
10

Database Fine-Tuning

In Chapters 8 and 9, we covered the basics of relational databases –
tables as the main containers of data, and how they can be created,
populated, and joined with SQL. In these chapters, we dealt exclusively
with conceptual questions about data and how it is stored in a relational
database. In this final chapter on databases, we move on to two more
operational questions. Recall that data structure (facilitating the use of
multiple tables, avoiding redundancy) was only one of the reasons for
storing data in a database. There are at least two more reasons that can
make databases such as PostgreSQL a useful choice for social science
projects. First, databases can handle large datasets much more efficiently
than a file-based workflow, and second, databases permit data processing
shared by multiple users, such that it is possible to give some users write
access to certain parts of the data, while others can only read it.
Most database systems do not solve these issues automatically. Rather,

they require some fine-tuning by the user, but fortunately, none of this is
very complicated. To show how database systems such as PostgreSQL
deal with these challenges, we cover two topics in this chapter. First,
we discuss the use of so-called search indexes that allow the database
to quickly look up particular entries in a table based on one or more
of the fields. Indexes are not only used in relational databases; rather,
they are data structures that you can find in many systems dealing with
large amounts of data (although they are often hidden from the user).
Second, we introduce PostgreSQL’s multi-user capabilities, where you can
add several users to a database and equip them with particular privileges
for data access and data manipulation.

135

https://doi.org/10.1017/9781108990424.014 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.014

136 10 Database Fine-Tuning

figure 10.1. A table without an index.

In this chapter, we are not going to work with another real-world
example to demonstrate indexes and multi-user features. Rather, we will
use an artificial dataset, which makes it possible for us to create large
tables without the need to import them from a file.

10.1 speeding up data access with indexes

An index is an additional data structure added to your database that
allows the database system to quickly locate records in a given table, based
on one or more of the fields in the table. You can think of database index
very much like the index of a book: A book’s index is essentially a list
of important keywords and topics covered in the book, and it provides
you with the page number(s) that contain relevant information about
the respective topic. Here is an example that briefly illustrates how an
index works. In Figure 10.1, you can see a table with data on persons
located in three cities (3, 8, and 9). Now imagine that you want to select
all persons in a particular city, for example, those in city 8. Without a
search index, the database system needs to go through all records in the
table sequentially, test whether the city attribute is equal to 8, and retain
those where this condition is satisfied.
This would of course be a very fast operation for our small table, due

to the fact that it only has five rows. However, as the size of the table
grows, so does the retrieval time: In computer science, this time is typically
measured in relation to the number of rows in the table. Our simple, non-
indexed table requires retrieval times that scale linearly with the number
of records: If we double the number of records, the retrieval time doubles,
too. This becomes a real issue when we deal with large tables and require
many repeated lookups. Luckily, we can solve this issue with the help of
indexes. A search index is created to speed up the retrieval of records
based on a particular search attribute. Figure 10.2 shows our example
again, but with a search index on the city field added.

https://doi.org/10.1017/9781108990424.014 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.014

10.1 Speeding Up Data Access with Indexes 137

figure 10.2. A table with an index.

The index stores pointers to the different values in the search attribute.
So if we want to look up the persons living in city 8, all the database
system needs to do is locate the value 8 in the index, and follow the
pointers to the three records available for city 8. This is much faster com-
pared to the simple traversal of the entire table as in our above example:
The retrieval time using an index is usually logarithmic in the number of
records in the table. This is a tremendous speedup: A table with 5 million
entries would require 5 million steps for a naïve, sequential search, com-
pared to less than 25 steps for a search using an index (binary logarithm).
This speedup, however, has certain costs. An index is an additional data

structure that needs to be stored somewhere, so the size of your database
on disk will become larger (which is something that, in most cases, you
can simply ignore since the gains for retrieval are significant). An issue
that may be more relevant arises when we insert new records into the
table (or when we update the indexed column for some of the records):
With an index in place, simply adding the new record to the table is not
enough; the database system also needs to update the index such that it
contains a pointer to the new record. If you insert many records, or update
the existing ones frequently, this will become slower in comparison to a
non-indexed table. In a typical workflow in the social sciences, however,
this is less likely to happen. Therefore, you can usually create an index
after all the data has been inserted, which avoids this problem.
Thankfully, indexing functionality for different kinds of data is readily

built into PostgreSQL (andmany other database systems), so as a user you
do not have to worry about any of the inner workings. To demonstrate
the speedup we can gain from an index, let us perform a little experiment.
We create a large table both in R and in a relational database, and mea-
sure how long it takes for a certain subset of the table to be retrieved.
For this experiment, we slightly expand the above example. We create a
table with persons that are located in cities, and are observed annually

https://doi.org/10.1017/9781108990424.014 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.014

