results.

• Sample scripts showing how the results should be reported.

Those programs included in the nofib suite are divided into three subsets, Real,

Imaginary and Spectral (between Real and Imaginary). The results displayed in this

paper are of Real and Spectral programs; this means that they perform a useful

task and are not implausibly small (or large). They are also written by someone

trying to get a job done, not by someone trying to make a pedagogical or stylistic

point. The results of Imaginary programs such as queens and fib are avoided.

The version of the nofib suite used in these tests dates from June 1996. All the

tests were performed on the same machine9. The GHC optimiser (-O) was used

during compilation and compile-time flags were set so that all top-level functions

were profiled (-prof -auto-all). The programs were run with the time profiler

(-pT) and the stats option (-s) so that the heap and time usage could be recorded.

In the majority of cases the supplied input was used during program execution,

although some of the input data was extended to increase the runtime of the

programs. The only other changes made to the programs were for debugging

purposes (incorrect Makefiles, etc.). Not all of the programs included in the suite

compiled correctly; some required a more up-to-date version of the compiler (0.24+)

and some of the programs had files missing. All of the programs which compiled

and ran correctly under GHC 0.22 are included, that is to say, this data was not

selected on the basis that it produced favourable results.

For each program tested, the results of compiling and running the program under

the cost-centre-stack compiler have been recorded. The difference in the overheads

of the cost-centre-stack compiler and a standard version of GHC 0.22 (using the

-prof -auto-all compiler flags) is shown in brackets. Statistics recorded include

compile-time, runtime, the number of cost centres in the program and the number

of Push operations performed by the cost-centre-stack profiler. The difference in the

total heap usage is not shown as in each case these overheads were negligible. The

results can be seen in Table 2. Analysis of the results shows the following:

9 System Model : SPARCclassic, Main Memory : 96 MB, Virtual Memory : 353 MB, CPU
Type : 50 MHz microSPARC, ROM Version : 2.12, OS Version : SunOS 4.1.3C.

https://doi.org/10.1017/S0956796898003013 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796898003013

234 R. G. Morgan and S. A. Jarvis

Table 2. nofib benchmark results

Program Comp.-time sec. (diff.) Run-time sec. (diff.) Cost centres #Push

Real subset

ebnf2ps 2518.5 (13.5%) 3.9 (84.8%) 225 34335
gamteb 816.0 (13.2%) 216.3 (100.1%) 57 356142
gg 1097.7 (11.1%) 14.4 (73.2%) 133 76272
maillist 106.8 (3.8%) 20.1 (6.0%) 10 5367
mkhprog 476.3 (13.9%) 0.4 (42.8%) 30 134
parser 1331.9 (7.7%) 79.5 (384.7%) 78 1375957
pic 475.3 (6.5%) 11.9 (6.25%) 26 6885
prolog 442.0 (12.6%) 4.3 (358.3%) 64 40847
reptile 1116.2 (9.9%) 7.3 (38.0%) 253 30051

Spectral subset

ansi 141.2 (5.7%) 0.7 (133.3%) 26 113
banner 265.6 (0.2%) 0.6 (10.9%) 9 3359
clausify 132.7 (16.6%) 14.8 (33.3%) 26 693542
eliza 284.2 (7.12%) 2.6 (144.8%) 17 24696
minimax 379.0 (6.6%) 5.0 (152.3%) 40 114384
primetest 216.6 (6.0%) 153.3 (2.4%) 21 24062

Compile-time: between 3.8% and 13.9% overhead. This is due to the time needed

to produce the larger executable file. The size of the executable files was expected

to be slightly larger because of the changes made to the compiler optimiser and to

the run-time system.

Heap usage: no detectable difference, as expected, since most of the changes made

to the compiler are to the run-time system.

Run-time difference: this is where the most overheads are anticipated, as most of

the profiler changes are to the run-time system. These range from 2.4% to 384.7%.

These overheads are dependent on the structure of the program (see section 4).

Even when the run-time overheads are 384% (parser), this only means an extra 59

seconds of execution time, which accounts for just 4.4% of a single compilation of

that program.

These results show that the cost-centre-stack profiler should be used if the cost

centres are going to be moved one or more times in the analysis of a program. If

this is the case, a substantial amount of time will be saved. The cost-centre-stack

profiler also allows a post-mortem manipulation of the profiling results. Information

can be selected on different parts of the program without the programmer needing

to physically alter the original program. This is of considerable added benefit to

the programmer as any modification to the source code for profiling is likely to

introduce errors.

The relation between, the number of cost centres and Push operations, and the

overheads is discussed in the next section.

https://doi.org/10.1017/S0956796898003013 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796898003013

Profiling large-scale lazy functional programs 235

4 Complexity analysis

How can the difference in run-time overheads found in the testing of the cost-

centre-stack profiler be explained? The answer is that the run-time overheads are

dependent on the structure and style of the program. For example,

• the complexity of the cost-centre-stack table will increase with the number of

arcs in the call-graph. The greater the functional dependency, the greater the

overheads involved in creating the cost-centre stacks;

• the more cost centres there are per unit of code, the greater the overhead of

managing the cost-centre stacks. The number of top-level functions may be

increased by the programmer’s style, for example, if the programmer does not

use many local function definitions.

It is important to note that it is not simply the size of a program which increases

the overheads. This is shown by the LOLITA results, for example, where the

overheads are lower than the overheads of programs hundreds of times smaller.

It is the possibilities allowed in the call-graph, which are fulfilled at runtime, that

increase the overheads.