138 10 Database Fine-Tuning

(e.g., in a longitudinal survey). The expand.grid() function is useful here,
which creates a data.frame out of all possible combinations of the values
in the given vectors. We add a randomly generated result variable to the
data frame, which holds the value measured for the respective person in
the respective year. Finally, we randomly shuffle the order of the entries
in our table, to exclude any effects from our data having been inserted in
a particular ordered sequence.

survey <- expand.grid(person = 1:100, city = 1:1000, year = 1970:2020)
survey$result <- runif(nrow(survey))
survey <- survey[sample(nrow(survey)),]

We can now simulate a simple data retrieval operation from our table,
where we extract all records for city 80 and the years 2000 and later.
When we do this, we measure the time the system takes to carry out this
task, by computing the difference between the system time immediately
before the data retrieval and immediately after. In the following code
chunk, we enclose the three lines of code in curly brackets, such that they
are executed immediately after one another:

{start_time <- Sys.time()
nrow(subset(survey, city == 80 & year >= 2000))
extime_R <- Sys.time() - start_time}

The time used for extracting the relevant records is 52.09 milliseconds.
On your system, this value will be different, since execution times depend
on amultitude of factors; however, the precise value is not important since
we are interested in relative differences between R and PostgreSQL. Now,
let us do the same experiment in a relational database. As always, we cre-
ate a new, blank database for this chapter (see Chapter 2 for instructions),
and connect to it:

library(RPostgres)
db <- dbConnect(Postgres(),
dbname = "dbtuning",
user = "postgres",
password = "pgpasswd")

We again create our artificial dataset, this time using an SQL statement.
The generate_series() function in PostgreSQL makes the generation of
the numeric sequences easy. All possible combinations of these values are
generated by referencing them in the FROM part of the statement. Again,
we add a result value randomly:

https://doi.org/10.1017/9781108990424.014 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.014

10.1 Speeding Up Data Access with Indexes 139

dbExecute(db,
"CREATE TABLE survey AS
(SELECT *, random() AS result FROM
generate_series(1,100) AS person,
generate_series(1,1000) AS city,
generate_series(1970, 2020) AS year)")

This table has exactly the same content and size as the data frame we
used above. At present, it is just a simple table in the database, without
any indexes to facilitate data retrieval. This is how we perform the same
query as above in SQL, again measuring the execution time (note again
the curly brackets):

{start_time <- Sys.time()
dbGetQuery(db,
"SELECT count(*) FROM survey
WHERE city = 80 AND year >= 2000")

extime_pg1 <- Sys.time() - start_time}

Without an index, the search in our survey table takes longer than the
one in the R data frame: 196.99 milliseconds. Clearly, without an index,
R’s basic data structures perform even better than a relational database.
Does an index solve this problem? Adding an index to a table is easy. All
you need is a CREATE INDEX statement, where you specify the table and
the column that should be indexed. As a rule of thumb, it is advisable to
index those columns that are typically used to retrieve records from the
table, and to create a separate index for each of them. In our case, these
are the city and year columns in the survey table. If you have a primary
key in the table and it has been explicitly defined as such, there is no need
to create an index, since PostgreSQL does this automatically:

dbExecute(db, "CREATE INDEX ON survey (city)")
dbExecute(db, "CREATE INDEX ON survey (year)")

If we now run our query again with the same statement as above:

{start_time <- Sys.time()
dbGetQuery(db,
"SELECT count(*) FROM survey
WHERE city = 80 AND year >= 2000")

extime_pg2 <- Sys.time() - start_time}

we see a considerable performance improvement. Now, the query only
takes 1.79 milliseconds, which is much faster than the previous SQL
query on the non-indexed table (by a factor of about 110), but also about

https://doi.org/10.1017/9781108990424.014 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.014

140 10 Database Fine-Tuning

29 times faster than R’s data frame. So if your data processing includes
large datasets with many repeated data retrievals, it is absolutely essential
that you properly index your data. If you do not need the additional
features of a database system and use a purely file-based data workflow,
you can consider using alternatives to R’s basic data frames. For example,
the data.table package provides a tabular data structure that can be
indexed, and has a much better retrieval performance, in particular for
large tables.

10.2 collaborative data management
with multiple users

One of the main benefits of managing data in a centralized, server-based
setting is the possibility for many users to access the database. Imagine a
situation in which a team of researchers collaboratively works on a new
dataset (thereby actively modifying it), and another group of researchers
prepare initial analyses on this dataset (with read-only access to the data).
In a file-based workflow, the second team of researchers could be provided
with regular snapshots of the data, shared as files. However, it is difficult
to collaboratively edit and update data in a team of contributors if the
data is stored solely in files. The reason is that changes by one person
can easily be overwritten by another person, similar to what happens if
several people edit a single text document at the same time.
Relational database systems have fine-grained mechanisms of access

control, which makes it possible to fine-tune read and write privileges
for many users of a database. These features can be useful to resolve
issues arising in collaborative scenarios such as the one above, but also
many others. In this section, I present a brief introduction to user privilege
management in SQL. We continue to use our survey table created above,
but will simulate access to this table by two users. The first one of them
uses the connection we have initiated above, with the standard username
and password.This user is a “super-user,”owns the database dbtuning and
can make any modification in it. The connection object we have created is
db, which we will continue to use. For our exercise, however, we also need
a second user. Therefore, our super-user first needs to create this second
user in the database system:

dbExecute(db, "CREATE USER other WITH ENCRYPTED PASSWORD 'pgpasswd1'")

Note that we create the user through the db connection, which is the
super-user connection with the privilege to add andmodify users. The new

https://doi.org/10.1017/9781108990424.014 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.014

10.2 Collaborative Data Management with Multiple Users 141

user is called other, and we create this user with an encrypted password
and not a plain text one (WITH ENCRYPTED PASSWORD). In PostgreSQL, users
are defined at the level of the entire database server, not at the level of
individual databases. Therefore, the new user is in principle available for
all databases hosted on our server. At this point, however, there is not
much this user can do, because no access privileges to databases and tables
have been defined. Still, we can already connect to the server as the new
user. We do so with a new connection object db1 that we will use for all
operations that user other will perform later.

db1 <- dbConnect(Postgres(),
dbname = "dbtuning",
user = "other",
password = "pgpasswd1")

We are connected to the dbtuning database, so everything we send over
the db1 connection will be executed within this database. Let us try to
select a few rows from the table:

dbGetQuery(db1,
"SELECT avg(result) FROM survey
WHERE city = 80 AND year = 2000")

As expected, this fails with an error message. The reason is simply that
user other does not have any privileges for the database,which means that
the user can neither read nor modify any data in it. Our super-user can
enable this. The following statement (executed as user postgres through
the db connection) allows user other to perform SELECT queries on the
survey table:

dbExecute(db, "GRANT SELECT ON survey TO other")

Now, the user can successfully execute the above query:

dbGetQuery(db1,
"SELECT avg(result) FROM survey
WHERE city = 80 AND year = 2000")

avg
1 0.5139814

In some cases, it may be necessary to let users update the data in a table.
We can do this by granting update privileges for the entire table, but it is
even possible to do this for individual columns only. Let us assume that
the new user is supposed to update the survey results. We allow this by

https://doi.org/10.1017/9781108990424.014 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.014

142 10 Database Fine-Tuning

providing the user with the right to update the table, but only a specific
column. In the case of our survey, we can use this functionality to let other
users change the measured value in the result column, but not the basic
structure of the survey with person IDs, cities, and years:

dbExecute(db, "GRANT UPDATE (result) ON survey TO other")

Now, the user can change the results, for example to correct a wrong
entry

dbExecute(db1,
"UPDATE survey SET result = 0.789
WHERE person = 3 AND city = 80 AND year = 2000")

but the user cannot update data in the other columns of the table, which
is exactly what we want. The following command fails with an error
message:

dbExecute(db1, "UPDATE survey SET year = year + 1 WHERE year = 2000")