Of course, this analysis (as in the nofib results) is based on the assumption

that all top-level functions are profiled (-auto-all). This need not always be the

case. It is quite possible to profile explicitly-annotated cost centres in addition to

the top-level functions. It is also possible to profile only functions exported from

a module (-auto) or only explicitly-annotated cost centres. Since it is possible to

de-select cost centres during the post-processing phase, the only reason for reducing

the number of cost centres at compile-time is to decrease the profiling overheads.

Fewer cost centres will mean fewer push operations and fewer and smaller stacks.

A case in which this has been necessary has yet to be found.

A worst- and average-case analysis of the cost-centre-stack profiler may be found

in Jarvis (1996) – the analysis also considers the overheads of this profiling scheme

according to different program structures. For example if the call-graph is a tree,

where each function is called by only one other function, then the complexity of the

algorithm is logarithmic over the number of cost centres in the program.

5 Debugging and tracing

There are a number of further applications of this cost-centre-stack technique, two

of which are the debugging and tracing of Haskell programs.

There are two types of error found in Haskell programs which are particularly

awkward for the programmer to detect:

• The first is non-termination as there is usually no helpful information given

as to why this is the case.

• The second is the familiar head [] error. When this error is presented it is

often very difficult to determine which the caller was. Part of the problem is

that the programmer wants to know what built the thunk (head []) rather

than the function which demanded it.

https://doi.org/10.1017/S0956796898003013 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796898003013

236 R. G. Morgan and S. A. Jarvis

It is proposed that the cost-centre-stack profiler be modified so that it outputs

the current stack of cost centres when an error occurs in a program or the user

interrupts its execution. This means that the location of an error can be determined

immediately; it is also possible to trace the path which the program took to that

erroneous piece of code. This limits the search required by the programmer and in

initial tests has provided invaluable information in the debugging of the LOLITA

system.

It is also possible to output the cost-centre stacks as the program is executing.

Although this provides a lot of information it does allow the programmer to watch

the order of evaluation of expressions in the execution of a program. Alternatively

the programmer could stop the program, pressing control-C, and the current cost-

centre stack could be printed. In the past, the only way to see the sequence of lazy

evaluation was to watch the program stack. This was not easy and was difficult to

interpret even for the experienced programmer.

The cost-centre-stack approach to debugging and tracing is very flexible as the

programmer can insert cost centres into the code where he thinks it is necessary,

therefore controlling the output of the debugger just as a C programmer might add

printf statements to his code. Integrating the tracing and debugging functions with

the post-processor may provide the programmer with a useful environment in which

to profile, view and debug his Haskell programs.

6 Conclusions

The development of the cost-centre-stack profiler was based on the results of a series

of case studies implemented over a three-year period. The case studies investigated

the profiling of the LOLITA system, a large-scale lazy functional system written in

47,000 lines of Haskell code. This study highlighted a number of problems with the

current profiling tools and in response to these the cost-centre-stack profiler was

designed.

The cost-centre-stack profiler collects results which can then be post-processed

after the execution of a program. The post-processor implements a scheme whereby

the programmer can select and reselect cost centres in his code and view the results

accordingly. This enables the results to be displayed at different levels in the program

without any further compilation or execution of the code.

The implementation of the cost-centre-stack profiler and the post-processor pro-

vides a number of benefits to the programmer:

• The new method of profiling provides an opportunity for a reduction in the

time needed to profile Haskell programs.

• The new method of profiling extends the results presented by previous profilers

in so much as the accurate inheritance of shared program costs can be achieved

without having to recompile and rerun the program.

• The new method of profiling provides these new facilities without imposing an

unacceptable overhead on the compilation or execution of a Haskell program.

https://doi.org/10.1017/S0956796898003013 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796898003013

Profiling large-scale lazy functional programs 237

It is also considered that this method will offer assistance in the debugging and

tracing of Haskell programs.

References

Clack, C., Clayman, S. and Parrott, D. J. (1995) Lexical Profiling: Theory and practice. J.

Functional Programming, 5(2).

Long, D. and Garigliano, G. (1994) Reasoning by Analogy and Causality: A Model and

Application. Ellis Horwood.

Graham, S. L., Kessler, P. B. and Kusick, M. K. (1982) gprof: a call graph execution profiler,

ACM Sigplan Notices, 17(6): 120–126.

Jarvis, S. A. (1996) Profiling Large-scale Lazy Functional Programs. PhD Thesis, University

of Durham.

Jarvis, S. A. and Morgan, R. G. (1996) The results of: Profiling large-scale lazy functional

programs. Implementation of Functional Languages: Lecture Notes in Computer Science 1268,

pp. 200–221. Springer-Verlag.

Launchbury, J. (1993) A natural semantics for lazy evaluation, Proceedings of 20th ACM

Symposium on Principles of Programming Languages, Charlotte. ACM.

Morgan, R. G. and Jarvis, S. A. (1995) Profiling large-scale lazy functional programs. In A.

P. W. Bohm and J. T. Feo (eds.), Proceedings of High Performance Functional Computing,

Lawrence Livermore National Laboratory, USA, pp. 222–234.

Partain, W. (1992) The nofib Benchmark Suite of Haskell Programs. Department of Computer

Science, University of Glasgow.

Runciman, C. and Wakeling, D. (1993) Heap profiling of lazy functional programs. J. Func-

tional Programming, 3(2).

Sansom, P. M. (1994) Execution Profiling for Non-strict Functional Languages. PhD Thesis,

University of Glasgow.

Sansom, P. M. and Peyton Jones, S. L. (1995) Time and space profiling for non-strict, higher-

order functional languages. 22nd ACM Symposium on Principles of Programming Languages,

San Francisco, CA.

https://doi.org/10.1017/S0956796898003013 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796898003013