We only granted the user the privilege to update some data, but other
manipulations (such as dropping some records) are not possible. If we
want our new user to update the table or delete records from it, we need
to expand the user’s privileges. You can either specify these new privileges
explicitly (e.g., GRANT UPDATE), or simply give the user all privileges on the
survey table.

dbExecute(db, "GRANT ALL PRIVILEGES ON survey TO other")

Finally, we also show how to remove certain privileges after they have
been granted. This is done with a REVOKE statement, which works similar
to the GRANT statement used above. Again, you can specify the privileges
you would like to drop explicitly, or simply revoke them all:

dbExecute(db, "REVOKE ALL PRIVILEGES ON survey FROM other")

As always, at the end of the chapter,we close our database connections:

dbDisconnect(db)
dbDisconnect(db1)

The examples above gave you an idea of how to fine-tune user access
to the tables in your database. Access control works at the level of tables.
By default, users (that do not own the table) have no access to a table.
You can change this by granting read-only access to the table, or allow

https://doi.org/10.1017/9781108990424.014 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.014

10.3 Summary and Outlook 143

users to make changes to the data in the table (or only certain columns).
These features allow for databases to be used in a collaborative setting,
where multiple researchers jointly access a single database remotely.

10.3 summary and outlook

Most of our discussion about databases in the previous chapters centered
around questions of data structure and content. In this chapter, we looked
into operational questions arising in the work with relational database
systems. Databases shield a lot of technical complexity from users; all
you need to do is define your tables and populate them with data, and
the database system takes care of saving this data in a physical storage.
While PostgreSQL and other systems have a lot of internal mechanisms
to process the data as efficiently as possible, some fine-tuning may be nec-
essary, depending on the context in which you use the database. I showed
above how the retrieval of data in large tables can be sped up by several
orders of magnitude through the use of indexes. Since these indexes also
have certain costs (e.g., they make data insertions slower), the database
system does not create them automatically, which is why you need to do
this yourself using the respective SQL statements.
A second topic we covered in this chapter is the multi-user features

of PostgreSQL. Due to the client-server setup of most database systems,
it becomes possible for your data to be accessed by different people and
from different places, something that is difficult and error-prone if your
data is stored in files. However, collaborative access means that you need
to think about who should get access to the data in the first place, and
what the other users can do with the data: Are they supposed to only
have read access, or can they even make modifications to it? The user
privileges in PostgreSQL allow you to define this. You can create new
users, and grant them permission to select data from a particular table, or
modify (change and delete) it. These features make databases a powerful
and convenient tool for storing and processing research data. Overall,
there is a number of lessons learned in this chapter:

• Index your large datasets:When your datasets grow large, it is essential
to work with indexes to speed up search and retrieval. As mentioned
above, indexing features are not just available in relational databases;
instead, this is a general technique to handle large amounts of data
efficiently.You can also equip individual tables in Rwith an index using
the data.table package, but of course without the other advantages
offered by relational databases.

https://doi.org/10.1017/9781108990424.014 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.014

144 10 Database Fine-Tuning

• User privileges allow for transparent data access: Larger projects in
the social sciences can easily involve several collaborators accessing a
database. The user privilege system provides a way to regulate access to
your data, with different access levels for different people. In particular
when it comes to sensitive data, it is essential to define who can see,
update, or delete what kinds of data in your project.

• Tracking changes remains difficult: In many projects (e.g., those that
involve human coding), it is often desirable to track changes to the
data made by users. This is difficult, regardless of whether your data is
stored in files or in a database. One way to do this is to keep regular
copies (snapshots) of your data. Alternatively, in PostgreSQL, you can
use the pgaudit extension, which logs all database operations to a
logfile.

• Direct access to the DB: Sometimes, it is useful to quickly browse a
database, for example, to check whether the data was imported cor-
rectly. For this purpose, you can use a graphical database client, such
as the free pgAdmin tool (https://www.pgadmin.org), or the commer-
cial, but highly recommended Postico software (https://eggerapps.at/
postico/). Using these tools, you can browse a database, look at some
records from a table, or even make small updates manually.

https://doi.org/10.1017/9781108990424.014 Published online by Cambridge University Press

https://www.pgadmin.org
https://eggerapps.at/postico/
https://eggerapps.at/postico/
https://doi.org/10.1017/9781108990424.014

